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1. Introduction 

    To study the properties of topologized 

groups by weakening the continuity conditions in the 

sense of N. Levine is the basic interest of the article. 

Semi continuity [9] and irresolute mapping [6] were the 

consequence of the study of semi open sets in 

topological spaces. In [2] Bohn defined and 

investigated the notion of s-topological groups and in 

[15] Siddique et al. defined the notion of S-topological 

groups. In [14] Siab et al. defined and studied the 

notions of irresolute topological groups and Irr-

topological groups by using irresolute mappings [6]. In 

this paper we will continue the study of the properties 

of s-topological groups. Investigations on s-

compactness and s-regularity are presented on s-

topological groups and irresolute topological groups. 

Relations between S-topological groups, s-topological 

groups, irresolute topological groups and Irr-

topological groups are investigated. Counter examples 

are given to show that the reverse implications are not 

true in general.  

 

2.  Definitions and Preliminaries   
Throughout this paper X and Y are always 

topological spaces on which no separation axioms are 

assumed. For a subset A of a space X the symbols 

𝐼𝑛𝑡(𝐴) and 𝐶𝑙(𝐴) are used to denote the interior of 𝐴 

and the closure of 𝐴  respectively. If 𝑓 ∶  𝑋 →  𝑌  is a 

mapping between topological spaces 𝑋 and 𝑌 and 𝐵 is a 

subset of  𝑌, then 𝑓⁻¹(𝐵) denotes the pre image of 𝐵. 

Our other topological notations and terminology are 

standard as in [7]. If (𝐺,∗) is a group, then 𝑒 denotes its 

identity element, and for a given 𝑥 ∈ 𝐺 , ℓ𝑥 ∶ 𝐺 →
𝐺, 𝑦 ↦ 𝑥 ∗ 𝑦, and    𝑟𝑥 ∶ 𝐺 → 𝐺, 𝑦 ↦ 𝑦 ∗ 𝑥, denote the 

left and the right translations by 𝑥 , respectively. The 

operation ∗  we call the multiplication mapping 

𝑚: 𝐺 × 𝐺 → 𝐺 , and the inverse operation 𝑥 ↦ 𝑥⁻¹ is 

denoted by 𝑖. 
    In 1963, N. Levine [9] defined semi open 

sets in topological spaces. Since then many 

mathematicians explored different concepts and 

generalized them by using semi open sets (see [1, 6, 8, 

12, 13]). A subset 𝐴 of a topological space 𝑋 is said to 

be semi open if there exists an open set 𝑈 in 𝑋 such that  

𝑈 ⊂ 𝐴 ⊂ 𝐶𝑙(𝑈) , or equivalently if 𝐴 ⊂ 𝐶𝑙(𝐼𝑛𝑡(𝐴)) . 

𝑆𝑂(𝑋) denotes the collection of all semi open sets in 𝑋. 

The complement of a semi open set is said to be semi 

closed; the semi closure of 𝐴 ⊂ 𝑋, denoted by 𝑠𝐶𝑙(𝐴), 

is the intersection of all semi closed subsets of X 

containing A [4,5]. 𝑥 ∈ 𝑠𝐶𝑙(𝐴) if and only if for any 

semi open set 𝑈 containing 𝑥, 𝑈 ∩ 𝐴 ≠ ∅.  

   Clearly, every open (closed) set is semi 

open (semi closed). It is known that the union of any 

collection of semi open sets is again a semi open set, 

while the intersection of two semi open sets need not be 

semi open. The intersection of an open set and a semi 

open set is semi open. If 𝐴 ⊂ 𝑋  and 𝐵 ⊂ 𝑌  are semi 

open in spaces 𝑋 and  𝑌, then 𝐴 × 𝐵 is semi open in the 

product space  𝑋 × 𝑌 . Basic properties of semi open 

sets are given in [9], and of semi closed sets and the 

semi closure in [4, 5].  

Recall that a set 𝑈 ⊂ 𝑋 is a semi open 

neighbourhood of a point 𝑥 ∈ 𝑋  if there exists 𝐴 ∈
𝑆𝑂(𝑋) such that  𝑥 ∈ 𝐴 ⊂ 𝑈. A set 𝐴 ⊂ 𝑋 is semi open 

in 𝑋 if and only if 𝐴 is a semi open neighbourhood of 

each of its points. If a semi open neighbourhood 𝑈 of a 

point 𝑥 is a semi open set we say that 𝑈 is a semi open 

neighbourhood of  𝑥. Let (𝐺, 𝜏) be a topological space 

and  𝐴 ⊂ 𝐺. Then 𝑥 ∈ 𝐺 is called a semi interior point 

of 𝐴 if there exists a semi open set 𝑈  such that  𝑥 ∈
𝑈 ⊂ 𝐴. The set of all semi interior points of 𝐴 is called 

