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1. Introduction 

Finding zeros of the nonlinear equations has 
remained as one of the most interesting problems of 
numerical analysis. One point methods like 
Newton-Raphson and Secant’s method had remained 
as widely used methods in the past. With the passage 
of time the need to obtain more efficient and accurate 
methods was felt but by the use of one point methods 
it was not possible. As the informational efficiency of 
single step method cannot made greater than one 
even if additional derivative evaluations are involved 
[14]. Traub defined the informational efficiency (IE) 

of an iterative method (IM) as ef
IMIE


=)(

, where 

  is the order of convergence and ef  is the 
number of functional evaluation per iteration. Thus, 
in order to increase the order and efficiency of 
iterative methods there was an emergent need of 
multipoint methods. Also, there are many problems 
in engineering sciences in which system of nonlinear 
equations are obtained that cannot be solved by direct 
methods. This area had also been addressed in 
parallel. Newton’s method is commonly used as the 
first step to construct composite multipoint methods 
while the next steps are constructed in various ways 
such as by approximating the integral in Newton’s 
theorem: 
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Frontini [4], used rectangular rule to 

approximate integral in (1) to get the following 
cubically convergent scheme: 
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Frontini and [5], also Sormani extended their 

scheme (2) for multivariate case as follows: 
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Weerakoon and Fernando [15], used trapezoidal rule 
to approximate the integral in (1) and obtained the 
following two step third order scheme in which first 
step is Newton’s Method: 
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 (3) 
The above method (3) is also called trapezoidal 

or arithmetic mean Newton’s method. It is also 
notable that schemes (2) and (3) having cubic order 
of convergence are not optimal as conjectured by 
Kung and Traub [14]. If harmonic mean is used to 
approximate the integral in (1), a two point 
non-optimal cubically convergent method of Özban 
[12] is obtained as follows: 
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where, 
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In the similar way, Homeier [6], also developed 
a cubically convergent scheme using inverse 
interpolation as follows:
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        (5) 
Among two step methods there are some 

iterative schemes which uses two derivative 
evaluations and one functional evaluation with 
optimal order of convergence four known as Jarratt 
type schemes [7] and are given by:  (6) 
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and the extension of the scheme (6) for 

multivariate case is given as [9]: 
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In [10], Khattri developed the fourth order 

scheme based on Jarrat’s first step which requires 
two evaluations of the derivative and one function 
evaluation: 
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Chun [3], added his contribution by making 

another fourth order scheme given by: 
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Soleymani [13], replaced the parameter 

approach by the concept of weight function approach 
to construct a family of new optimal Jarratt type two 
step methods: 
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Babajee [1], extended one example of 

Soleymani’s findings [13] for the multivariate case as 
follows: 
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 and I  may 
be the nn  identity matrix. It is noted that all the 
above mentioned methods can be extended for 
multivariate case and extensions for some of them are 
given in [1, 5, 9]. Recently, Soleymani [13], 
developed two new classes of fourth order optimal 
Jarratt type methods. Motivated by the research going 
on this direction, we, in this paper developed a fourth 
order weighted mean based optimal Jarratt type 
scheme by using combination of weight functions in 
the second step. We have also extended our method 
for system of nonlinear equations. Rest of the paper 
is organized as follows. The development of fourth 
order optimal method with its convergence analysis is 
given in Section 2. Its extension for the multivariate 
case with corresponding convergence analysis is 
presented in Section 3. Section 4 consists of 
numerical comparison for univariate functions and 
Section 5 is comprised of computational cost and 
numerical comparison for the multivariate case. 
Section 6 consists of concluding remarks. 
 
2. New Family of Weighted Mean Based Methods 
and Its Convergence Analysis 
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Now, we propose an optimal weighted mean 
based family of fourth order methods. We are 
considering two steps scheme in which first step is 
similar to Jarratt’s method and second step involves 
function evaluation at mid point with a combination 
of weight functions given as: 
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 represents real valued 
weight functions chosen such that new scheme (12) 

achieves optimal fourth order convergence as proved 
in the Theorem1 stated below. 

