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Abstract: In this paper we consider the problem of estimating the stress-strength reliability � = �[� < �] when the 
available data is in the form of lower record values. The two-parameter exponentiated Weibull (EW) is considered, 
where both X and Y are independent and (EW) random variables with one different shape parameter, but having a 
common second shape parameter. The maximum likelihood estimator (MLE) and percentile bootstrap confidence 
intervals of R are provided. Also, we will apply Markov chian Monte Carlo (MCMC) techniques to study the 
Bayesian estimation of R and by Lindley's approximation technique as well. Assuming known common shape 
parameter, the MLE of R is obtained. The exact distributions of the MLEs of the unknown parameters are used to 
construct the exact confidence interval of R. Analysis of a simulated data set has also been presented for illustrative 
purposes. Monte Carlo simulations are performed to compare the different proposed methods. 
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1. Introduction 

Whenever the comparison of the distributions 
of two random variables X and Y is of interest, 
inferences about � = �[� < �]  provide a way of 
summarizing this comparison in terms of a single 
parameter. The parameter R is frequently called the 
reliability or stress--strength parameter. The importance 
of R arises in industrial contexts, since the reliability of 
a component can be described in terms of the stress 
experienced by the component, described by Y, and the 
strength of the component available to overcome the 
stress, represented by X. If the stress exceeds the 
strength, the component fails, and otherwise it resists. 
In such a setting, reliability is thus defined as the 
probability of not failing, which is therefore � =
�[� < �]  and is thus desired to be close to one. 
However, R arises in many other areas of application 
aside from industry. In biometrical studies, the random 
variable Y may represent the remaining lifetime of a 
patient treated with a certain drug, while X represents 
the remaining lifetime when treated by another drug. 
Our interest lies in the fact of whether R  is greater than 
or less than 0.5. Many authors assumed that X and Y  
belong to a certain family of probability distributions 
with unknown parameters and then considered the 
estimation problem of the reliability R, for example, the 
exponential distribution [Nadarajah (2003), Baklizi and 
El-Masri (2004) and Krishnamoorthy et al.  (2007)], 

Logistic and Laplace distributions [Nadarajah (2004a, 
2004b)], bivariate exponential [Nadarajah and Kotz 
(2006)], Weibull [Kundu and Gupta (2006), Kundu and 
Raqab (2009) and Amiri et al. (2013)], Burr 
distributions [Mokhlis (2005) and Shawky and Al-
Gashgari (2007)], gamma distribution [Nadarajah 
(2005)] and Pareto distribution [Shawky and Al-
Gashgari (2013)]. Also, see Kotz et al. (2003) and the 
references therein. 

Weibull family is commonly used for 
modeling systems with monotone aging property. 
However, in reliability analysis, lifetimes can exhibit 
high initial failure rate (FR) and eventual high FR due 
to aging and wear-out, indicating a bathtub shape. 
Bathtub shaped FR functions are faced frequently in 
many practical situations. One of the bathtub shaped 
models is the exponentiated Weibull family introduced 
by Mudholkar and Srivastava (1993). It contains 
distributions with bathtub shaped and unimodal FR 
besides a broader class of monotone FR. Some recent 
results about this family can be found in the works of 
Mudholkar et al. (1995), Jiang and Murthy (1999), 
Nassar and Eissa (2003), Xie et al. (2004), Lai et al. 
(2004), Shen et al. (2009). The exponentiated Weibull 
family is a generalization of the commonly known 
Weibull distribution. It is quite adequate for modeling 
monotone as well as non-monotone failure rates which 
are quite common in reliability and biological studies. 
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The exponentiated Weibull distribution is a bathtub 
failure rate distribution with three parameters (σ, α and 
θ). α and θ are referred to as the shape parameters. If θ 
is equal to 1, the distribution is said to be Weibull 
distribution. The scale parameter σ will not determine 
the shapes of the FR curve. 
The probability density function (pdf) and cumulative 
distribution function (cdf) of the Exponentiated 
Weibull distribution EW(α,θ), with two shape 
parameters, α and θ are given, respectively, by 

�(�) = ���������
�
(1 − � ���)���, 

                       � > 0,� > 0, � > 0,              (1) 

            �(�) = (1 − � ���)�.                         (2) 
Record data arise in a wide variety of practical 

situations. Examples include industrial stress testing, 
meteorological analysis, hydrology, seismology, 
sporting and athletic events. For comprehensive 
accounts of the theory and applications of record 
values, we refer the readers to [1-4]. There are many 
situations in which only records are observed. Ultimate 
examples of such situations can be found from the 
website for Guinness World Records; see 
http://www.guin-nessworldrecords.com/. As an 
example is the situation of testing the breaking strength 
of wooden beams as described in Glick (1978). Hence, 
it is important that one has accurate estimation 
procedures based only on records. 