a semi interior of 𝐴 , denoted by 𝑠𝐼𝑛𝑡 𝐴 .   A 
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topological space (𝐺, 𝜏)  is semi-𝑇₂  [10] if for every 

distinct points 𝑥, 𝑦  in 𝐺 , there are semi open 

neighbourhoods 𝑈  containing 𝑥  and 𝑉  containing 𝑦 

such that 𝑈 ∩ 𝑉 = 𝜑. A topological space (𝐺, 𝜏) is s-

regular [11] if for any 𝑥 ∈ 𝐺, and any closed set 𝐹 ⊂ 𝐺 

such that 𝑥 ∉ 𝐹, there is a semi open neighbourhood 𝑈 

of 𝑥  and a semi open neighbourhood 𝑉  containing 𝐹 

such that 𝑈 ∩ 𝑉 = 𝜑 . A space 𝐺  is s-compact [3], if 

every semi open cover of 𝐺 has a finite subcover. Every 

compact space is   s-compact but converse is not 

always true. For some applications of semi open sets 

see [12].  

 A mapping 𝑓: 𝑋 → 𝑌  between topological 

spaces 𝑋 and 𝑌 is called: 

(1) semi continuous (resp. irresolute) if for 

each open (resp. semi open) set 𝑉 ⊂ 𝑌 the set 𝑓⁻¹(𝑉) is 

semi open in 𝑋 . Equivalently, the mapping f is semi 

continuous (irresolute) if for each 𝑥 ∈ 𝑋 and for each 

open (semi open) neighbourhood 𝑉  of 𝑓(𝑥),  there 

exists a semi open neighbourhood 𝑈  of 𝑥  such that 

𝑓(𝑈) ⊂ 𝑉 . Every irresolute mapping is semi 

continuous;  

(2) pre semi open [6] if for every semi open 

set 𝐴 of 𝑋, 𝑓(𝐴) is semi open in 𝑌; 

(3) semi homeomorphism [6] if 𝑓 is bijective, 

irresolute and pre semi open;  

(4) S-homeomorphism [15] if 𝑓  is bijective, 

semi continuous and pre semi open. Every semi 

homeomorphism is an S-homeomorphism.   

 

3.   Properties of topologized groups.  

Definition 3.1. [15]  A triple (𝐺,∗, 𝜏) is said to 

be an S-topological group if (𝐺,∗) is a group, (𝐺, 𝜏) is a 

topological space, and (a) the multiplication mapping 

𝑚: 𝐺 × 𝐺 → 𝐺  defined by 𝑚(𝑥, 𝑦) = 𝑥 ∗ 𝑦 , for every 

𝑥, 𝑦 ∈ 𝐺, is semi continuous, (b) the inverse mapping 

𝑖: 𝐺 → 𝐺  defined by 𝑖(𝑥) = 𝑥⁻¹,  for every 𝑥 ∈ 𝐺 , is 

semi continuous.  

Definition 3.2. [2] An s-topological group is a 

group (𝐺,∗)  with a topology 𝜏  such that for each 

𝑥, 𝑦 ∈ 𝐺  and each neighbourhood 𝑊  of 𝑥 ∗ 𝑦⁻¹ there 

are semi open neighbourhoods 𝑈 of 𝑥 and 𝑉 of 𝑦 such 

that 𝑈 ∗ 𝑉⁻¹⊂ 𝑊. 

Definition 3.3. [14] A triple (𝐺,∗, 𝜏) is said to 

be an Irr-topological group if (𝐺,∗) is a group, (𝐺, 𝜏) is 

a topological space, and (a) the multiplication mapping 

𝑚: 𝐺 × 𝐺 → 𝐺  defined by 𝑚(𝑥, 𝑦) = 𝑥 ∗ 𝑦 , for every 

𝑥, 𝑦 ∈ 𝐺, is irresolute, (b) the inverse mapping 𝑖: 𝐺 → 𝐺 

defined by 𝑖(𝑥) = 𝑥⁻¹, for every 𝑥 ∈ 𝐺, is irresolute. 

Definition 3.4. [14] A triple (𝐺,∗, 𝜏)  is an 

irresolute-topological group with a group (𝐺,∗) and a 

topology 𝜏  such that for each 𝑥, 𝑦 ∈ 𝐺  and each semi 

open neighbourhood 𝑊 of 𝑥 ∗ 𝑦⁻¹, there are semi-open 

neighbourhoods 𝑈 of 𝑥 and 𝑉 of 𝑦 such that 𝑈 ∗ 𝑉⁻¹⊂
𝑊. 

Lemma 3.5. [2] If (𝐺,∗, 𝜏) is an                    s-

topological group, then      

(1) 𝐴 ∈ 𝑆𝑂(𝐺) if and only if 𝐴⁻¹∈ 𝑆𝑂(𝐺);      
(2) If 𝐴 ∈ 𝑆𝑂(𝐺) and 𝐵 ⊂ 𝐺 , then 𝐴 ∗ 𝐵 and 𝐵 ∗ 𝐴 are 

both semi open in 𝐺.  

