A note on s-topological groups

Moiz ud Din Khan¹, Muhammad Siddique Bosan²

^{1,2}Department of Mathematics, COMSATS Institute of Information Technology, Chack Shahzad, Islamabad 44000, Pakistan
¹moiz@comsats.edu.pk, ²siddiquebosan@hotmail.com

Abstract: In this paper, properties of s-topological groups are investigated. s-regularity and s-compactness have been studied for s-topological groups. Relation between topologized groups has been established. Counter examples are given to show that reverse implications are not true in general.

[Moiz ud Din Khan, Muhammad Siddique Bosan. A note on s-topological groups. *Life Sci J* 2014; 11(7s): 370-374]. (ISSN: 1097-8135). <u>http://www.lifesciencesite.com</u> 79

Keywords: Semi homeomorphism, s-topological groups, S-topological groups, Irr-topological groups, irresolute topological groups, and s-compact spaces.

2010 Mathematics Subject Classification: Primary 54H11; Secondary 22A05, 54C08, 54H99.

1. Introduction

To study the properties of topologized groups by weakening the continuity conditions in the sense of N. Levine is the basic interest of the article. Semi continuity [9] and irresolute mapping [6] were the consequence of the study of semi open sets in topological spaces. In [2] Bohn defined and investigated the notion of s-topological groups and in [15] Siddique et al. defined the notion of S-topological groups. In [14] Siab et al. defined and studied the notions of irresolute topological groups and Irrtopological groups by using irresolute mappings [6]. In this paper we will continue the study of the properties of s-topological groups. Investigations on scompactness and s-regularity are presented on stopological groups and irresolute topological groups. Relations between S-topological groups, s-topological groups, irresolute topological groups and Irrtopological groups are investigated. Counter examples are given to show that the reverse implications are not true in general.

2. Definitions and Preliminaries

Throughout this paper X and Y are always topological spaces on which no separation axioms are assumed. For a subset A of a space X the symbols Int(A) and Cl(A) are used to denote the interior of A and the closure of A respectively. If $f : X \to Y$ is a mapping between topological spaces X and Y and B is a subset of Y, then $f^{-1}(B)$ denotes the pre image of B. Our other topological notations and terminology are standard as in [7]. If (G,*) is a group, then e denotes its identity element, and for a given $x \in G$, $\ell_x : G \to$ $G, y \mapsto x * y$, and $r_x : G \to G$, $y \mapsto y * x$, denote the left and the right translations by x, respectively. The operation * we call the multiplication mapping $m: G \times G \to G$, and the inverse operation $x \mapsto x^{-1}$ is denoted by *i*.

In 1963, N. Levine [9] defined semi open sets in topological spaces. Since then many mathematicians explored different concepts and generalized them by using semi open sets (see [1, 6, 8, 12, 13]). A subset A of a topological space X is said to be semi open if there exists an open set U in X such that $U \subset A \subset Cl(U)$, or equivalently if $A \subset Cl(Int(A))$. SO(X) denotes the collection of all semi open sets in X. The complement of a semi open set is said to be semi closed; the semi closure of $A \subset X$, denoted by sCl(A), is the intersection of all semi closed subsets of X containing A [4,5]. $x \in sCl(A)$ if and only if for any semi open set U containing $x, U \cap A \neq \emptyset$.

Clearly, every open (closed) set is semi open (semi closed). It is known that the union of any collection of semi open sets is again a semi open set, while the intersection of two semi open sets need not be semi open. The intersection of an open set and a semi open set is semi open. If $A \subset X$ and $B \subset Y$ are semi open in spaces X and Y, then $A \times B$ is semi open in the product space $X \times Y$. Basic properties of semi open sets are given in [9], and of semi closed sets and the semi closure in [4, 5].