 Let X₁, X₂, ... be an infinite sequence of 
independent identically continuous random variables 
(r.v.'s). An observation Xj will be called an lower record 
value if Xj<Xi for every i <j. We will assume that Xj 

occurs at time j, then  the record time sequence is 
defined as, T₀=1 and Tn=min{j : Xj<XTn-1}.The lower 
record value sequence R₀, R₁, ..., Rn is defined as 
�� = ���, n = 0,1,2,...⋅ 

Inference problems based on records with 
many lifetime models were considered by several 
authors, see Awad and Raqab (2000), Ahmadi and 
Balakrishnan (2005), Baklizi (2008a, b), Soliman et al. 
(2006), Wang and Shi (2013) and the references 
therein. Our interest in this paper is in estimating the 
stress-strength reliability R=P(Y<X), where X and Y 
follow the EW distributions with common one shape 
parameter. We discuss the problem in the situation 
where the stress measurements and the strength 
measurements are both in terms of records. First, we 
will obtain the MLE of R in the general case (the 
common shape parameter is unknown). The MLE of 
the three unknown parameters can be obtained by 
solving one nonlinear equation. We provide a simple 
fixed point type algorithm to find the MLE. We will 
also propose the percentile bootstrap confidence 
intervals of R. A Bayes point estimator of  R, and the 
corresponding credible interval using the MCMC 
sampling technique have been proposed. Second, 

assuming that the common shape parameter is known, 
the MLE of R is obtained. Using exact distributions of 
the MLEs of the two unknown parameters, we 
construct the exact confidence interval of R. In this 
case, Bayes estimators have been obtained using 
Lindley's approximations. The different proposed 
methods have been compared via Monte Carlo 
simulation. 

In the next Section, we will derive the MLE of 
R. The different confidence intervals of R are proposed 
in Section 3. In Section 4, we will discuss Bayes 
estimates of R when the common shape parameter α is 
unknown and we will construct the credible intervals 
using MCMC technique. The MLE of R and exact 
confidence intervals of R when the common shape 
parameter α is known are proposed in Section 5. 
Illustrative examples will be given in Section 6, and a 
comparison of the results are made as well. In Section 
7, we will provide some simulation results in order to 
give an assessment of the performance of the different 
estimation methods and finally we will draw 
conclusions in Section 8. 
 
2. Maximum likelihood estimator of R 

Suppose that X  is the strength of a component 
which is subject to stress Y. The system fails if and only 
if at any time the applied stress is greater than the 
strength. Let X  be a random variable following an EW  
distribution with parameters α and θ (denoted by EW(α, 
θ)), and Y  is another independent EW random variable 
with parameters α and β (denoted by EW(α, β)), then 

� = (� < �) 

= � �(� < �|� = �) �(� = �)��  �
�

�

 

           =
�

���
 .                                                   (3) 

Let � = ���(�), ��(�),…, ��(�)�be the first lower record 
values of size n from EW(α, θ) and 
� = (��(�), ��(�),…,  ��(�))  be an independent set of 

the first lower record values of size m from EW(α, β). 
The likelihood functions for both observed records x 
and y are given, respectively, (see Arnold et al. 1998) 
by 

           ��(�,���) = �(��(�))∏
����(�)�

����(�)�

���
���

�,       (4)    

and 

           ��(�,���) = �(��(�))∏
����(�)�

����(�)�

���
���

�,    (5) 

where f  and F  are respectively, the (pdf) and (cdf) of 
X, g and G are the (pdf) and (cdf) of Y , respectively. 
Substituting f, F, g  and G  in the likelihood functions 
we obtain 

        ����, ���
�� = ����Ψ���,���

� ��� ��,          (6)    

        �� ��,���
�� = ����Ψ� ��,�� �

� �����,   (7) 
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where 

Ψ���,�� =�
��(�)
�������(�)

�

��

�

���

,    

                 Ψ� ��,�� = ∏
��(�)
����

���(�)
�

��
,�

���             (8) 

�� = 1 − � ���(�)
�

  and �� = 1 − � ���(�)
�

 
 ,  i=1, …, n, j=1, …, m. 

