
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 803

Virtual Machine Introspection Based Rootkit Detection in Virtualized Environments

Tongwook Hwang, Youngsang Shin, Kyungho Son, Haeryong Park

Korea Internet & Security Agency, Seoul, Korea
twhwang@kisa.or.kr

Abstract: Cloud computing and the underlying virtualization technology is becoming more and more popular, and
valuable information stored inside cloud computing environments are increasing at an alarming rate. As a result,
APT attacks that target the information are also increasing. Because the key element of APT attacks is the rootkit
that provides stealth, rootkit detection is an effective defensive measure against APT attacks. In this paper, we
discuss how to apply VMI (Virtual Machine Introspection) techniques to detecting rootkits in virtualized
environments, and use the insights gained to design an effective and efficient rootkit detection system.
[Hwang T, Shin Y, Son K, Park H. Virtual Machine Introspection Based Rootkit Detection in Virtualized
Environments. Life Sci J 2014;11(7):803-808] (ISSN:1097-8135). http://www.lifesciencesite.com. 116

Keywords: Cloud security; virtualization security; rootkit detection; hypervisor

1. Introduction

Cloud computing is rapidly gaining
popularity [1][2] as servers, computing platforms,
storage, and more. This is because of the cost benefits
that cloud computing offers. This popularity indicates
that more valuable information is accumulating in
cloud computing environments. The downside of this
popularity is that hackers are motivated to target cloud
computing systems for the valuable information. This
states the necessity of protecting cloud computing
systems from dangerous attacks, such as the infamous
APT (Advanced Persistent Threat) attacks [3]. APT
attacks relies heavily on rootkits, which are a type of
malware that provides stealth for itself and malware
payloads against system administrators. Therefore,
rootkit detection is an effective and efficient defensive
measure against APT attacks.

Rootkits are a type of malware that focuses
on stealthy control. This allows rootkits to hide itself
and its payloads from the system administrators, while
extracting information from the system and executing
remote commands from attackers. Rootkits operate by
modifying the OS system call results to serve the
rootkits’ purpose. The various techniques utilized to
implement this objective lead to the different types of
rootkits.

There are two major methodology to detect
rootkits; in-the-box methodology and out-of-the-box
methodology. In-the-box methodology installs a
rootkit detection agent inside the system to be
monitored. Out-of-the-box methodology utilizes an
external rootkit detection agent that monitors the
target system from the outside, usually by applying
virtualization and VMI (Virtual Machine
Introspection) techniques.

In this paper, we build upon our preliminary
works [4][5][6] to design an effective, efficient rootkit
detection system. We discuss that out-of-the-box

rootkit detection methodology [7] is efficient for
virtualized environments. We present a non-
comprehensive list of rootkit types and the
corresponding detection methods [5]. We also present
how to apply the detection methods efficiently in a
virtualized environment [5], utilizing VMI techniques
[8]. We discuss the design requirements that a rootkit
detection system in cloud computing environments
should satisfy [4]. Finally, we design a rootkit
detection system that takes into account the presented
design requirements and application techniques for
VMI. We utilize the vIPS platform [6] to better
incorporate the design requirements.
2. Rootkits and Detection Methods

In Table 1, we summarized the different
types of rootkits and the corresponding detection
algorithms [9][10]. The detection algorithms listed in
Table 1 dictates where to check for rootkits, but not
how to detect rootkits.

In terms of how to check for rootkits, there
are two classes of detection methodology, in-the-box
rootkit detection and out-of-the-box rootkit detection.
We will discuss how the two methodologies apply in
virtualized environments, and see that out-of-the-box
methodology is superior in virtualized environments.
2.1. In-the-box methodology

In-the-box rootkit detection methodology is
similar to the one used by the existing virus vaccine.
For this methodology, the detection program is
installed inside the system to be inspected, and the
signature of the known rootkit or contradiction of the
OS call result values will be searched while examining
the inside of the target system. There are some
problems when the in-the-box rootkit detection
methodology is applied to a cloud computing
environment.