Theorem 1 Let If :  be a sufficiently 
differentiable function in the neighborhood of the 

root � in the open interval I . Then, for 
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the new without memory scheme (12) has optimal 
fourth order convergence such that 
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Proof 

Let 
ixie =

 be the error at ith  
computing step. By using Taylor’s expansion of 

)( ixf
 about the root  , we get: 
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In the similar manner, for the second step of (12), we 
have: 
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Expanding Taylor’s series of 
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zero, we get:

)22()
5
ie(O

2
ie(0))

''
T

2

1

2c(0)
'

T(ie(0)
'

T(0)T=)i(T  

Substituting 
,

3

4
=

 (15), (18), (20) and (22) in 
(12) and using (13) we have: 
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gives the following error equation showing new 
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scheme has optimal convergence order upto 4: 
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3. Extension of New Family for Multivariate Case 
And Its Convergence Analysis 

Now, we extend our new weighted mean based 
family of optimal methods (12) for solving systems 
of nonlinear equations. We present here a special 
case of our family (12) by defining following weight 
functions satisfying the conditions of Theorem 1. 
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Thus, we obtain a new weighted mean based 
fourth order method as: 
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 The Jacobian matrix )
)i(

(Z
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F  has the following 
Taylor’s expansion: 
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Using (32), (35)and (36) in second step of (27), 

we attain with following error term 
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which shows that the proposed method (27) has 
fourth order convergence. 
 
4. Numerical Comparisons for Univariate 
Functions 

In this section, we compare our new optimal 
fourth order family of methods for solving non-linear 
equations (12) (SMNF1) with Newton’s method 
(NM), Khattri’s method (KM) [10], Chun’s method 
(CM) [3] and Solemani’s method (SM) [13]. We use 
Maple 7 for all the computations. The test functions 
are given in Table 1 taken from literature. The 

stopping criterion is 
  mxf

 
800

10<


mx
 with a precision of 1000 

decimal digits for approximating the roots. Tables 

2-6 shows the number of iterations, n , the absolute 

values of the function 
 mxf

 and the absolute 
values of the approximated root and the exact root, 

mx
 for each iterative step. 

 
Table 1:  Test Functions and Their Roots 

Numerical Example Exact Zero 

xxxxf cos3sin=)(1   
ω = 0.0000000000000000 

2

1
cos=)( 2

2  xxxf
 

ω = -0.4747149936699329 

12)(=)(3  xexxf
 

ω = -0.4428544010023885 

1
2

1
1)(sin=)( 21

4  xxxf
 

ω = 0.5948109683983691 

xexxf x sin=)( 2
5 

 
ω=0.0000000000000000 
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Table 2: Comparison of Various Iterative Methods for )(1 xf  

)(1 xf  
0.4=0x

 

NM KM CM SM SMNF1 

n  9 D D D 7 

1x
 3.02 10

1
 2.56 10

0
 7.05 10

1
 6.07 10

1
 3.80 10

1
 

|)(| 11 xf  1.075 10
0

 1.16 10
0

 1.39 10
0

 1.46 10
0

 1.26 10
0

 

2x
 9.4 10

2
 3.0 10

0
 2.10 10

0
 35854.07 10

0
 1.43 10

3
 

|)(| 21 xf  3.72 10
1

 2.64 10
0

 1.03 10
0

 21526.38 10
0

 5.69 10
3

 