Therefore, the joint Log-likelihood function of 
the observed records � and � is 

ℓ(�, �, �|����) =�(� +�)���� +    � ���� +� ����
+ � ��� �� +      � ��� �� + 

(� − 1)�∑ �����(�)
�
��� +     ∑ �����(�)

�
��� � −

�∑ ��� ��
�
��� +          ∑ ��� ��

�
��� � −   

�∑ ��(�)
��

��� + ∑ ��(�)
��

��� �.                              (9) 

The MLEs of α,θ and β denoted, respectively, by ��, �� 
and ��  are obtained by solving the following equations 

�ℓ

��
=
� +�

�
+ 

�������(�)

�

���

+������(�)

�

���

� −  

− ����(�)
�

�

���

�����(�) +���(�)
� �����(�)

�

���

� 

−����,�� − � � ��,�� + 

������(�),�� +    ������(�),�� = 0,  
                                                                         (10) 
�ℓ

��
=

�

�
+ log �1 − � ���(�)

�

� = 0,                     (11) 
�ℓ

��
=

�

�
+ log �1 − � ���(�)

�

� = 0,                    (12) 

where 

����,�� =�
��(�)
�  ����(�)

�

�����(�)

��

�

���

,   

            �� ��,�� = ∑
��(�)
�  �

���(�)
�

�����(�)

��

�
��� ,   (13) 

 

        �����(�),�� =
��(�)
�  �

���(�)
�

�����(�)

��
 , 

and  

        �����(�),�� =
��(�)
�  �

���(�)
�

�����(�)

��
.      (14) 

   From Equations (11) and (12), we thus have 

              �� =
�

���(��)
,                                        (15) 

             �� =
�

���(��)
,                                            (16) 

and��can be obtained as the solution of the following 
nonlinear equation 

�(�) =
� + �

�
+ 

�������(�)

�

���

+������(�)

�

���

� 

 

− ����(�)
�

�

���

�����(�) +���(�)
� �����(�)

�

���

� 

+�
� �����(�),��

�����
� + �

� �����(�),��

�����
� −

                   ����, �� − � � ��,��.                 (17) 

Therefore, ��  is obtained by solving a 
nonlinear equation of the form 
 ℎ(�) = �,                                    (18) 
where 

ℎ(�) = (� +�)[−  

�������(�)

�

���

+������(�)

�

���

� 

+����(�)
�

�

���

�����(�) +���(�)
� �����(�)

�

���

� 

− �
� �����(�),��

�����
� − �

� �����(�),��

�����
� 

+����, �� + �� ��,��]
��. 

  Since��is a fixed point solution of nonlinear equation 
(17), which is obtained by using a simple iterative 
scheme as follows: 

                 ℎ���� = ����,                             (19) 

where��  is the jth iterate of ��. The iteration procedure 

should be stopped when ������ − ���� is sufficiently 

small. Once we obtain �� , ��  and �� , the MLE of R 
becomes 

                �� =
��

�����
.                                        (20) 

3.Bootstrap confidence intervals 
 In this section, we will construct the 

confidence intervals based on the following methods: 
(i) percentile bootstrap method (Boot-p) using the idea 
of Efron (1982), and (ii) bootstrap-t method (Boot-t) 
using the idea of Hall (1988). The algorithms for 
estimating the confidence intervals of R using both 
methods are illustrated below. 
 
3.1 Percentile bootstrap method 
Step 1: From the original two samples of lower record 

{��(�), ��(�),…, ��(�)}  and ���(�),��(�),…, ��(�)� 

compute ML estimates ��, ��, ��  and ��. 
Step 2: Using �� and ��  to generate a bootstrap lower 
record sample {��(�)

∗ , ��(�)
∗ ,…, ��(�)

∗ } and similarly 

using ��  and ��  to generate a bootstrap lower record 
sample {��(�)

∗ ,��(�)
∗ ,…, ��(�)

∗ } . Based on these data, we 
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compute the bootstrap estimators say, ��∗ , ��∗,��∗  and 

��∗. 
Step 3: Repeat step 2, N boot times. 
Step 4: Let �(�) = �(��∗ ≤ �) be the cumulative 
distribution of ��∗. Define ������ = ���(�)for a given x. 
The approximate 100(1-γ)% confidence interval of R is 
given by 

         (�������� �
�

�
�,�������� �1 −

�

�
�.              (21) 

 
3.2 Bootstrap-t method 
Step 1: From the original two samples of lower record 
{��(�), ��(�),…, ��(�)}  and {��(�),��(�),…, ��(�)} 

compute ML estimates ��, ��, ��  and ��. 