The first problem is the possibility of A/V
storms. In enterprise environments, each system

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 804

installs the same host intrusion detection/prevention
software and is scheduled to perform inspection at a
prearranged time. Therefore, the detection program of
all hosts performs inspection at the same time. If this
methodology is used in a cloud computing virtualized
environment, however, resources of the host server
such as CPU and disk bandwidth and storage will be
saturated by the considerable load. This phenomenon
is named as an A/V storm. Since A/V storms cause a
bottleneck, it leads to the significant deterioration of
the overall system performance.

 The second problem is that it becomes
difficult to maintain the security status of virtual
machines at a homogeneous state. The security of the
entire virtualized system can be maintained only when
the rootkit detection software installed in the
individual virtual machines maintains the same
version. However, it is difficult to confirm whether all
virtual machines have the same version of rootkit
detection software in a virtualized environment,
because the virtual machine can be migrated,
duplicated, deleted, or otherwise modified at any time.

The third problem is that using the OS call
return value altered by the rootkit is unavoidable,
because the rootkit detection program is installed
outside of each virtual machine. Due to this limitation,
the rootkit is able to deceive the rootkit detection
program [11].
2.2. Out-of-the-box methodology

Out-of-the-box rootkit detection
methodology detects the rootkit by examining from
the outside of the system to be inspected. For this
purpose, the target system is virtualized by installing a
hypervisor. Afterwards, the internals of the target
system is examined from the outside.

The out-of-the-box methodology has many
advantages in a cloud computing environment, since
both the cloud computing environment and out-of-the-
box rootkit detection methodology are based on
virtualization technology.

First, there is no need to install and virtualize
the hypervisor in the system to be inspected, because
all systems for inspection are already virtualized in a
cloud environment. This characteristic provides the
benefit of simplified installation. It also invalidates
some rootkit implementations that detect the change in
virtualization status to foil out-of-the-box
methodology.

Second, it is extremely difficult for the
rootkit inside the virtual machine to recognize the
observer who is outside of the virtual machine and to
deceive the observer, because the technique used by
the rootkit for hiding, altering the OS return value,
becomes futile.

Lastly, it is easy to avoid A/V storms. By
having only one copy of the rootkit detection software
inside any virtualized system, it is possible to achieve
flexibility in inspection scheduling such as putting
into consideration the load on the entire system.

Table 1. Types of rootkits and corresponding detection algorithms
Level Type Detection Algorithm Search Device Search Location

User Level
API Hooking Function Table Analysis Virtual Memory IAT
Inline Hooking Hash Value Comparison Virtual Memory DLL Code Section
Trojan Horse Hash Value Comparison Virtual Disk Executable File

Kernel Level

SSDT Hooking Function Table Analysis Virtual Memory SSDT

IDT/MSR Hooking Function Table Analysis
Virtual Memory
Virtual CPU Register

IDT/MSR

Code Patching Hash Value Comparison Virtual Memory Kernel Code Section

Boot Level
Bootloader
Substitution

Hash Value Comparison Virtual Disk
Boot Sector/Record
Bootloader File

Table 2. Types of VMI libraries and corresponding detection algorithms
VMI Library
Name

Supported
Hypervisor

Supported
Device

Technology
Employed

Application to Rootkit Detection

LibVMI Xen, KVM
Memory,
CPU

XenControl Library
IAT, DLL Code Section, SSDT, IDT,
MSR, Kernel Code Section

LibGuestFS
Xen, KVM,
VMWare

Disk QEMU emulation
Executable Files, Boot Sectors,
Boot Records, Bootloader Files

VMSafe VMWare
Memory,
CPU, Disk

Integrated in VMWare All

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 805

3. Rootkit Detection in Virtualized Environments
To utilize out-of-the-box methodology in

virtualized environments, a technique that can
retrieve information within a virtual machine from
the hypervisor is needed. This technique is called
VMI (Virtual Machine Introspection). VMI allows
access to a number of information within a virtual
machine, such as CPU registers, memory, disk,
network devices, etc. There are several libraries that
implement VMI functionality for various
hypervisors, such as LibVMI [12][13] for Xen [14]
and KVM [15], VMSafe [16] for VMWare [17],
LibGuestFS [18] for most types of hypervisors, etc.
In this chapter, we present how to apply the detection
algorithms listed in Table 1 as out-of-the-box
methodology by utilizing VMI technology. We use
LibVMI and LibGuestFS as examples.