Recall that a set $U \subset X$ is a semi open neighbourhood of a point $x \in X$ if there exists $A \in$ SO(X) such that $x \in A \subset U$. A set $A \subset X$ is semi open in X if and only if A is a semi open neighbourhood of each of its points. If a semi open neighbourhood U of a point x is a semi open set we say that U is a semi open neighbourhood of x. Let (G, τ) be a topological space and $A \subset G$. Then $x \in G$ is called a semi interior point of A if there exists a semi open set U such that $x \in$ $U \subset A$. The set of all semi interior points of A is called a semi interior of A, denoted by sInt(A). A topological space (G, τ) is semi- T_2 [10] if for every distinct points x, y in G, there are semi open neighbourhoods U containing x and V containing ysuch that $U \cap V = \varphi$. A topological space (G, τ) is sregular [11] if for any $x \in G$, and any closed set $F \subset G$ such that $x \notin F$, there is a semi open neighbourhood Uof x and a semi open neighbourhood V containing Fsuch that $U \cap V = \varphi$. A space G is s-compact [3], if every semi open cover of G has a finite subcover. Every compact space is s-compact but converse is not always true. For some applications of semi open sets see [12].

A mapping $f: X \to Y$ between topological spaces X and Y is called:

(1) semi continuous (resp. irresolute) if for each open (resp. semi open) set $V \subset Y$ the set $f^{-1}(V)$ is semi open in X. Equivalently, the mapping f is semi continuous (irresolute) if for each $x \in X$ and for each open (semi open) neighbourhood V of f(x), there exists a semi open neighbourhood U of x such that $f(U) \subset V$. Every irresolute mapping is semi continuous;

(2) pre semi open [6] if for every semi open set A of X, f(A) is semi open in Y;

(3) semi homeomorphism [6] if f is bijective, irresolute and pre semi open;

(4) S-homeomorphism [15] if f is bijective, semi continuous and pre semi open. Every semi homeomorphism is an *S*-homeomorphism.

3. Properties of topologized groups.

Definition 3.1. [15] A triple $(G, *, \tau)$ is said to be an S-topological group if (G, *) is a group, (G, τ) is a topological space, and (a) the multiplication mapping $m: G \times G \to G$ defined by m(x, y) = x * y, for every $x, y \in G$, is semi continuous, (b) the inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}$, for every $x \in G$, is semi continuous.

Definition 3.2. [2] An s-topological group is a group (G,*) with a topology τ such that for each $x, y \in G$ and each neighbourhood W of $x * y^{-1}$ there are semi open neighbourhoods U of x and V of y such that $U * V^{-1} \subset W$.

Definition 3.3. [14] A triple $(G, *, \tau)$ is said to be an Irr-topological group if (G, *) is a group, (G, τ) is a topological space, and (a) the multiplication mapping $m: G \times G \to G$ defined by m(x, y) = x * y, for every $x, y \in G$, is irresolute, (b) the inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}$, for every $x \in G$, is irresolute.

Definition 3.4. [14] A triple $(G, *, \tau)$ is an irresolute-topological group with a group (G, *) and a topology τ such that for each $x, y \in G$ and each semi open neighbourhood W of $x * y^{-1}$, there are semi-open

neighbourhoods U of x and V of y such that $U * V^{-1} \subset W$.

Lemma 3.5. [2] If
$$(G, *, \tau)$$
 is an s

topological group, then

(1) $A \in SO(G)$ if and only if $A^{-1} \in SO(G)$;

(2) If $A \in SO(G)$ and $B \subset G$, then A * B and B * A are both semi open in *G*.

Lemma3.6. [14] If $(G,*,\tau)$ is an irresolute topological group, then

(1) $A \in SO(G)$ if and only if $A^{-1} \in SO(G)$;

(2) If $A \in SO(G)$ and $B \subset G$, then A * B and B * A are both semi open in G.

Lemma 3.7. [14] Every irresolute topological group is an Irr-topological group.

Lemma 3.8. [15] Every s-topological group is an S-topological group.

Lemma 3.9. [15] Each left (right) translation of s-topological groups is S-homeomorphism.

Lemma 3.10. Each left (right) translation of irresolute topological groups is semi homeomorphism.