Step 2: Using �� and ��  to generate a bootstrap lower 
record sample {��(�)

∗ , ��(�)
∗ ,…, ��(�)

∗ } and similarly 

using ��  and ��  to generate a bootstrap lower record 
sample {��(�)

∗ ,��(�)
∗ ,…, ��(�)

∗ }}. Based on these data, 

we compute the bootstrap estimators say, ��∗, ��∗and ��∗, 
then compute the bootstrap estimate of R using (20), 

say ��∗ which follows the statistic �∗ =
√�(��∗���)

����(��∗)
,where 

���(��∗) is obtained by the delta method (see Greene 
(2000). 
Step 3: Repeat step 2, N boot times. 
Step 4: For the�∗ values obtained in step 2, determine 
the upper and lower bounds of the 100(1-γ)% 
confidence interval of R as follows: let �(�) = �(�∗ ≤
�)be the cumulative distribution function of �∗. For a 
given x, define 

�������� = �� + ���/�����(��)���(�).  

Similarly, ���(��)  can be computed using the same 
technique used in computing the ���(��∗) . The 
approximate 100(1-γ)% confidence interval of R is 
given by 

             (�������� �
�

�
�,�������� �1 −

�

�
�).            (22) 

 
4. Bayes estimation of R Using MCMC 

Recently, there is a vast amount of statistical 
literature on the MCMC methodology have appeared. 
The advantage of MCMC is that it gives not only a 
point estimate of the parameter, but also gives an 
interval estimation based on the final simulated 
empirical distribution. MCMC is essentially an iterative 
sampling algorithm, drawing values from the posterior 
distributions of the parameter in the model concerned. 
We consider the MCMC method to generate samples 
from the posterior distributions and then compute the 
Bayes estimates of R under lower record values from 
the EWD. A wide variety of MCMC schemes are 
available, and it can be difficult to choose among them. 
An important sub-class of MCMC methods is Gibbs 
sampling and more general Metropolis-Hastings (M-H) 

algorithm (Metropolis et al. (1953), Hastings (1970)). 
For more details about MCMC and the related 
methodologies, one can refer to Gentle (1998), Chen et 
al. (2000) and Robert and Casella (2004). 

This section describes Bayesian MCMC 
methods that have been used to estimate R based on 
lower record values from the EWD. The Bayesian 
approach is introduced and its computational 
implementation with MCMC algorithms is described. 
Gibbs sampling procedure and Metropolis--Hastings 
(M-H) Method are used to generate samples from the 
posterior density function and in order to compute the 
Bayes point estimates, we then construct the 
corresponding credible intervals based on the generated 
posterior samples, as well. 
    It is assumed that(�,�,�)have independent gamma 
priors with the pdf's 

��(�|��,
���) =      �

��
��

�(��)
����������    ��   ���

�                                 ��   ���,
� (23)   

��(�|��,
���) =         �

��
��

�(��)
����������    ��   ���

�                                 ��   ���,

�      (24) 

��(�|��,
���) =        �

��
��

�(��)
����������    ��   ���

�                                 ��   ���,

�      (25) 

where a₁, b₁, a₂, b₂, a₃ and b₃ are chosen to reflect 
prior knowledge about α, θ and β. Note that when 
�� = �� = 0, � = 1,2 and 3, it is corresponding to the 
case of non-informative priors. We assume that the 
parameters are mutually independent. The deduced 
posterior distribution is proportional to the product of 
the prior and the likelihood function given by 
 

�∗(�,�,�|����)� ∝ �(��������)�(������)�(������)

× 

Ψ���,��Ψ� ��,�� �
���� × 

���[�����(��(�),�)]���[�����(��(�),�)], 
                                                                        (26) 
where Ψ₁(x,α), Ψ₂(y,α) are given in (8)  and 