LibVMI reads virtual memory and CPU
registers. LibVMI uses hypervisor tools, such as the
XenControl Library [14], to access critical
information such as page tables, then provides access
to the requested information. To utilize LibVMI for
rootkit detection, we must read related information
from the target virtual machines. Table 1 indicates
that we need to read the following information from
the virtual machines using LibVMI : IAT, DLL Code
Section, SSDT, IDT, MSR and Kernel Code Section.
Some of this information such as kernel code section
can be accessed with simple kernel symbol
references. Other information such as IAT require
that the corresponding address be calculated from
other kernel data structures and be accessed with
memory addresses. One of the listed information,
namely MSR, requires access to the CPU registers.

LibGuestFS reads virtual disks. LibGuestFS
mounts the virtual disk in question into an emulator
named QEMU [19], and then communicates with this
emulator to provide access to the virtual disk. Table 1
indicates that we need to read the following
information from the virtual machines using
LibGuestFS: Executable Files, Boot Sectors, Boot
Records and Bootloader Files. Two different types of
access modes are required. First, executable files and
bootloader files are part of the system partition, so we
need to be able to access files inside the virtual disk.
Second, boot sectors and boot records does not exist
as files, but have predetermined sector position
relative to disk start or partition start. Therefore we
need to be able to access sectors with predetermined
offset from disk start or partition start.

4. Design Requirements of a Rootkit Detection
System in Virtualized Environments

Detecting rootkits in cloud computing
environments did not receive much attention in the
past. Therefore, to design effective and efficient

rootkit detection systems in cloud computing
environments, we need to specify the design
requirements. We reiterate the four design
requirements from our previous work [4]; agentless
virtual security appliances, hypervisor independence,
performance and usability.

Agentless virtual security appliance means
that the rootkit detection system should avoid using
agents inside the target virtual machines, and instead
rely solely upon VMI techniques to observe the target
virtual machines from an isolated VSA (Virtual
Security Appliance). This is to minimize the effect of
the various detection evasion techniques that rootkits
employ.

Hypervisor independence means that the
rootkit detection system should support various
different kinds of hypervisors in order to be
practically applicable.

Performance means that the rootkit detection
system should take measures to not hamper the
performance of the cloud computing system in
question. This is to compensate for the fact that cloud
computing tends to use the hardware resources more
efficiently, thereby removing slack resources that can
be harmlessly diverted to security operations.

Usability means that the rootkit detection
system should provide integration with other system
security monitoring tools, such as SIEM (Security
Information and Event Management) systems, to
provide fast and intelligible alert when an infection
incident occurs. This takes into account that a system
infected with rootkits usually cannot be recovered
without formatting and reinstalling the operating
system, which cannot and should not be performed
automatically by machine discretion.

Figure 1. Proposed Rootkit Detection System
Architecture

5. Design of a Rootkit Detection System in
Virtualized Environments

In this section, we present the architecture
for the rootkit detection system. We take into

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 806

consideration the design requirement that we
discussed in Section 4. We also apply the VMI
techniques that we discussed in Section 3. In order to
better uphold the requirements, we utilize vIPS
platform [6] from our previous work.

Figure 2. vIPS Platform Architecture [6]

The architecture of the proposed rootkit

detection system is presented in Figure 1. The
architecture of vIPS platform is revisited in Figure 2.
The rootkit detection system is composed as a VSA,
providing isolation from other virtual machines. The
rootkit detection functionality is implemented as a
HIPS engine plugin for vIPS platform.

The modules that compose the rootkit
detection system is explained below.

vIPS platform [6] is a hypervisor-
independent virtual host/network IPS platform that is
designed to help in developing flexible and effective
VSA. It implements a hypervisor neutral API for
accessing VM information, including VMI
functionality. It also provides integration with
SIEMs, therefore providing support for easy
management of the numerous virtual machines across
multiple physical hosts.