3x
 2.13 10

3
 2.11 10

0
 95.83 10

0
 35853.13 4.12 10

12
 

|)(| 31 xf
 8.54 10

3
 1.03 10

0
 2.23 10

0
 10417.75 10

0
 1.64 10-11  

4x
 2.43 10

8
 883.95 10

0
 95.80 10

0
 35853.41 10

0
 2.88 10-46 

|)(| 41 xf  9.74 10
8

 344.38 10
0

 8.81 10
8

 290.79 10
0

 1.15 10-45  

5x
 3.61 10

23
 884.35 10

0
 95.80 10

0
 35853.42 10

0
 6.91 10-183 

|)(| 51 xf
 1.44 10

22
 1.11 10

0
 3.90 10

157
 1.55 10

4
 2.76 10

182
 

6x
 1.17 10

67
 884.35 10

0
 95.80 10

0
 35853.42 10

0
 2.28 10-729 

|)(| 61 xf
 4.71 10

67
 5.21 10

13
 4.56 10

635
 1.25 10

29
 9.15 10-729 

 

Table 3: Comparison of Various Iterative Methods for )(2 xf  

)(2 xf

0.3=0 x
 

NM KM CM SM SMNF1 

n  10 5 5 6 5 

1x
 1.12 10

2
 3.64 10

3
 8.67 10

5
 1.13 10

3
 1.43 10

4
 

|)(| 12 xf  1.36 10
2

 4.41 10
3
 1.05 10

4
 1.37 10

3
 1.28 10

3
 

2x
 6.99 10

5
 2.06 10

14
 2.53 10

17
 2.0 10

12
 1.26 10

12
 

|)(| 22 xf  8.47 10
5

 2.5 10
14

 3.07 10
17

 2.43 10
12

 1.52 10
12

 

3x
 2.67 10

9
 2.12 10

55
 1.84 10

67
 1.98 10

47
 2.55 10

48
 

|)(| 32 xf
 3.24 10

9
 2.58 10

55
 2.23 10

67
 2.40 10

47
 3.09 10

48
 

4x
 3.91 10

18
 2.41 10

219
 5.20 10

268
 1.91 10

187
 4.30 10

191
 

|)(| 42 xf  4.74 10
18

 2.92 10
219

 6.31 10
268

 2.32 10
187

 5.21 10
191

 

5x
 8.36 10

36
 3.97 10

875
 0 1.65 10

747
 0 

|)(| 52 xf
 1.01 10

35
 4.82 10

875
 0 2.00 10

747
 0 

6x
 3.82 10

71
 0 0 0 0 

|)(| 62 xf
 4.63 10

71
 0 0 0 0 
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Table 4: Comparison of Various Iterative Methods for 
)(3 xf

 

)(3 xf

0.47=0 x
 

NM KM CM SM SMNF1 

n  9 5 5 5 5 

1x
 5.20 10

4
 1.78 10

6
 8.70 10

7
 2.47 10

8
 2.39 10

7
 

|)(| 13 xf
 8.54 10

4
 2.93 10

6
 1.4310

6
 4.06 10

8
 3.93 10

7
 

2x
 1.88 10

7
 3.03 10

23
 8.54 10

25
 1.39 10

32
 1.35 10

27
 

|)(| 23 xf
 3.08 10

7
 4.99 10

23
 1.40 10

24
 2.29 10

32
 2.22 10

27
 

3x
 2.46 10

14
 2.54 10

90
 7.92 10

97
 1.41 10

129
 1.39 10

108
 

|)(| 33 xf
 4.04 10

14
 4.17 10

90
 1.30 10

96
 2.31 10

129
 2.28 10

108
 

4x
 4.21 10

28
 1.24 10

358
 5.85 10

385
 1.47 10

517
 1.55 10

432
 

|)(| 43 xf
 6.91 10

28
 2.04 10

358
 9.61 10

385
 2.42 10

517
 2.54 10

432
 

5x
 1.23 10

55
 0 0 0 0 

|)(| 53 xf
 2.02 10

55
 0 0 0 0 

6x
 1.05 10

110
 0 0 0 0 

|)(| 63 xf
 1.73 10

110
 0 0 0 0 

 