Lemma3.6. [14] If (𝐺,∗, 𝜏)  is an irresolute 

topological group, then      

(1) 𝐴 ∈ 𝑆𝑂(𝐺) if and only if 𝐴⁻¹∈ 𝑆𝑂(𝐺);      
(2) If 𝐴 ∈ 𝑆𝑂(𝐺) and  𝐵 ⊂ 𝐺, then 𝐴 ∗ 𝐵 and 𝐵 ∗ 𝐴 are 

both semi open in 𝐺. 

 Lemma 3.7. [14]  Every irresolute 

topological group is an Irr-topological group. 

Lemma 3.8.  [15] Every s-topological group is 

an   S-topological group. 

Lemma 3.9. [15] Each left (right) translation 

of       s-topological groups is S-homeomorphism. 

Lemma 3.10.  Each left (right) translation of 

irresolute topological groups is semi homeomorphism. 

Proof. Let (𝐺,∗, 𝜏) be an irresolute topological 

group. We prove the statement only for left translation. 

Of course, left translation is bijective mapping. We 

prove directly that for any 𝑥 ∈ 𝐺  the left translation 

ℓ𝑥 ∶ 𝐺 → 𝐺 is irresolute. Let 𝑦 be an arbitrary element 

in 𝐺  and let 𝑊  be a semi open neighbourhood of 

ℓ𝑥  (𝑦) = 𝑥 ∗ 𝑦 = 𝑥 ∗ (𝑦⁻¹)⁻¹ . By definition of 

irresolute topological group, there are semi open 

neighbourhoods 𝑈  and 𝑉  containing 𝑥  and 𝑦⁻¹, 
respectively, such that 𝑈 ∗ 𝑉⁻¹⊂ 𝑊. In particular, we 

have  𝑥 ∗ 𝑉⁻¹⊂ 𝑊 . By Lemma 3.6, the set 𝑉⁻¹ is a 

semi open neighbourhood of 𝑦 , so that the last 

inclusion actually says that ℓ𝑥  is irresolute at 𝑦. Since 

𝑦 ∈ 𝐺  was an arbitrary element in 𝐺 , therefore, ℓ𝑥  is 

irresolute on 𝐺. We prove now that ℓ𝑥  is pre semi open 

mapping. Let 𝐴  be a semi open set in 𝐺 . Then by 

Lemma 3.6, the set ℓ𝑥(𝐴) = 𝑥 ∗ 𝐴 is semi open in 𝐺 , 

which means that ℓ𝑥  is a pre semi open mapping. Thus 

left translation is semi homeomorphism. Similarly we 

can prove that the right translation is semi 

homeomorphism.   

Theorem 3.11.  Let (𝐺,∗, 𝜏)  be an s-

topological group and let 𝛽𝑒  be the base at identity 

element 𝑒 of 𝐺. Then: 

(i) for every 𝑈 ∈ 𝛽𝑒 , there is an element 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) 

such that 𝑉²⊂ 𝑈. 

(ii) for every 𝑈 ∈ 𝛽𝑒 , there is an element 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) 

such that 𝑉⁻¹⊂ 𝑈. 

(iii) for every 𝑈 ∈ 𝛽𝑒 , there is an element 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) 

such that 𝑉 ∗ 𝑥 ⊂ 𝑈, for each 𝑥 ∈ 𝑈. 

Proof (i). Let 𝑈 ∈ 𝛽𝑒 . This implies that 𝑒 ∈ 𝑈 ⊂ 𝐺 and 

𝑈𝑒∗𝑒⁻¹ = 𝑈 . Since (𝐺,∗, 𝜏)  is an s-topological group 

therefore, there exists 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) and by Lemma 3.5, 
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𝑉⁻¹∈ 𝑆𝑂(𝐺, 𝑒 ) such that 𝑉 ∗ 𝑉 ⊂ 𝑈 . Therefore, 

𝑉²⊂  𝑈. 

(ii) Since (𝐺,∗, 𝜏) is an s-topological group. Therefore, 

for every 𝑈 ∈ 𝛽𝑒 , there exists                𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) 

such  that 𝑖(𝑉) = 𝑉⁻¹⊂ 𝑈  because the identity 

function 𝑖: 𝐺 → 𝐺 is semi continuous by Theorem 7 [2]. 

(iii) Since (𝐺,∗, 𝜏) is an s-topological group, therefore 

by Lemma 3.9, ℓ𝑥 ∶ 𝐺 → 𝐺  and 𝑟𝑥 ∶ 𝐺 → 𝐺  are            

S-homeomorphisms. Thus for each 𝑈 ∈ 𝛽𝑒  containing 

𝑥, there exists 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) such that 𝑟𝑥(𝑉) = 𝑉 ∗ 𝑥 ⊂
𝑈. 