HIPS-vIPS interface module provides API
access between vIPS platform and the rest of the
rootkit detection system. The centralized
management of APIs support encapsulation.

HIPS manager provides supporting
functionality for the rootkit detection system,
including module control, inter-module
communication, environment setting management,
logging, etc.

HIPS engine is the main module of the
proposed system. HIPS engine follows the schedule
set by the Scheduler module to apply rootkit
detection rules from Rules management module to
target virtual machines.

Scheduler module manages the schedule for
HIPS engine. It takes into account the current
workload of the cloud computing system and the
predefined guidelines in the environment settings.

Rule management module manages the
rootkit detection rules. It maintains the whole list of
rootkit detection rules, and selectively provides the
applicable rules for the current virtual machine in

question to HIPS engine. It also performs preliminary
optimizations on the rules when applicable.

The presented design satisfies all the design
requirements that was discussed in Section 4. Having
a separate Scheduler module allows for flexible
schedule adjustment according to system load, and
Rule management module provides rule optimization.
This satisfies the performance design requirement.
By adopting the vIPS platform, the other 3 design
requirements (agentless virtual security appliance,
hypervisor independence, usability) are satisfied as
well.

The presented design utilizes VMI
techniques to monitor virtual machines from a VSA.
vIPS platform provides access to hypervisor-neutral
API for underlying VMI libraries. The VMI API
provided by vIPS platform supports access to virtual
CPU registers, virtual memory and virtual storage.
Rule management module provides the instructions
for utilizing the provided API to access information
related to rootkit detection, and HIPS engine executes
the instructions. The system as a whole is allowed to
utilize VMI as stated in the discussion in Section 3.

The workflow of the presented system
design is as follows. When the VSA is started, the
vIPS platform starts and prepares all plugins. In the
process, rootkit detection environment information is
given to HIPS manager. Also, rootkit detection rules
are given to Rule management module, and
Scheduler acquires information about the currently
active virtual machines. Upon acquiring these
information, Scheduler builds a preliminary rootkit
detection schedule. It starts receiving system load
information to make adjustments to the schedule
when needed.

Figure 3. Rootkit Detection System Workflow

When the schedule calls for the test of a

virtual machine, HIPS engine starts to operate on the
scheduled virtual machine. It receives rule
information from Rule management module. It starts

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 807

to call VMI functionality provided by vIPS platform
through HIPS-vIPS interface. When HIPS engine
detects signs of rootkits, the event is reported to HIPS
manager, which then passes the report to vIPS
platform for further processing, logging and alert
generation. This procedure is pictured in Figure 3.

6. Related Works

There are several other works that attempted
to apply VMI techniques to security applications.
Garfinkel and Rosenblum utilizes callback functions
and polling mechanisms to present a VMI-based IDS
with a signature-based detection engine targeted for
VMware Workstation [8]. Jiang, Wang and Xu
present a method to overcome the semantic gap
weakness of using VMI techniques to reconstruct the
machine state [7].

There are many studies about rootkits and
how to detect them. Arnold performed a survey on
rootkits and corresponding detection methods [10].
Kim, Park, Lee, You and Yim performed a similar
survey from a different angle, focusing on grouping
the rootkits by infection area [20].

There are some researches on utilizing VMI
for rootkit detection. Ibrahim, Hamlyn-Harris,
Grundy and Almorsy suggests reconstructing kernel
objects of the target virtual machine inside a separate
VSA [21]. Carbone, Cui, Lu and Lee suggests
analyzing the operating source code to construct a
kernel object type graph that is utilized to build a
specialized kernel object reconstruction system [22].
However, they focus on applying the relevant
techniques against a single target system by
virtualizing the system. Therefore, they do not take
into consideration performance and management
issues in cloud computing environments where
multiple target virtual machines coexist.

