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Abstract: Cloud computing and the underlying virtualization technology is becoming more and more popular, and 
valuable information stored inside cloud computing environments are increasing at an alarming rate. As a result, 
APT attacks that target the information are also increasing. Because the key element of APT attacks is the rootkit 
that provides stealth, rootkit detection is an effective defensive measure against APT attacks. In this paper, we 
discuss how to apply VMI (Virtual Machine Introspection) techniques to detecting rootkits in virtualized 
environments, and use the insights gained to design an effective and efficient rootkit detection system. 
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1. Introduction 

Cloud computing is rapidly gaining 
popularity [1][2] as servers, computing platforms, 
storage, and more. This is because of the cost benefits 
that cloud computing offers. This popularity indicates 
that more valuable information is accumulating in 
cloud computing environments. The downside of this 
popularity is that hackers are motivated to target cloud 
computing systems for the valuable information. This 
states the necessity of protecting cloud computing 
systems from dangerous attacks, such as the infamous 
APT (Advanced Persistent Threat) attacks [3]. APT 
attacks relies heavily on rootkits, which are a type of 
malware that provides stealth for itself and malware 
payloads against system administrators. Therefore, 
rootkit detection is an effective and efficient defensive 
measure against APT attacks. 

Rootkits are a type of malware that focuses 
on stealthy control. This allows rootkits to hide itself 
and its payloads from the system administrators, while 
extracting information from the system and executing 
remote commands from attackers. Rootkits operate by 
modifying the OS system call results to serve the 
rootkits’ purpose. The various techniques utilized to 
implement this objective lead to the different types of 
rootkits. 

There are two major methodology to detect 
rootkits; in-the-box methodology and out-of-the-box 
methodology. In-the-box methodology installs a 
rootkit detection agent inside the system to be 
monitored. Out-of-the-box methodology utilizes an 
external rootkit detection agent that monitors the 
target system from the outside, usually by applying 
virtualization and VMI (Virtual Machine 
Introspection) techniques. 

In this paper, we build upon our preliminary 
works [4][5][6] to design an effective, efficient rootkit 
detection system. We discuss that out-of-the-box 

rootkit detection methodology [7] is efficient for 
virtualized environments. We present a non-
comprehensive list of rootkit types and the 
corresponding detection methods [5]. We also present 
how to apply the detection methods efficiently in a 
virtualized environment [5], utilizing VMI techniques 
[8]. We discuss the design requirements that a rootkit 
detection system in cloud computing environments 
should satisfy [4]. Finally, we design a rootkit 
detection system that takes into account the presented 
design requirements and application techniques for 
VMI. We utilize the vIPS platform [6] to better 
incorporate the design requirements. 
2. Rootkits and Detection Methods 

In Table 1, we summarized the different 
types of rootkits and the corresponding detection 
algorithms [9][10]. The detection algorithms listed in 
Table 1 dictates where to check for rootkits, but not 
how to detect rootkits. 

In terms of how to check for rootkits, there 
are two classes of detection methodology, in-the-box 
rootkit detection and out-of-the-box rootkit detection. 
We will discuss how the two methodologies apply in 
virtualized environments, and see that out-of-the-box 
methodology is superior in virtualized environments. 
2.1. In-the-box methodology 

In-the-box rootkit detection methodology is 
similar to the one used by the existing virus vaccine. 
For this methodology, the detection program is 
installed inside the system to be inspected, and the 
signature of the known rootkit or contradiction of the 
OS call result values will be searched while examining 
the inside of the target system. There are some 
problems when the in-the-box rootkit detection 
methodology is applied to a cloud computing 
environment. 

The first problem is the possibility of A/V 
storms. In enterprise environments, each system 
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installs the same host intrusion detection/prevention 
software and is scheduled to perform inspection at a 
prearranged time. Therefore, the detection program of 
all hosts performs inspection at the same time. If this 
methodology is used in a cloud computing virtualized 
environment, however, resources of the host server 
such as CPU and disk bandwidth and storage will be 
saturated by the considerable load. This phenomenon 
is named as an A/V storm. Since A/V storms cause a 
bottleneck, it leads to the significant deterioration of 
the overall system performance. 