�����(�),�� = �����  and 

�����(�),�� = ����� ,                                  (27) 

��
∗(�|�,�,����)� ∝ �(��������)Ψ���,��Ψ� ��,�� × 

��������[�����(��(�),�)]���[�����(��(�),�). 
                                                                         (28) 
Similarly, the full posterior conditional  distribution for 
θ and β are given by 

��
∗(�|�,����)� ~�����(� + ��, �� − �����(�),��),   

                                                (29)  
��
∗(�|�,����)� ~�����(� + ��, �� − �����(�),��),  

                                                (30)  

where�����(�),�� and �����(�),��are given in (27). 
 It follows from Equations (29) and (30) that 

the samples of θ and β can be easily generated using 
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any gamma generating routine. However, in our case, 
the conditional posterior distribution of α in Equation 
(28) cannot be reduced analytically to well known 
distributions and therefore it is not possible to simplify 
it directly by standard methods, but its graph indicates 
that it is similar to the normal distribution. So, to 
generate random numbers from this distribution, we use 
the Metropolis-Hastings (M-H) method with normal 
proposed distribution. 

Therefore, the algorithm of Gibbs sampling is 
as follows 
Step 1: Start with an (α⁽⁰⁾=��) and set � = 1. 

Step2: Generate �(�) from 
�����(� + ��, �� − �����(�),�

(���)�.   

Step 3:Generate �(�) from  
Gamma(� + ��, �� − �����(�),�

(���)�). 
Step 4: Using M-H (see, Metropolis et al. (1953)), to 

generate �(�)  from (28) with�(�(���),��)  proposed 
distribution, where σ² is variances-covariances matrix. 
Step 5: Compute �(�) , �(�)  and �(�) , then deduce 

�(�) =
�(�)

�(�)��(�)
. 

Step 6: Set t = t+1. 
Step 7: Repeat steps 2-5 N times. 
Step 8: We obtain the Bayes MCMC point estimate of 
R  as 

        �(�|����) =
�

���
∑ �(�),�
�����                (31) 

where M  is the burn-in period (that is, a number of 
iterations before the stationary distribution is achieved), 
and posterior variance of R becomes 

��(�|�����) =
�

���
∑ (�(�)�
����� − ��(�|�����))�.   

                                                                          (32) 
Step 9: To compute the credible intervals of R, as it is 
well known, we take the quantiles of the sample as the 
endpoints of the interval. 
Order�(���) ,�(���) ,…,�(�)as �(�) , �(�), ...,�(���)  . 

Then the 100(1-γ)% symmetric credible interval is 

          ��
�
�

�
(���)�

,�
����

�

�
�(���)�

�.                  (33) 

Next, we consider the special case when the common 
shape parameter α is known. 
 
5. Estimation of R if α is known 

 In this section, we consider the estimation of 
R and the corresponding highest posterior density 
(HPD) intervals when α is known. Therefore, assume 
that ��(�), ��(�),…,��(�)  are the first lower record 

values observed from ���(�, �)  and ��(�),��(�), 

…,��(�)are the first lower record values observed from 

���(�, �), based on the samples we want to estimate 
R. Recent works on interval estimation of R are 
discussed in Shoukri et al. (2005), Baklizi (2008a; 
2008b) and Rezaeia et al. (2010). First, we will 
consider the MLE of R and its distributional properties. 

5.1 MLE of R 
      Based on section 2, it is clear that the MLE of R, 
say ��, will be 

                              �� =
��

�����
.                            (34) 

where 

                            �� =
�

�������
��

�(�)
�

�

,   and 

                            �� =
�

�������
��

�(�)
�

�

.              (35) 

Therefore 

                         �� =
� �������

���(�)
�

�

� ���(��)�� ���(��)
.         (36) 

To study the confidence interval of R, we need to study 
the distribution of ��   as well as the distributions of 

��and �� . Consider first�� =
�

�������
��

�(�)
�

�

, Arnold et al. 

(1998) obtained the probability density function (pdf) 
of ��as follows 
 

            ���(��) = �(��)
[� ���(�(��))]

���

(���)!
,        (37) 

under the ��(�, �) distribution 

���(��) =
�����

���

Γ(�)
����

�
.     