The following example shows that Theorem 3.11 (i) is 

not true for S-topological groups. 

Example 3.12.  𝐺 = {0,1,2} is a group under 

addition modulo 3, and 𝜏 = {𝜑, 𝐺, {0}, {0,1}}  is a 

topology on 𝐺 .𝑆𝑂(𝐺) = {𝜑, 𝐺, {0}, {0,1}, {0,2}}.  Then 

(𝐺, +₃, 𝜏)  is an S-topological group. For any 𝑈 ∈ 𝛽𝑒  

(base at the identity element e other than {𝑒} and 𝐺), we 

can not find any semi open set 𝑉  containing 𝑒 , 

satisfying 𝑉²⊂ 𝑈. 

Lemma 3.13.  If (𝐺,∗, 𝜏)  is an irresolute 

topological group, then the inverse mapping 𝑖: 𝐺 → 𝐺 

defined by 𝑖(𝑥) = 𝑥⁻¹  for all 𝑥 ∈ 𝐺  is a semi 

homeomorphism. 

Theorem 3.14. Let (𝐺,∗, 𝜏)  be an irresolute 

topological group and 𝜇𝑒  be the collection of all semi 

open neighbourhoods of the identity element 𝑒  of 𝐺 . 

Then: 

(i) For every 𝑈 ∈ 𝜇𝑒  , there is an element 𝑉 ∈ 𝜇𝑒  such 

that 𝑉²⊂ 𝑈. 

(ii) For every 𝑈 ∈ 𝜇𝑒  , there is an element 𝑉 ∈ 𝜇𝑒  such 

that 𝑉⁻¹⊂ 𝑈. 

(iii) For every 𝑈 ∈ 𝜇𝑒  , there is an element 𝑉 ∈ 𝜇𝑒  such 

that 𝑉 ∗ 𝑥 ⊂ 𝑈, for each 𝑥 ∈ 𝑈. 

(iv) For every U∈ 𝜇𝑒  , and 𝑥 ∈ 𝐺, there is an element 

𝑉 ∈ 𝜇𝑒  such that 𝑥 ∗ 𝑉 ∗ 𝑥⁻¹⊂ 𝑈. 

Proof (i). Let 𝑈 ∈ 𝜇𝑒  This implies that 

𝑒 ∈ 𝑈 ⊂ 𝐺  and 𝑈𝑒∗𝑒⁻¹ = 𝑈 . Since (𝐺,∗, 𝜏)  is an 

irresolute topological group therefore, there exist            

𝑉, 𝑉−1 ∈ 𝜇𝑒   such that   𝑉 ∗ 𝑉 ⊂ 𝑈. Therefore,    𝑉²⊂
𝑈. 

(ii).  Since (𝐺,∗, 𝜏) is an irresolute topological group. 

Therefore, for every 𝑈 ∈ 𝜇𝑒 , there exists                𝑉 ∈
𝑆𝑂(𝐺, 𝑒)  such  that 𝑖(𝑉) = 𝑉⁻¹⊂ 𝑈  because the 

identity function 𝑖: 𝐺 → 𝐺 is irresolute by        Lemma 

3.13. 

(iii). Since (𝐺,∗, 𝜏)  is an irresolute topological group 

and, therefore by Lemma 3.10, ℓ𝑥 :G→G and            𝑟𝑥 ∶
𝐺 → 𝐺  are semi homeomorphisms. Thus for each 

𝑈 ∈ 𝜇𝑒  containing x, there exists 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒)  such 

that  𝑟𝑥(𝑉) = 𝑉 ∗ 𝑥 ⊂ 𝑈. 

(iv). It follows from the fact that ℓ𝑥  and 𝑟𝑥−1  are semi 

homeomorphisms of G and ℓ𝑥(𝑒) = 𝑥 , so that there 

exists 𝑉 ∈ 𝜇𝑒  such that ℓ𝑥(𝑉) = 𝑥 ∗ 𝑉 , and 𝑥 ∗ 𝑉  is a 

semi open neighbourhood of 𝑥, and 𝑟𝑥−1(𝑥 ∗ 𝑉) = 𝑥 ∗
𝑉 ∗ 𝑥⁻¹⊂ 𝑈. 

Theorem 3.15.  If (𝐺,∗, 𝜏)  is an irresolute 

topological group, then it is an s-topological group. 

 Proof.  Let 𝑥, 𝑦 ∈ 𝐺 and let 𝑊 ⊂ 𝐺 be an open 

neighbourhood of 𝑥 ∗ 𝑦⁻¹. Then 𝑊 ⊂ 𝐺 is a semi open 

neighbourhood of 𝑥 ∗ 𝑦⁻¹.  Since (𝐺,∗, 𝜏)  is an 

irresolute-topological group, there are semi open 

neighbourhoods 𝑈 ⊂ 𝐺  of 𝑥 and  𝑉 ⊂ 𝐺 of 𝑦 such that 

𝑈 ∗ 𝑉⁻¹⊂ 𝑊 . This implies that (𝐺,∗, 𝜏)  is an     s-

topological group. 