 The second problem is that it becomes 
difficult to maintain the security status of virtual 
machines at a homogeneous state. The security of the 
entire virtualized system can be maintained only when 
the rootkit detection software installed in the 
individual virtual machines maintains the same 
version. However, it is difficult to confirm whether all 
virtual machines have the same version of rootkit 
detection software in a virtualized environment, 
because the virtual machine can be migrated, 
duplicated, deleted, or otherwise modified at any time. 

The third problem is that using the OS call 
return value altered by the rootkit is unavoidable, 
because the rootkit detection program is installed 
outside of each virtual machine. Due to this limitation, 
the rootkit is able to deceive the rootkit detection 
program [11]. 
2.2. Out-of-the-box methodology 

Out-of-the-box rootkit detection 
methodology detects the rootkit by examining from 
the outside of the system to be inspected. For this 
purpose, the target system is virtualized by installing a 
hypervisor. Afterwards, the internals of the target 
system is examined from the outside. 

The out-of-the-box methodology has many 
advantages in a cloud computing environment, since 
both the cloud computing environment and out-of-the-
box rootkit detection methodology are based on 
virtualization technology. 

First, there is no need to install and virtualize 
the hypervisor in the system to be inspected, because 
all systems for inspection are already virtualized in a 
cloud environment. This characteristic provides the 
benefit of simplified installation. It also invalidates 
some rootkit implementations that detect the change in 
virtualization status to foil out-of-the-box 
methodology. 

Second, it is extremely difficult for the 
rootkit inside the virtual machine to recognize the 
observer who is outside of the virtual machine and to 
deceive the observer, because the technique used by 
the rootkit for hiding, altering the OS return value, 
becomes futile. 

Lastly, it is easy to avoid A/V storms. By 
having only one copy of the rootkit detection software 
inside any virtualized system, it is possible to achieve 
flexibility in inspection scheduling such as putting 
into consideration the load on the entire system. 

 
 
Table 1. Types of rootkits and corresponding detection algorithms 
Level Type Detection Algorithm Search Device Search Location 

User Level 
API Hooking Function Table Analysis Virtual Memory IAT 
Inline Hooking Hash Value Comparison Virtual Memory DLL Code Section 
Trojan Horse Hash Value Comparison Virtual Disk Executable File 

Kernel Level 

SSDT Hooking Function Table Analysis Virtual Memory SSDT 

IDT/MSR Hooking Function Table Analysis 
Virtual Memory 
Virtual CPU Register 

IDT/MSR 

Code Patching Hash Value Comparison Virtual Memory Kernel Code Section 

Boot Level 
Bootloader 
Substitution 

Hash Value Comparison Virtual Disk 
Boot Sector/Record 
Bootloader File 

 
Table 2. Types of VMI libraries and corresponding detection algorithms 
VMI Library 
Name 

Supported 
Hypervisor 

Supported 
Device 

Technology 
Employed 

Application to Rootkit Detection 

LibVMI Xen, KVM 
Memory, 
CPU 

XenControl Library 
IAT, DLL Code Section, SSDT, IDT, 
MSR, Kernel Code Section 

LibGuestFS 
Xen, KVM, 
VMWare 

Disk QEMU emulation 
Executable Files, Boot Sectors,  
Boot Records, Bootloader Files 

VMSafe VMWare 
Memory, 
CPU, Disk 

Integrated in VMWare All 
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3. Rootkit Detection in Virtualized Environments 
To utilize out-of-the-box methodology in 

virtualized environments, a technique that can 
retrieve information within a virtual machine from 
the hypervisor is needed. This technique is called 
VMI (Virtual Machine Introspection). VMI allows 
access to a number of information within a virtual 
machine, such as CPU registers, memory, disk, 
network devices, etc. There are several libraries that 
implement VMI functionality for various 
hypervisors, such as LibVMI [12][13] for Xen [14] 
and KVM [15], VMSafe [16] for VMWare [17], 
LibGuestFS [18] for most types of hypervisors, etc. 
In this chapter, we present how to apply the detection 
algorithms listed in Table 1 as out-of-the-box 
methodology by utilizing VMI technology. We use 
LibVMI and LibGuestFS as examples. 