(1 − � ���
�
)���{−log (1 − ����

�
)}���, 

                                              �� > 0.            (38) 

Consequently, the (pdf) of �� = �� =
�

�������
��

�(�)
�

�

 is 

given by 

        ���(��) =
(��)�

�(�)��
��� �

�
��

�� ,  �� > 0.        (39) 

This is the inverted gamma distribution. Similarly, the 

(pdf) of �� = �� =
�

���(��)
 is given by 

       ���(��) =
(��)�

�(�)��
��� �

�
��

�� , �� > 0.        (40) 

To find the (pdf) of �� =
��

�����
=

�₁

�����
=

�

���₂/�₁
, 

consider the quotient Z₂/Z₁. Note that, by the properties 
of the inverted gamma distribution and its relation with 

the gamma distribution we have
� �

��
~ Gamma(�,1)and 

� �

��
~ Gamma(�,1).  Hence 

�� �

��
~���

�  and 
�� �

��
~���

� . 

Note that, by the independence of two random 

quantities, we have
�� �/����

���/����
~ ���,�� , 

hence
��

�₁
~ 

�

�
���,��, a scaled F distribution. It follows 

that the distribution of �� is that
�

��
�

�
���,��

.  Hence 

 
�

��
= 1 + �

�

�
− 1��(2�, 2�), then 

�~
�(2�, 2�)

�(2�,2�) + (
�

��
− 1)

. 
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The 100(1-γ)% confidence interval of � is given by 
 

         [
��/�(��,��)

��/�(��,��)�(
�

��
��)

,
����/�(��,��)

����/�(��,��)�(
�

��
��)

].    (41) 

 
5.2 Bayes estimation of R 

In this subsection, we will obtain the Bayes 
estimate of R under the assumption that the shape 
parameters θ and β are random variables. It is assumed 
that θ and β have independent gamma priors given in 
(24) and (25), respectively, with the parameters (a₂,b₂) 
and (a₃,b₃). The posterior pdf's of θ and β are given by 
(29) and (30) respectively. Since the priors θ and β are 
independent, then, using a standard transformation 
techniques and after some manipulations, the posterior 

(pdf) of � =
�

���
 will be 

��(�) = � �������(1 − �) ������/   

[�(�� − �����(�),�� + (1 − �)(��

− �����(�),��]
���������], 

                                            0 < � < 1,         (42) 
and 0 otherwise, 
where 

� =
Γ(� +� + �� + ��)

Γ(� + ��)Γ(� + ��)
× 

{�� − �����(�),��}
���� × 

                  {�� − �����(�),��}
����.            (43) 

There is no explicit expression for the 
posterior mean or median of (42). On the other hand, 
the posterior mode can be easily obtained as follows 

�

��
��(�) = 

{�����(1 − �) ����[2��(�� − ��) 
+�(2�� − 2�� − � ��� + ����) + ����]}/ 

[��(1 − � ) + ���]
�������, 

where 

�� = �� − �����(�),��, �� = �� − �����(�),��,  
�� = � + �� − 1  and �� = � + �� − 1 . Note that, for 

� ∈ (0,1),�
�

��
� ��(�)  = 0 has only two roots. Using 

the fact that lim�→�� �
�

��
� ��(�) > 0 and 

lim�→�� �
�

��
� ��(�) < 0 , it easily follows that the 

density function ��(�)  has a unique mode. The 
posterior mode can be obtained as the unique root, 
which lies between 0 and 1, of the following quadratic 
equation: 

2�²(�₂ − �₁) + �(2�₁ − 2�₂+ �₂�₁ 
                                  −�₁�₂) − �₁�₂ = 0      (44) 
Now, consider the following loss function: 

            �(�,�) = �
1      �� |� − � |> �,

0      �� |� − � |≤ �.
�            (45) 

It is known that the Bayes estimate with 
respect to the above loss function (45) is the mid point 
of the `modal interval' of length 2ε of the posterior 

distribution. Therefore, the posterior mode is an 
approximate Bayes estimator of R with respect to the 
above loss function when the constant ε is small 
enough. 