 Theorem 3.16.  If (𝐺,∗, 𝜏) is an Irr-topological 

group, then it is an S-topological group. 

 Proof.  Since irresolute mapping is a semi 

continuous mapping, therefore an Irr-topological group 

(𝐺,∗, 𝜏) is an S-topological group. 

Remark 3.17:    

topological group        ⇒       s-topological group  

            ⇓                                 ⇓   

Irr-topological group     ⇒      S-topological group  

             ⇑                     ⇑   

Irresolute topological     ⇒      s-topological group 

 group  

    The following example shows that S-

topological group may not be an  s-topological group. 

Example 3.18.  Let 𝐺 = {−1,1}  be a group under 

multiplication and 𝜏 = {𝜑, {1}, 𝐺} a topology on 𝐺 . In 

[15], it is shown that (𝐺,∗, 𝜏) is an S-topological group 

but not a topological group. Here (𝐺,∗, 𝜏) is not an s-

topological group because the only semi open 

neighbourhood of -1 is 𝐺  and if we choose {1}  for 

𝑥 = 𝑦 = −1 , as an open neighbourhood of 𝑥 ∗ 𝑦⁻¹. 
Now, the only possibility for the selection of semi open 

neighbourhoods in G containing -1,-1 is 𝐺, 𝐺 but, then 

𝐺 ∗ 𝐺 ⊈ {1} . This shows that (𝐺,∗, 𝜏)  is not an s-

topological group 

The following example shows that (𝐺,∗, 𝜏)  is an          

S-topological group but non of the followings:          s-

topological group, irresolute topological group and 

topological group. 

Example 3.19. Suppose 𝐺 = {0,1,2}  is a 

group under addition modulo 3 and topology on 𝐺  is 

𝜏 = {𝜑, 𝐺, {0}, {0,1}}.  Then (𝐺, +₃, 𝜏)  is an S-

topological group but not an s-topological group, 

therefore not an irresolute topological group. (𝐺, +₃, 𝜏) 

is not a topological group.The following example 

shows that Irr-topological group may neither be 

irresolute topological group nor topological group. 

Example 3.20. 𝐺 = {1, 𝜔, 𝜔²}  is a group 

under multiplication, where 𝜔 is a complex cube root 

of unity and topology on 𝐺  is 𝜏 = {𝜑, {1}, 𝐺}.  Then 

(𝐺,∗, 𝜏) is an Irr-topological group but not an irresolute 

topological group, and (𝐺,∗, 𝜏)  is not a topological 

group. 
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Theorem 3.21. Let 𝑉  be a semi open 

neighbourhood of 𝑒  in s-topological group (𝐺,∗, 𝜏). 
Then 𝑉 ⊂ 𝑠𝐶𝑙(𝑉) ⊂ 𝑉². 

Proof.  Note that 𝑠 ∈ 𝑠𝐶𝑙(𝑉)  if and only if 

every semi open neighbourhood of 𝑠 meets  𝑉. Since 

𝑠 ∗ 𝑉⁻¹ is a semi open neighbourhood of 𝑠, it must meet 

𝑉. Thus there is 𝑡 ∈ 𝑉 of the form 𝑠 ∗ 𝑣⁻¹, where 𝑣 ∈ 𝑉. 

But then 𝑠 = 𝑡 ∗ 𝑣 ∈ 𝑉 ∗ 𝑉 = 𝑉²  and 𝑠𝐶𝑙(𝑉) ⊂ 𝑉². 
Thus   𝑉 ⊂ 𝑠𝐶𝑙(𝑉) ⊂ 𝑉². 

Theorem 3.22.  Let (𝐺,∗, 𝜏)  be an s-

topological group. Then for every subset 𝐴  of 𝐺  and 

every open neighbourhood 𝑈  of the neutral element 

𝑒,     𝑠𝐶𝑙(𝐴) ⊂ 𝐴 ∗ 𝑈. 
Proof.  Since (𝐺,∗, 𝜏) is an s-topological group. 

Then for every open neighbourhood 𝑈  of 𝑒 , by        

Theorem 3.11, there exists 𝑉 ∈ 𝑆𝑂(𝐺, 𝑒)  such that  

𝑉⁻¹⊂ 𝑈 . Let 𝑥 ∈ 𝑠𝐶𝑙(𝐴)  and 𝑥 ∗ 𝑉  is a semi open 

neighbourhood of 𝑥. Therefore, there is  𝑎 ∈ 𝐴 ∩ 𝑥 ∗ 𝑉, 

that is 𝑎 ∈ 𝑥 ∗ 𝑉. This implies that 𝑎 = 𝑥 ∗ 𝑏 for some 

𝑏 ∈ 𝑉 . Then  𝑥 = 𝑎 ∗ 𝑏⁻¹∈ 𝑎 ∗ 𝑉⁻¹⊂ 𝐴 ∗ 𝑈 . Hence  

𝑠𝐶𝑙(𝐴) ⊂ 𝐴 ∗ 𝑈. 