LibVMI reads virtual memory and CPU 
registers. LibVMI uses hypervisor tools, such as the 
XenControl Library [14], to access critical 
information such as page tables, then provides access 
to the requested information. To utilize LibVMI for 
rootkit detection, we must read related information 
from the target virtual machines. Table 1 indicates 
that we need to read the following information from 
the virtual machines using LibVMI : IAT, DLL Code 
Section, SSDT, IDT, MSR and Kernel Code Section. 
Some of this information such as kernel code section 
can be accessed with simple kernel symbol 
references. Other information such as IAT require 
that the corresponding address be calculated from 
other kernel data structures and be accessed with 
memory addresses. One of the listed information, 
namely MSR, requires access to the CPU registers. 

LibGuestFS reads virtual disks. LibGuestFS 
mounts the virtual disk in question into an emulator 
named QEMU [19], and then communicates with this 
emulator to provide access to the virtual disk. Table 1 
indicates that we need to read the following 
information from the virtual machines using 
LibGuestFS: Executable Files, Boot Sectors, Boot 
Records and Bootloader Files. Two different types of 
access modes are required. First, executable files and 
bootloader files are part of the system partition, so we 
need to be able to access files inside the virtual disk. 
Second, boot sectors and boot records does not exist 
as files, but have predetermined sector position 
relative to disk start or partition start.  Therefore we 
need to be able to access sectors with predetermined 
offset from disk start or partition start.  
 
4. Design Requirements of a Rootkit Detection 
System in Virtualized Environments 

Detecting rootkits in cloud computing 
environments did not receive much attention in the 
past. Therefore, to design effective and efficient 

rootkit detection systems in cloud computing 
environments, we need to specify the design 
requirements. We reiterate the four design 
requirements from our previous work [4]; agentless 
virtual security appliances, hypervisor independence, 
performance and usability. 

Agentless virtual security appliance means 
that the rootkit detection system should avoid using 
agents inside the target virtual machines, and instead 
rely solely upon VMI techniques to observe the target 
virtual machines from an isolated VSA (Virtual 
Security Appliance). This is to minimize the effect of 
the various detection evasion techniques that rootkits 
employ. 

Hypervisor independence means that the 
rootkit detection system should support various 
different kinds of hypervisors in order to be 
practically applicable. 

Performance means that the rootkit detection 
system should take measures to not hamper the 
performance of the cloud computing system in 
question. This is to compensate for the fact that cloud 
computing tends to use the hardware resources more 
efficiently, thereby removing slack resources that can 
be harmlessly diverted to security operations. 

Usability means that the rootkit detection 
system should provide integration with other system 
security monitoring tools, such as SIEM (Security 
Information and Event Management) systems, to 
provide fast and intelligible alert when an infection 
incident occurs. This takes into account that a system 
infected with rootkits usually cannot be recovered 
without formatting and reinstalling the operating 
system, which cannot and should not be performed 
automatically by machine discretion. 

 

 
Figure 1. Proposed Rootkit Detection System 
Architecture 
 
5. Design of a Rootkit Detection System in 
Virtualized Environments 

In this section, we present the architecture 
for the rootkit detection system. We take into 
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consideration the design requirement that we 
discussed in Section 4. We also apply the VMI 
techniques that we discussed in Section 3. In order to 
better uphold the requirements, we utilize vIPS 
platform [6] from our previous work. 
 

 
Figure 2. vIPS Platform Architecture [6] 

 
The architecture of the proposed rootkit 

detection system is presented in Figure 1. The 
architecture of vIPS platform is revisited in Figure 2. 
The rootkit detection system is composed as a VSA, 
providing isolation from other virtual machines. The 
rootkit detection functionality is implemented as a 
HIPS engine plugin for vIPS platform. 

The modules that compose the rootkit 
detection system is explained below.  

vIPS platform [6] is a hypervisor-
independent virtual host/network IPS platform that is 
designed to help in developing flexible and effective 
VSA. It implements a hypervisor neutral API for 
accessing VM information, including VMI 
functionality. It also provides integration with 
SIEMs, therefore providing support for easy 
management of the numerous virtual machines across 
multiple physical hosts. 

HIPS-vIPS interface module provides API 
access between vIPS platform and the rest of the 
rootkit detection system. The centralized 
management of APIs support encapsulation. 

HIPS manager provides supporting 
functionality for the rootkit detection system, 
including module control, inter-module 
communication, environment setting management, 
logging, etc. 

HIPS engine is the main module of the 
proposed system. HIPS engine follows the schedule 
set by the Scheduler module to apply rootkit 
detection rules from Rules management module to 
target virtual machines. 