Proof. Let $(G, *, \tau)$ be an irresolute topological group. We prove the statement only for left translation. Of course, left translation is bijective mapping. We prove directly that for any $x \in G$ the left translation $\ell_x : G \to G$ is irresolute. Let y be an arbitrary element in G and let W be a semi open neighbourhood of $\ell_r(y) = x * y = x * (y^{-1})^{-1}$. By definition of irresolute topological group, there are semi open neighbourhoods U and V containing x and y^{-1} , respectively, such that $U * V^{-1} \subset W$. In particular, we have $x * V^{-1} \subset W$. By Lemma 3.6, the set V^{-1} is a semi open neighbourhood of y, so that the last inclusion actually says that ℓ_x is irresolute at y. Since $y \in G$ was an arbitrary element in G, therefore, ℓ_x is irresolute on G. We prove now that ℓ_x is pre semi open mapping. Let A be a semi open set in G. Then by Lemma 3.6, the set $\ell_x(A) = x * A$ is semi open in G, which means that ℓ_x is a pre semi open mapping. Thus left translation is semi homeomorphism. Similarly we can prove that the right translation is semi homeomorphism.

Theorem 3.11. Let $(G,*,\tau)$ be an s-topological group and let β_e be the base at identity element *e* of *G*. Then:

(i) for every $U \in \beta_e$, there is an element $V \in SO(G, e)$ such that $V^2 \subset U$.

(ii) for every $U \in \beta_e$, there is an element $V \in SO(G, e)$ such that $V^{-1} \subset U$.

(iii) for every $U \in \beta_e$, there is an element $V \in SO(G, e)$ such that $V * x \subset U$, for each $x \in U$.

Proof (i). Let $U \in \beta_e$. This implies that $e \in U \subset G$ and $U_{e*e^{-1}} = U$. Since $(G,*,\tau)$ is an s-topological group therefore, there exists $V \in SO(G,e)$ and by Lemma 3.5,

 $V^{-1} \in SO(G, e)$ such that $V * V \subset U$. Therefore, $V^2 \subset U$.

(ii) Since $(G, *, \tau)$ is an s-topological group. Therefore, for every $U \in \beta_e$, there exists $V \in SO(G, e)$ such that $i(V) = V^{-1} \subset U$ because the identity function $i: G \to G$ is semi continuous by Theorem 7 [2]. (iii) Since $(G, *, \tau)$ is an s-topological group, therefore by Lemma 3.9, $\ell_x : G \to G$ and $r_x : G \to G$ are S-homeomorphisms. Thus for each $U \in \beta_e$ containing x, there exists $V \in SO(G, e)$ such that $r_x(V) = V * x \subset U$.

The following example shows that Theorem 3.11 (i) is not true for S-topological groups.

Example 3.12. $G = \{0,1,2\}$ is a group under addition modulo 3, and $\tau = \{\varphi, G, \{0\}, \{0,1\}\}$ is a topology on $G.SO(G) = \{\varphi, G, \{0\}, \{0,1\}, \{0,2\}\}$. Then $(G, +_3, \tau)$ is an S-topological group. For any $U \in \beta_e$ (base at the identity element e other than $\{e\}$ and G), we can not find any semi open set V containing e, satisfying $V^2 \subset U$.

Lemma 3.13. If $(G, *, \tau)$ is an irresolute topological group, then the inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}$ for all $x \in G$ is a semi homeomorphism.

Theorem 3.14. Let $(G,*,\tau)$ be an irresolute topological group and μ_e be the collection of all semi open neighbourhoods of the identity element *e* of *G*. Then:

(i) For every $U \in \mu_e$, there is an element $V \in \mu_e$ such that $V^2 \subset U$.

(ii) For every $U \in \mu_e$, there is an element $V \in \mu_e$ such that $V^{-1} \subset U$.

(iii) For every $U \in \mu_e$, there is an element $V \in \mu_e$ such that $V * x \subset U$, for each $x \in U$.