Corollary 3.23.  Let (𝐺,∗, 𝜏) be an irresolute 

topological group. Then for every subset 𝐴  of 𝐺  and 

every open neighbourhood 𝑈 of the neutral element 𝑒, 

𝑠𝐶𝑙(𝐴) ⊂ 𝐴 ∗ 𝑈. 
Theorem 3.24.  Let  𝐺,∗, 𝜏  be an s-

topological group and 𝛽𝑒  a base of the space  𝐺, 𝜏  at 

the neutral element 𝑒 . Then for every subset 𝐴  of 𝐺 , 

𝑠𝐶𝑙 𝐴 = ∩   𝐴 ∗ 𝑈: 𝑈 ∈ 𝛽𝑒 . 
Proof. In view of Theorem 3.22, we only have 

to verify that if 𝑥 ∉ 𝑠𝐶𝑙(𝐴),  then there exists 𝑈 ∈ 𝛽𝑒  

such that 𝑥 ∉ 𝐴 ∗ 𝑈. Since 𝑥 ∉  𝐴 , then by definition 

there exists a semi open neighbourhood 𝑊  of e such 

that 𝑥 ∗ 𝑊 ∩ 𝐴 = 𝜑 . Take 𝑈  in 𝛽𝑒   satisfying the 

condition 𝑈⁻¹⊂ 𝑊 . Then 𝑥 ∗ 𝑈⁻¹∩ 𝐴 = 𝜑 , that is 

{𝑥} ∩ 𝐴 ∗ 𝑈 = 𝜑. This implies that  𝑥 ∉ 𝐴 ∗ 𝑈. 

Theorem 3.25.  If (𝐺,∗, 𝜏) is an s-topological 

group, then (𝐺, 𝜏) is s-regular and semi-𝑇₂ space. 

Proof.  Suppose that 𝐹 ⊂ 𝐺  is closed and 

𝑠 ∉ 𝐹. Multiply by 𝑠⁻¹ allows us to assume that  𝑠 = 𝑒. 

Since 𝐹  is closed, 𝑊 = 𝐺 − 𝐹  is an open 

neighbourhood of 𝑒 . By Theorem 3.11, there exists 

𝑉 ∈ 𝑆𝑂(𝐺, 𝑒) such that 𝑉²⊂ 𝑊. Thus by        Theorem 

3.22, 𝑠𝐶𝑙(𝑉) ⊂ 𝑊 . Then 𝑈 = 𝐺 − 𝑠𝐶𝑙(𝑉)  is a semi 

open neighbourhood containing 𝐹  which is disjoint 

from  𝑉. This proves that (𝐺,∗, 𝜏) is s-regular. That is, 

𝑒 ∈ 𝑉 ∈ 𝑆𝑂(𝐺) and 𝑒 ≠ 𝑦 ∈ 𝐹 ⊂ 𝑈 ∈ 𝑆𝑂(𝐺) such that 

𝑉 ∩ 𝑈 = 𝜑. Hence 𝐺 is semi-𝑇₂ space. 

Theorem 3.26.  Let (𝐺,∗, 𝜏) be an irresolute 

topological group, 𝐹 a semi closed subset of 𝐺, and 𝐾 

is an s-compact subset of 𝐺 such that 𝐹 ∩ 𝐾 = 𝜑. Then 

there is semi open neighbourhood 𝑉  of 𝑒  such that 

𝐹 ∩ 𝑉 ∗ 𝐾 = 𝜑 (and a semi open neighbourhood 𝑉′of 𝑒 

such that 𝐹 ∩ 𝐾 ∗ 𝑉′ = 𝜑). 

Proof.  Let 𝑥 ∈ 𝐾, so 𝑥 ∈ 𝐺 − 𝐹, and 𝐺 − 𝐹 =
𝐹𝑐  is a semi open neighbourhood of 𝑥 . Therefore, 

𝐹𝑐 ∗ 𝑥⁻¹ is a semi open neighbourhood of 𝑒 . By 

Theorem 3.14, there is a semi open neighbourhood 𝑊𝑥  

of 𝑒 such that 𝑊𝑥 ∗ 𝑊𝑥 ⊂ 𝐹𝑐 ∗ 𝑥⁻¹. Now 𝐾 ⊂∪𝑥∈𝐾 𝑊𝑥 ∗
𝑥. Since 𝐾 is s-compact so                   𝐾 ⊂∪𝑖=1