Table 5: Comparison of Various Iterative Methods for )(4 xf  

)(4 xf  
X0=0.8 

NM KM CM SM SMNF1 

n  10 7 5 6 6 

1x
 

1.45 10-2 1.04 10
2
 1.79 10-4 1.41 10-3 1.41 10-3 

|)(| 14 xf  1.54 10
2

 1.10 10
2
 1.89 10-4 1.49 10-3 1.49 10-3  

2x
 

5.67 10-5 1.58 10
9
 4.86 10-17 3.92 10-12 3.92 10-12 

|)(| 24 xf
 

6.01 10-5 1.67 10
9
 5.14 10-17 4.15 10-12 4.15 10-12 

3x
 

8.54 10-10 8.28 10
37

 2.63 10-67 2.37 10-46 2.37 10-46 

|)(| 34 xf
 

9.04 10-10 8.77 10
37

 2.78 10-67 2.51 10-46 2.51 10-46 

4x
 

1.94 10-19 6.16 10
146

 2.25 10-268 3.17 10-183 3.17 10-183 

|)(| 44 xf
 

2.06 10-19 6.52 10
146

 2.39 10-268 3.35 10-183 3.35 10-183 

5x
 

1.00 10-38 0.41 10-500 0 1.01 10-730 1.01 10-730 

|)(| 54 xf
 

1.06 10-38 2.00 10
582

 0 1.07 10-730 1.07 10-730 

6x
 

2.67 10-77 4.14 10-500 0 0 0 

|)(| 64 xf
 

2.83 10-77 0 0 0 0 
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Table 6: Comparison of Various Iterative Methods for 
)(5 xf

 

)(5 xf
 

0.22=0x
 

NM KM CM SM SMNF1 

n  10 D D 8 6 

1x
 2.09 10

1
 8.46 10

0
 1.57 10

0
 6.11 10

1
 2.49 10

1
 

|)(| 15 xf
 2.44 10

1
 8.36 10

1
 1.51 10

0
 7.77 10

1
 2.95 10

1
 

2x
 1.96 10

2
 11.00 10

0
 1.24 10

11
 1.41 10

1
 4.70 10

3
 

|)(| 25 xf
 1.99 10

2
 9.97 10

1
 D 1.57 10

1
 4.70 10

3
 

3x
 3.53 10

4
 1.12 10

9
 D 7.90 10

4
 2.14 10

9
 

|)(| 35 xf
 3.53 10

4
 9.96 10

1
 D 7.91 10

4
 2.14 10

11
 

4x
 1.25 10

7
 1.12 10

9
 D 2.28 10

12
 9.6 10

35
 

|)(| 45 xf
 1.25 10

7
 1.70 10

1
 D 2.28 10

12
 9.6 10

35
 

5x
 1.56 10

14
 1.12 10

9
 D 1.59 10

46
 3.89 0

136
 

|)(| 55 xf
 1.56 10

14
 9.4 10

6
 D 1.59 10

46
 3.89 10

136
 

6x
 2.44 10

28
 1.12 10

9
 D 3.82 10

183
 9.72 10

266
 

|)(| 65 xf
 2.44 10

28
 3.91 10

27
 D 3.82 10

183
 9.72 10

266
 

*D stands for divergen 
 

5. Computational Cost and Numerical Comparison for Multivariate Case 
 
Table 7:  Test Functions With Their Exact Roots and Initial Guesses 

 Numerical Example Exact Zero Starting vector 
Example 1 19=  yxf

17
6

= 2
3

 x
y

g
 










6.000000

5.000000
=W

 










6.1

5.1
=(0)X

 

Example 2 xyf sincos=   

y
zg x 1

= 
 

2= zeh x   

















1.575834

1.575834

0.661227

0.909569

=W

 

















1.5

0.5

1.0

=(0)X

 

Example 3 )(= yxzxyf   
)(= ywzwyg   
)(= xwzwxh 

1=  xywywxi  

















 0.288675

0.577350

0.5577350

0.577350

=W

 



















 0.2

0.5

0.5

0.5

=(0)X
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Table 8:  Comparison of Various Iterative Methods for Solving System of Nonlinear Equations 
Numerical Example NM KM BM SMNF2 