(iv) For every $U \in \mu_e$, and $x \in G$, there is an element $V \in \mu_e$ such that $x * V * x^{-1} \subset U$.

Proof (i). Let $U \in \mu_e$ This implies that $e \in U \subset G$ and $U_{e*e^{-1}} = U$. Since $(G,*,\tau)$ is an irresolute topological group therefore, there exist $V, V^{-1} \in \mu_e$ such that $V * V \subset U$. Therefore, $V^2 \subset U$.

(ii). Since $(G, *, \tau)$ is an irresolute topological group. Therefore, for every $U \in \mu_e$, there exists $V \in SO(G, e)$ such that $i(V) = V^{-1} \subset U$ because the identity function $i: G \to G$ is irresolute by Lemma 3.13.

(iii). Since $(G, *, \tau)$ is an irresolute topological group and, therefore by Lemma 3.10, $\ell_x: G \to G$ and $r_x: G \to G$ are semi homeomorphisms. Thus for each $U \in \mu_e$ containing x, there exists $V \in SO(G, e)$ such that $r_x(V) = V * x \subset U$.

(iv). It follows from the fact that ℓ_x and $r_{x^{-1}}$ are semi homeomorphisms of G and $\ell_x(e) = x$, so that there exists $V \in \mu_e$ such that $\ell_x(V) = x * V$, and x * V is a

semi open neighbourhood of x, and $r_{x^{-1}}(x * V) = x * V * x^{-1} \subset U$.

Theorem 3.15. If $(G, *, \tau)$ is an irresolute topological group, then it is an s-topological group.

Proof. Let $x, y \in G$ and let $W \subset G$ be an open neighbourhood of $x * y^{-1}$. Then $W \subset G$ is a semi open neighbourhood of $x * y^{-1}$. Since $(G, *, \tau)$ is an irresolute-topological group, there are semi open neighbourhoods $U \subset G$ of x and $V \subset G$ of y such that $U * V^{-1} \subset W$. This implies that $(G, *, \tau)$ is an stopological group.

Theorem 3.16. If $(G, *, \tau)$ is an Irr-topological group, then it is an S-topological group.

Proof. Since irresolute mapping is a semi continuous mapping, therefore an Irr-topological group $(G, *, \tau)$ is an S-topological group.

topological group	\Rightarrow	s-topological group
\Downarrow		\Downarrow
Irr-topological group	\Rightarrow	S-topological group
ſ		↑
Irresolute topological	\Rightarrow	s-topological group
group		

The following example shows that Stopological group may not be an s-topological group. **Example 3.18.** Let $G = \{-1,1\}$ be a group under multiplication and $\tau = \{\varphi, \{1\}, G\}$ a topology on *G*. In [15], it is shown that $(G, *, \tau)$ is an S-topological group but not a topological group. Here $(G, *, \tau)$ is not an stopological group because the only semi open neighbourhood of -1 is *G* and if we choose $\{1\}$ for x = y = -1, as an open neighbourhood of $x * y^{-1}$. Now, the only possibility for the selection of semi open neighbourhoods in G containing -1,-1 is *G*, *G* but, then $G * G \notin \{1\}$. This shows that $(G, *, \tau)$ is not an stopological group

The following example shows that $(G,*,\tau)$ is an S-topological group but non of the followings: s-topological group, irresolute topological group and topological group.

Example 3.19. Suppose $G = \{0,1,2\}$ is a group under addition modulo 3 and topology on *G* is $\tau = \{\varphi, G, \{0\}, \{0,1\}\}$. Then $(G, +_3, \tau)$ is an S-topological group but not an s-topological group, therefore not an irresolute topological group. $(G, +_3, \tau)$ is not a topological group. The following example shows that Irr-topological group may neither be irresolute topological group nor topological group.