𝑛 𝑊𝑥𝑖
∗

𝑥𝑖 =∪𝑖=1
𝑛 𝑊𝑖 ∗ 𝑥𝑖 .  Take 𝑉 =∩𝑖=1

𝑛 𝑊𝑖 . For 𝑥 ∈ 𝐾 , 𝑥 ∈
𝑊𝑖 ∗ 𝑥𝑖  for some 𝑖 . By construction of 𝑉 , we have 

𝑉 ⊂ 𝑊𝑖  for each 𝑖. This implies 𝑉 ∗ 𝑥 ⊂ 𝑊𝑖 ∗ 𝑥 ⊂ 𝑊𝑖 ∗
𝑊𝑖 ∗ 𝑥𝑖 ⊂ 𝐹𝑐 . In other words, 𝐹 ∩ 𝑉 ∗ 𝑥 = 𝜑. Since this 

is true for any 𝑥 ∈ 𝐾, we now have 𝐹 ∩ 𝑉 ∗ 𝐾 = 𝜑. 

Theorem 3.27.  If K is s-compact, then 

𝑦 ∗ 𝐾⁻¹ is     s-compact in an s-topological group 

(𝐺,∗, 𝜏). 

Proof.  Let {𝑈𝛼 : 𝛼 ∈ 𝐼} be a  cover of 𝑦 ∗ 𝐾⁻¹, 

where 𝑈𝛼 ∈ 𝑆𝑂(𝐺) . Then 𝑦 ∗ 𝐾⁻¹⊂∪𝛼∈𝐼 𝑈𝛼 .  This 

implies that 𝐾⁻¹⊂ 𝑦⁻¹∪𝛼∈𝐼 𝑈𝛼 =∪𝛼∈𝐼 𝑦⁻¹∗ 𝑈𝛼 . This 

implies that 𝐾 ⊂∪𝛼∈𝐼 𝑦 ∗ 𝑈𝛼−1 .  Since 𝐾  is s-compact, 

then there exists a finite set 𝐼0   of  𝐼  such that  𝐾 ⊂
∪𝛼∈𝐼0

𝑦 ∗ 𝑈𝛼−1 .  This implies that  𝑦−1 ∗ 𝐾 ⊂

 ∪𝛼∈𝐼0
𝑈𝛼−1 .  This implies that  𝑦 ∗ 𝐾−1 ⊂ ∪𝛼∈𝐼0

𝑈𝛼 . 

That is 𝑦 ∗ 𝐾⁻¹ has a finite subcover in 𝐺 . Hence 

𝑦 ∗ 𝐾⁻¹ is  s-compact. 

Theorem 3.28.  Let (𝐺,∗, 𝜏)  be an s-

topological group, 𝐾 an s-compact subset of 𝐺, and 𝐹 a 

semi closed subset of 𝐺. Then 𝐹 ∗ 𝐾 and 𝐾 ∗ 𝐹 are semi 

closed subsets of  𝐺. 

Proof. If 𝐹 ∗ 𝐾 = 𝐺  we are done, so let  

𝑦 ∈ 𝐺 − 𝐹 ∗ 𝐾. This means  𝐹 ∩ 𝑦 ∗ 𝐾⁻¹= 𝜑. Since 𝐾 

is s-compact so by Theorem 3.27, 𝑦 ∗ 𝐾⁻¹ is         s-

compact. By Theorem 3.26, there is a semi open 

neighbourhood  𝑉 of e such that 𝐹 ∩ 𝑉 ∗ 𝑦 ∗ 𝐾⁻¹= 𝜑. 

That is, 𝐹 ∗ 𝐾 ∩ 𝑉 ∗ 𝑦 = 𝜑 . Since 𝑉 ∗ 𝑦  is semi open 

neighbourhood of 𝑦 contained in  𝐺 − 𝐹 ∗ 𝐾, we have 

𝐹 ∗ 𝐾  is semi closed and similar arguments for the 

proof of 𝐾 ∗ 𝐹. 

Theorem 3.29.  A non-empty subgroup 𝐻 of 

an        s-topological group 𝐺 is semi open if and only if 

its semi interior is non empty. 

Proof.  Assume that 𝑥 ∈ 𝑠𝐼𝑛𝑡(𝐻) . Then by 

definition there is a semi open set 𝑉 such that 𝑥 ∈ 𝑉 ⊂
𝐻 . For every 𝑦 ∈ 𝐻 , we have 𝑦 ∗ 𝑉 ⊂ 𝑦 ∗ 𝐻 = 𝐻 . 

Since 𝑉 is semi open so is 𝑦 ∗ 𝑉 , we conclude that     

𝐻 =∪ {𝑦 ∗ 𝑉: 𝑦 ∈ 𝐻} is a semi open set as the union of 

semi open sets is semi open. Converse is very easy 

approach. 

Theorem 3.30.  If 𝑈 ∈ 𝑆𝑂(𝐺) , then the set             

𝐿 = ∪𝑛=1
∞ 𝑈ⁿ  is a semi open set in an s-topological 

group (𝐺,∗, 𝜏). 