7. Conclusion

In this paper, we have analyzed a number of
different types of rootkits and the corresponding
detection method. We also discussed the superiority
of out-of-the-box methodology in virtualized systems
for cloud computing systems. We presented how to
apply the available VMI techniques to detecting
rootkits, by specifying the information that should be
accessed and the required access modes to efficiently
support the rootkit detection. We defined the design
requirements for rootkit detection system in cloud
computing environment. Finally, we presented a
rootkit detection system design that satisfies the
design requirements and takes into account the
application methods for VMI techniques.

As a future work, we plan to implement the
presented rootkit detection system and test the system

for traits such as rootkit detection rate, performance,
etc.

Acknowledgements:

This work was supported by ICT R&D
program of MSIP/IITP. [10044938, The
Development of Cyber Attacks Detection
Technology based on Mass Security Events
Analysing and Malicious code Profiling]

Corresponding Author:
Dr. Youngsang Shin
Korea Internet & Security Agency
Seoul, South Korea
E-mail: ysshin@kisa.or.kr

References
1. Forrester Research. The evolution of cloud

computing markets, 2010.
2. Cisco. Cisco Global Cloud Index: Forecast and

Methodology, 2012–2017.
http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns1175/Cloud_Index_
White_Paper.html.

3. Cloud Security and APT defense – Identical
Twins?, 2012.
http://cloud.trendmicro.com/cloud-security-and-
apt-defense-identical-twins/

4. Hwang T, Shin Y, Son K, Park H. Design of a
Hypervisor-based Rootkit Detection Method for
Virtualized Systems in Cloud Computing
Environments. In AASRI Winter International
Conference on Engineering and Technology
(AASRI-WIET), 2013.

5. Hwang T, Shin Y, Son K, Park H. Virtual
Machine Introspection Based Rootkit Detection
in Virtualized Environments. In International
Conference on Advanced Computing and
Services (ACS), 2014.

6. Shin Y, Yoon M, Son K. Design of a Versatile
Hypervisor-based Platform for Virtual Network-
Host Intrusion Prevention. In International
Conference on Information Processing,
Management and Intelligent Information
Technology (ICIPT), 2013.

7. Jiang X, Wang X, Xu D. Stealthy malware
detection through VMM-based “out-of-the-box”
semantic view reconstruction. In ACM
Conference on Computer and Communications
Security (CCS), 2007.

8. Garfinkel T, Rosenblum M, A Virtual Machine
Introspection Based Architecture for Intrusion
Detection, In Network and Distributed System
Security Symposium (NDSS), 2003.

9. Reverend Bill Blunden. The Rootkit Arsenal,
Second Edition. Jones&Bartlett Learning, 2013.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 808

10. Arnold TM. A Comparative Analysis of Rootkit
Detection Techniques, M.S. Thesis, The
University of Houston-Clear Lake, Houston,
USA, 2011.

11. Sparks S, Butler J. “Shadow Walker”: Raising
the Bar for Rootkit Detection, In Blackhat, 2005.

12. Payne D, de Carbone MDP, Lee W. Secure and
flexible monitoring of virtual machines. In
Annual Computer Security Appliances
Conference (ACSAC), 2003.

13. LibVMI project. vmitools.
http://code.google.com/p/vmitools/.

14. Citrix. Xen. http://www.xen.org.
15. KVM. Kernel based virtual machine (KVM).

http://linux-kvm.org.
16. VMware. VMsafe.

http://www.vmware.com/go/vmsafe.

17. VMware, Inc. VMware.
http://www.vmware.com.

18. LibGuestFS. http://www.libguestfs.org/.
19. Bellard F. QEMU. http://wiki.qemu.org.
20. Kim S, Park J, Lee K, You I, Yim K. A Brief

Survey on Rootkit Techniques in Malicious
Codes. Journal of Internet Services and
Information Security, 2012;3(4):134-147.

21. AIbrahim AS, Hamlyn-Harris J, Grundy J,
Almorsy M. CloudSec: A Security Monitoring
Appliance for Virtual Machines in the IaaS
Cloud Model. In Internal Conference on
Network and System Security (NSS), 2011.

22. Carbone M, Cui W, Lu L, Lee W. Mapping
kernel objects to enable systematic integrity
checking. In ACM conference on Computer and
Communications Security (CCS), 2009.

5/26/2014