Example 3.20. $G = \{1, \omega, \omega^2\}$ is a group under multiplication, where ω is a complex cube root of unity and topology on *G* is $\tau = \{\varphi, \{1\}, G\}$. Then $(G, *, \tau)$ is an Irr-topological group but not an irresolute topological group, and $(G, *, \tau)$ is not a topological group. **Theorem 3.21.** Let V be a semi open neighbourhood of e in s-topological group $(G,*,\tau)$. Then $V \subset sCl(V) \subset V^2$.

Proof. Note that $s \in sCl(V)$ if and only if every semi open neighbourhood of *s* meets *V*. Since $s * V^{-1}$ is a semi open neighbourhood of *s*, it must meet *V*. Thus there is $t \in V$ of the form $s * v^{-1}$; where $v \in V$. But then $s = t * v \in V * V = V^2$ and $sCl(V) \subset V^2$. Thus $V \subset sCl(V) \subset V^2$.

Theorem 3.22. Let $(G,*,\tau)$ be an stopological group. Then for every subset *A* of *G* and every open neighbourhood *U* of the neutral element *e*, $sCl(A) \subset A * U$.

Proof. Since $(G, *, \tau)$ is an s-topological group. Then for every open neighbourhood U of e, by Theorem 3.11, there exists $V \in SO(G, e)$ such that $V^{-1} \subset U$. Let $x \in sCl(A)$ and x * V is a semi open neighbourhood of x. Therefore, there is $a \in A \cap x * V$, that is $a \in x * V$. This implies that a = x * b for some $b \in V$. Then $x = a * b^{-1} \in a * V^{-1} \subset A * U$. Hence $sCl(A) \subset A * U$.

Corollary 3.23. Let $(G, *, \tau)$ be an irresolute topological group. Then for every subset *A* of *G* and every open neighbourhood *U* of the neutral element *e*, $sCl(A) \subset A * U$.

Theorem 3.24. Let $(G,*,\tau)$ be an stopological group and β_e a base of the space (G,τ) at the neutral element *e*. Then for every subset *A* of *G*, $sCl(A) = \cap \{A * U : U \in \beta_e\}.$

Proof. In view of Theorem 3.22, we only have to verify that if $x \notin sCl(A)$, then there exists $U \in \beta_e$ such that $x \notin A * U$. Since $x \notin A$, then by definition there exists a semi open neighbourhood W of e such that $x * W \cap A = \varphi$. Take U in β_e satisfying the condition $U^{-1} \subset W$. Then $x * U^{-1} \cap A = \varphi$, that is $\{x\} \cap A * U = \varphi$. This implies that $x \notin A * U$.

Theorem 3.25. If $(G, *, \tau)$ is an s-topological group, then (G, τ) is s-regular and semi- T_2 space.

Proof. Suppose that $F \subset G$ is closed and $s \notin F$. Multiply by s^{-1} allows us to assume that s = e. Since F is closed, W = G - F is an open neighbourhood of e. By Theorem 3.11, there exists $V \in SO(G, e)$ such that $V^2 \subset W$. Thus by Theorem 3.22, $sCl(V) \subset W$. Then U = G - sCl(V) is a semi open neighbourhood containing F which is disjoint from V. This proves that $(G, *, \tau)$ is s-regular. That is, $e \in V \in SO(G)$ and $e \neq y \in F \subset U \in SO(G)$ such that $V \cap U = \varphi$. Hence G is semi- T_2 space.

Theorem 3.26. Let $(G, *, \tau)$ be an irresolute topological group, *F* a semi closed subset of *G*, and *K* is an s-compact subset of *G* such that $F \cap K = \varphi$. Then there is semi open neighbourhood *V* of *e* such that $F \cap V * K = \varphi$ (and a semi open neighbourhood *V*' of *e* such that $F \cap V * K = \varphi$).