Scheduler module manages the schedule for 
HIPS engine. It takes into account the current 
workload of the cloud computing system and the 
predefined guidelines in the environment settings. 

Rule management module manages the 
rootkit detection rules. It maintains the whole list of 
rootkit detection rules, and selectively provides the 
applicable rules for the current virtual machine in 

question to HIPS engine. It also performs preliminary 
optimizations on the rules when applicable. 

The presented design satisfies all the design 
requirements that was discussed in Section 4. Having 
a separate Scheduler module allows for flexible 
schedule adjustment according to system load, and 
Rule management module provides rule optimization. 
This satisfies the performance design requirement. 
By adopting the vIPS platform, the other 3 design 
requirements (agentless virtual security appliance, 
hypervisor independence, usability) are satisfied as 
well. 

The presented design utilizes VMI 
techniques to monitor virtual machines from a VSA. 
vIPS platform provides access to hypervisor-neutral 
API for underlying VMI libraries. The VMI API 
provided by vIPS platform supports access to virtual 
CPU registers, virtual memory and virtual storage. 
Rule management module provides the instructions 
for utilizing the provided API to access information 
related to rootkit detection, and HIPS engine executes 
the instructions. The system as a whole is allowed to 
utilize VMI as stated in the discussion in Section 3. 

The workflow of the presented system 
design is as follows. When the VSA is started, the 
vIPS platform starts and prepares all plugins. In the 
process, rootkit detection environment information is 
given to HIPS manager. Also, rootkit detection rules 
are given to Rule management module, and 
Scheduler acquires information about the currently 
active virtual machines. Upon acquiring these 
information, Scheduler builds a preliminary rootkit 
detection schedule. It starts receiving system load 
information to make adjustments to the schedule 
when needed. 
 

 
Figure 3. Rootkit Detection System Workflow 

 
When the schedule calls for the test of a 

virtual machine, HIPS engine starts to operate on the 
scheduled virtual machine. It receives rule 
information from Rule management module. It starts 
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to call VMI functionality provided by vIPS platform 
through HIPS-vIPS interface. When HIPS engine 
detects signs of rootkits, the event is reported to HIPS 
manager, which then passes the report to vIPS 
platform for further processing, logging and alert 
generation.  This procedure is pictured in Figure 3. 
 
6. Related Works 

There are several other works that attempted 
to apply VMI techniques to security applications. 
Garfinkel and Rosenblum utilizes callback functions 
and polling mechanisms to present a VMI-based IDS 
with a signature-based detection engine targeted for 
VMware Workstation [8]. Jiang, Wang and Xu 
present a method to overcome the semantic gap 
weakness of using VMI techniques to reconstruct the 
machine state [7].  

There are many studies about rootkits and 
how to detect them. Arnold performed a survey on 
rootkits and corresponding detection methods [10]. 
Kim, Park, Lee, You and Yim performed a similar 
survey from a different angle, focusing on grouping 
the rootkits by infection area [20]. 

There are some researches on utilizing VMI 
for rootkit detection. Ibrahim, Hamlyn-Harris, 
Grundy and Almorsy suggests reconstructing kernel 
objects of the target virtual machine inside a separate 
VSA [21]. Carbone, Cui, Lu and Lee suggests 
analyzing the operating source code to construct a 
kernel object type graph that is utilized to build a 
specialized kernel object reconstruction system [22]. 
However, they focus on applying the relevant 
techniques against a single target system by 
virtualizing the system. Therefore, they do not take 
into consideration performance and management 
issues in cloud computing environments where 
multiple target virtual machines coexist. 
 
7. Conclusion 

In this paper, we have analyzed a number of 
different types of rootkits and the corresponding 
detection method. We also discussed the superiority 
of out-of-the-box methodology in virtualized systems 
for cloud computing systems. We presented how to 
apply the available VMI techniques to detecting 
rootkits, by specifying the information that should be 
accessed and the required access modes to efficiently 
support the rootkit detection. We defined the design 
requirements for rootkit detection system in cloud 
computing environment. Finally, we presented a 
rootkit detection system design that satisfies the 
design requirements and takes into account the 
application methods for VMI techniques. 

As a future work, we plan to implement the 
presented rootkit detection system and test the system 

for traits such as rootkit detection rate, performance, 
etc. 
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