Example 1 

Iterations 7 5 4 4 

��(�) − �(���)�
�

 4.98 10-115 1.18 10-376 2.59 10-103 7.10 10-108 

��(�(���))�
�

 3.31 10-115 2.13 10-375 4.64 10-102 1.27 10-106 

Example 2 

Iterations 9 6 6 6 

��(�) − �(���)�
�

 6.42 10-108 2.76 10-210 1.00 10-299 
1.18 10

356
 

��(�(���))�
�

 6.46 10-108 2.79 10-210 1.02 10-299 1.23 10-356 

Example 3 

Iterations 8 5 5 5 

��(�) − �(���)�
�

 4.40 10-145 1.30 10-198 3.49 10-238 1.02 10-256 

��(�(���))�
�

 4.51 10-145 1.30 10-198 4.02 10-238 1.02 10-256 

 
We also compare our extended method (27) 

(SMNF2) for solving systems of nonlinear equations 
with Newton’s method (NM) [14], Khattri’s method 
(KM) [10] and Babajee’s method (BM) [1], to show 
that the new method is more efficient. We use Maple 
7 for all the computations and testing of some known 
examples [1] given in Table 1. In case of solving 
system of equations the stopping criterion is 




 )1)(iF(X
 

1001)()( 10< 



 ii XX
 correct 

to 500 decimal digits. Table 7 consists of test 
functions for solving systems of nonlinear equations 

along with their exact zeros.  Table 8 shows the 
comparison of Newton’s method (NM), fourth order 
Khattri’s method (KM) [10], fourth order Babajee’s 
method (BM) [1] and proposed method (27) 
(SMNF2) which includes number of iterations and 
error deviation. These methods are also compared in 
terms of arithmetic and computational cost in Table 
9. 

To see the effectiveness of newly developed 
methods for systems of nonlinear equations, we 
calculate the computational cost. Calculation of 
computational cost for solving systems of nonlinear 
equations is entirely different from calculating 
classical efficiency index for single nonlinear 
equations. For calculating the computational cost 
following facts are under consideration. The cost of 

computations for the function )(XF  is n  and 

computational cost for Jacobian )(XF
'

 is .2n  
Newly developed methods also contains LU 
factorization and the solution of linear system of the 

type, )
)(

(
1

)
)(

(
ii'

XFXF


.      (38) 

The cost of LU factorization is 

3

3

2
n

 and 
computational cost for solving linear system is 

22n  in case of matrix vector multiplication. 

Therefore, combined cost of solving (38) is 

2
2

3

3

2
nn 

 and this cost is 
2

2
3

2 nn   in case of 
matrix-matrix  multiplication is involved such as 

.)
)(

(
1

)
)(

()
)(

(
i'i'i

ZF]X[F=X


  The cost of 
computations is also effected by number of scalar 
products, matrix products, matrix additions, matrix 
subtractions, vector additions, vector subtractions, 
vector multiplications along with decomposition of 
the first derivative into LU and the resolution of the 
triangular linear systems for the methods considered 
here. Table 9 demonstrates the total cost of 
computations and number of functional evaluations 
for execution of fourth order Khattri’s method (KM) 
[10], fourth order Babajee’s method (BM) [1], 
Chun’s method (CM) [3] and proposed method (27) 
(SMNF2). 
 
Table 9: Comparison of Computational Cost of 
Various Iterative Methods for Solving Systems 

Methods
Convergence 

Order 

Number of 
Functional 
Evaluations 

Total Cost of 
Method 

BM 4 nn 22  nnn 412
3

13 23 
 

KM 4 nn 22  nnn 67
3

17 23 
 

CM 4 nn 22  nnn 410
3

11 23 
 

SMNF2 4 nn 22  nnn 412
3

13 23 
 

 
6. Conclusions 

From tables 2-8, it is concluded that our method 
(SMFN2) is comparable with the recent well known 
methods for solving system of nonlinear as well as 
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for single non-linear equations in terms of 
computational cost.Moreover table 9 shows that our 
method is also comparable with the known methods  
for solving systems in terms of computational cost. 
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