Proof. Let $x \in K$, so $x \in G - F$, and $G - F = F^c$ is a semi open neighbourhood of x. Therefore, $F^c * x^{-1}$ is a semi open neighbourhood of e. By Theorem 3.14, there is a semi open neighbourhood W_x of e such that $W_x * W_x \subset F^c * x^{-1}$. Now $K \subset \bigcup_{x \in K} W_x * x$. Since K is s-compact so $K \subset \bigcup_{i=1}^n W_i * x_i$. Take $V = \bigcap_{i=1}^n W_i$. For $x \in K$, $x \in W_i * x_i$ for some i. By construction of V, we have $V \subset W_i$ for each i. This implies $V * x \subset W_i * x \subset W_i * x \subset W_i * x_i \subset F^c$. In other words, $F \cap V * x = \varphi$. Since this is true for any $x \in K$, we now have $F \cap V * K = \varphi$.

Theorem 3.27. If K is s-compact, then $y * K^{-1}$ is s-compact in an s-topological group $(G, *, \tau)$.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be a cover of $y * K^{-1}$, where $U_{\alpha} \in SO(G)$. Then $y * K^{-1} \subset \bigcup_{\alpha \in I} U_{\alpha}$. This implies that $K^{-1} \subset y^{-1} \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} y^{-1} * U_{\alpha}$. This implies that $K \subset \bigcup_{\alpha \in I} y * U_{\alpha^{-1}}$. Since K is s-compact, then there exists a finite set I_0 of I such that $K \subset$ $\bigcup_{\alpha \in I_0} y * U_{\alpha^{-1}}$. This implies that $y^{-1} * K \subset$ $\bigcup_{\alpha \in I_0} U_{\alpha^{-1}}$. This implies that $y * K^{-1} \subset \bigcup_{\alpha \in I_0} U_{\alpha}$. That is $y * K^{-1}$ has a finite subcover in G. Hence $y * K^{-1}$ is s-compact.

Theorem 3.28. Let $(G,*,\tau)$ be an s-topological group, *K* an s-compact subset of *G*, and *F* a semi closed subset of *G*. Then F * K and K * F are semi closed subsets of *G*.

Proof. If F * K = G we are done, so let $y \in G - F * K$. This means $F \cap y * K^{-1} = \varphi$. Since *K* is s-compact so by Theorem 3.27, $y * K^{-1}$ is s-compact. By Theorem 3.26, there is a semi open neighbourhood *V* of e such that $F \cap V * y * K^{-1} = \varphi$. That is, $F * K \cap V * y = \varphi$. Since V * y is semi open neighbourhood of *y* contained in G - F * K, we have F * K is semi closed and similar arguments for the proof of K * F.

Theorem 3.29. A non-empty subgroup H of an s-topological group G is semi open if and only if its semi interior is non empty.

Proof. Assume that $x \in sInt(H)$. Then by definition there is a semi open set *V* such that $x \in V \subset H$. For every $y \in H$, we have $y * V \subset y * H = H$. Since *V* is semi open so is y * V, we conclude that $H = \bigcup \{y * V : y \in H\}$ is a semi open set as the union of semi open sets is semi open. Converse is very easy approach.

Theorem 3.30. If $U \in SO(G)$, then the set $L = \bigcup_{n=1}^{\infty} U^n$ is a semi open set in an s-topological group $(G, *, \tau)$.

Proof. Since U is semi open in an stopological group $(G, *, \tau)$. Then by Lemma 3.5, $U * U = U^2 \in SO(G)$. $U^2 * U = U^3 \in SO(G)$ and similarly $U^4, U^5, ...$ all are semi open sets in G. Thus the set $L = \bigcup_{n=1}^{\infty} U^n$ being the union of semi open sets is a semi open set.

Lemma 3.31. If $(G,*,\tau)$ is an s-topological group, then the inverse map $i: G \to G$ defined by $i(x) = x^{-1}$ for all $x \in G$ is an S-homeomorphism.

Theorem 3.32. Let A be a subset of an stopological group $(G, *, \tau)$. Then $(sInt(A))^{-1} = sInt(A^{-1})$.

Proof. By Lemma 3.31, the inverse mapping $i: G \to G$ is an S-homeomorphism, then $sInt(i(A)) = sInt(A^{-1}) = i(sInt(A)) = (sInt(A))^{-1}$.