Proof.  Since 𝑈  is semi open in an s-

topological group (𝐺,∗, 𝜏).  Then by Lemma 3.5, 

𝑈 ∗ 𝑈 = 𝑈²∈ 𝑆𝑂(𝐺).  𝑈²∗ 𝑈 = 𝑈³∈ 𝑆𝑂(𝐺)  and 

similarly 𝑈⁴, 𝑈⁵, . ..all are semi open sets in 𝐺. Thus the 
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set 𝐿 = ∪𝑛=1
∞ 𝑈ⁿ being the union of semi open sets is a 

semi open set. 

Lemma 3.31.  If (𝐺,∗, 𝜏) is an s-topological 

group, then the inverse map 𝑖: 𝐺 → 𝐺  defined by 

𝑖(𝑥) = 𝑥⁻¹ for all 𝑥 ∈ 𝐺 is an S-homeomorphism. 

Theorem 3.32.  Let 𝐴  be a subset of an s-

topological group (𝐺,∗, 𝜏).  Then (𝑠𝐼𝑛𝑡(𝐴))⁻¹=
𝑠𝐼𝑛𝑡(𝐴⁻¹). 

Proof.  By Lemma 3.31, the inverse mapping 

𝑖: 𝐺 → 𝐺  is an S-homeomorphism, then 𝑠𝐼𝑛𝑡 𝑖 𝐴  =

𝑠𝐼𝑛𝑡 𝐴−1 = 𝑖 𝑠𝐼𝑛𝑡 𝐴  =  𝑠𝐼𝑛𝑡 𝐴  
−1

. 

Theorem 3.33.  Let (𝐺,∗, 𝜏) be an irresolute 

topological group. Then for any symmetric subset 𝐴 of  

𝐺, the closure of 𝐴 is also symmetric in 𝐺. 

Proof. By Lemma 3.13, the inverse mapping 

𝑖: 𝐺 → 𝐺  defined by 𝑖(𝑥) = 𝑥⁻¹, for each 𝑥 ∈ 𝐺  is a 

semi homeomorphism. Hence 𝑖(𝐶𝑙(𝐴)) = (𝐶𝑙(𝐴))⁻¹=
𝐶𝑙(𝐴⁻¹) = 𝐶𝑙(𝐴)  because 𝐴⁻¹= 𝐴 . That is, 

(𝐶𝑙(𝐴))⁻¹= 𝐶𝑙(𝐴). 
Definition 3.34. Suppose 𝑈  is a semi open 

neighbourhood of the neutral element 𝑒  of an s-

topological group (𝐺,∗, 𝜏). A subset 𝐴 of 𝐺 is called 𝑈-

semi disjoint if 𝑏 ∉ 𝑎 ∗ 𝑈, for any disjoint   𝑎, 𝑏 ∈ 𝐴. 

Definition 3.35. A collection 𝜏𝑠 of subsets of a 

topological space (𝐺, 𝜏) is semi discrete, provided each 

𝑥 ∈ 𝐺 has a semi open neighbourhood that intersects at 

most one member of  𝜏𝑠. 

Theorem 3.36.  Let 𝑈  and 𝑉  be semi open 

neighbourhoods of the neutral element 𝑒  in an s-

topological group (𝐺,∗, 𝜏)  such that 𝑉⁴ ⊂ 𝑈  and 

𝑉⁻¹= 𝑉. If a subset 𝐴 of 𝐺 is 𝑈-semi disjoint, then the 

family of semi open sets {𝑎 ∗ 𝑉: 𝑎 ∈ 𝐴} is semi discrete 

in 𝐺. 

Proof.  It suffices to verify that, for every 

𝑥 ∈ 𝐺, a semi open neighbourhood 𝑥 ∗ 𝑉 of 𝑥 intersects 

at most one element of the family {𝑎 ∗ 𝑉: 𝑎 ∈ 𝐴} . 

Suppose to the contrary that, for some 𝑥 ∈ 𝐺 , there 

exists distinct elements 𝑎, 𝑏 ∈ 𝐴  such that 𝑥 ∗ 𝑉 ∩ 𝑎 ∗
𝑉 ≠ 𝜑, and 𝑥 ∗ 𝑉 ∩ 𝑏 ∗ 𝑉 ≠ 𝜑. Then 𝑥⁻¹∗ 𝑎 ∈ 𝑉² and 

𝑏⁻¹∗ 𝑥 ∈ 𝑉² , where 𝑏⁻¹∗ 𝑎 = (𝑏⁻¹∗ 𝑥)(𝑥⁻¹∗ 𝑎) ∈
𝑉⁴ ⊂ 𝑈. This implies that 𝑎 ∈ 𝑏 ∗ 𝑈. This contradicts 

the assumption that 𝐴 is 𝑈-semi disjoint. 
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