Theorem 3.33. Let $(G, *, \tau)$ be an irresolute topological group. Then for any symmetric subset *A* of *G*, the closure of *A* is also symmetric in *G*.

Proof. By Lemma 3.13, the inverse mapping $i: G \to G$ defined by $i(x) = x^{-1}$, for each $x \in G$ is a semi homeomorphism. Hence $i(Cl(A)) = (Cl(A))^{-1} = Cl(A^{-1}) = Cl(A)$ because $A^{-1} = A$. That is, $(Cl(A))^{-1} = Cl(A)$.

Definition 3.34. Suppose *U* is a semi open neighbourhood of the neutral element *e* of an s-topological group $(G, *, \tau)$. A subset *A* of *G* is called *U*-semi disjoint if $b \notin a * U$, for any disjoint $a, b \in A$.

Definition 3.35. A collection τ_s of subsets of a topological space (G, τ) is semi discrete, provided each $x \in G$ has a semi open neighbourhood that intersects at most one member of τ_s .

Theorem 3.36. Let *U* and *V* be semi open neighbourhoods of the neutral element *e* in an stopological group $(G, *, \tau)$ such that $V^4 \subset U$ and $V^{-1} = V$. If a subset *A* of *G* is *U*-semi disjoint, then the family of semi open sets $\{a * V : a \in A\}$ is semi discrete in *G*.

Proof. It suffices to verify that, for every $x \in G$, a semi open neighbourhood x * V of x intersects at most one element of the family $\{a * V : a \in A\}$. Suppose to the contrary that, for some $x \in G$, there exists distinct elements $a, b \in A$ such that $x * V \cap a * V \neq \varphi$, and $x * V \cap b * V \neq \varphi$. Then $x^{-1} * a \in V^2$ and $b^{-1} * x \in V^2$, where $b^{-1} * a = (b^{-1} * x)(x^{-1} * a) \in V^4 \subset U$. This implies that $a \in b * U$. This contradicts the assumption that A is U-semi disjoint.

Corresponding Author:

Moiz ud Din Khan Department of Mathematics, COMSATS Institute of Information Technology, Chack Shahzad, Islamabad 44000, Pakistan. E-mail: moiz@comsats.edu.pk

References.

[1] D.R. Anderson, J.A. Jensen, Semi-continuity on topological spaces, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 42 (1967), 782--783.

[2] E. Bohn, J. Lee, Semi-topological groups, Amer. Math. Monthly 72 (1965), 996--998.

[3] D.A. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis univ. of Arkansas, 1973.

[4] S.G. Crossley, S.K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99--112.

[5] S.G. Crossley, S.K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123--126.

[6] S.G. Crossley, S.K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.

[7] R. Engelking, General Topology, 2nd edition, Heldermann-Verlag, Berlin, 1989.

[8] T.R. Hamlett, A correction to the paper "Semi-open sets and semi-continuity in topological spaces" by Norman Levine, Proc. Amer. Math. Soc. 49 (1975), 458--460.

[9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36--41.

[10] S.N. Mehshewari and R. Prasad, Some new separation axioms, Ann. Soc. sci. Bruxelles 89(1975), 395-402.

[11] S.N. Mehshewari and R. Prasad, On s-regular spaces, Glasnik Mat. 10(30) (1975), 347-350.

[12] T.M. Nour, A note on some applications of semiopen sets, Internat. J. Math. Sci. 21 (1998), 205-207.

[13] Z. Piotrowski, On semi-homeomorphisms, Boll. U.M.I. (5) 16-A (1979), 501--509.

[14] A. Siab, Moiz ud Din Khan, and Ljubiša D.R. Kočinac, Irresolute-topological groups, (BIMS: submitted, April 2013).

[15] M. Siddique Bosan, Moiz ud Din Khan, and Ljubiša D.R. Kočinac, On s-topological groups, (Georgian Jr. Math.: submitted, April 2013).

6/2/2014