As mentioned above, the Bayes estimate of R 
under squared error loss cannot be computed 
analytically. Alternatively, using the approximate 
method of Lindley (1980), it can be easily seen that the 
approximate Bayes estimate of R, say������� relative to 

squared error loss function is 
�������

= �� �1 +
��������(� + �� − 1) − ��(�+�� − 1)�

���(� + �� − 1)(�+�� − 1)
�,  

                                                                        (46) 
where 

�� =
� + �� − 1

�� − �����(�),��
,   

�� =
������

�����(��(�),�)
and �� =

��

�����
.                    (47) 

For comparison purposes, we also compute a 
highest posterior density (HPD) interval of R . Based 
on the discussion of Soliman and Al-Aboud (2008), and 
due to the unimodality of the posterior distribution (42), 
the 100(1-γ)% HPD interval [��, ��] for R is given by 
solving simultaneously  the following nonlinear 
equations 

� ��(�|����
�)

��

��

= 1 − �    and  

              ��(��|����
�) = ��(��|����

�).           (48)  
 
We can employ Newton-Raphson iteration to solve the 
equations in (48) and hence the HPD interval is 
obtained. 
 
6. Illustrative example 

In this section, we will simulate 6 lower record 
values from the exponentiated Weibull (EWD(2,3)) and 
6 lower record values from the EWD(2,4).Therefore, 
������=0.4286. The data has been truncated after four 
decimal places as presented below. The x lower record 
values are  
      1.0186, 0.6453, 0.5815, 0.5814, 0.4749, 0.4480  
and the corresponding y lower record values are   
     1.6081, 1.2491, 0.8616, 0.8109, 0.7017, 0.6161. 
Now we consider two cases: 
Case (1), when α is unknown: 

Based on the above data, we plot the profile 
log-likelihood function of α in Fig. 1. It is an upside 
down function and it has a unique maximum. We 
obtain the MLE of α using the iterative procedure (18). 
We use the stopping criterion which states the iteration 
stops whenever two consecutive values are less than 
10⁻⁶, the iteration stops after 14 steps giving the MLE 
of ��= 2.5021. Now using (15) and (16), we obtain the 
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MLEs of ��= 2.8907 and ��= 4.4213 hence, by (20), �� = 
0.3953. The 95% confidence, credible intervals and 
corresponding length are reported in Table (1) using 
exact confidence interval (41), parametric percentile 
bootstrap methods and MCMC technique. 
 
 

 
Fig.1: The profile likelihood of α for     
           given data set presented above. 

 
Table(1): Two-sided 95 % confidence and credible intervals of R when α=2, θ=3 and β=4 with prior 0. 

Methods �� 95% CI Length �� 95% CI Length 

α is unknown α is known 
MLE 0.3953 (0.1663, 0.6818) 0.5155 0.4034 (0.1710, 0.6890) 0.5180 

Boot-p 0.4829 (0.2250, 0.7499) 0.5249 0.4933 (0.2330, 0.7497) 0.5168 
Boot-t 0.4896 (0.1624, 0.8635) 0.7011 0.4960 (0.1739, 0.8476) 0.6737 
Bayes 0.3868 (0.1529, 0.6602) 0.5074 0.4005 (0.1620, 0.6709) 0.5089 

 
Case (2), when α is known: 

 Let α=2. In this case, we obtain the MLEs of 
θ and β as, 3.5195 and 5.2060, respectively. Therefore, 
the MLE of R becomes ��= 0.4034. The corresponding 
95% confidence, credible intervals and corresponding 
length are also reported in Table (1) using MLE (41), 

parametric percentile bootstrap methods and MCMC 
technique. The posterior probability density function 
(42) of R for the given data set, is plotted in Fig. 2. 
The simulation number of R  and Histogram of R 
generated by MCMC are plotted in Figs 3-4. 

. 
 

 
Fig. 2: Posterior probability density of R for 
given   
            data set presented above. 

 
Fig. 3: Simulation number of R generated by     
            MCMC method. 
 

 
Fig.4: Histogram of R generated by MCMC method 
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7. Simulation results 
In this section, we will report some numerical 

experiments performed to evaluate the behavior of the 
proposed methods for different samples, different 
parameter values, and different hyper parameters. We 
consider two cases separately to draw inference on R, 
namely when (i) common shape parameter α is 
unknown (ii) common shape parameter α is known. In 
both cases we consider the different sample sizes (n and 
m), and different hyperparameters (a₁, b₁, a₂, b₂, a₃, 
b₃). In first case we take α=2, θ=1.5 and β=3 and in the 
second case we take α=2, θ=3 and β=2.5. Without loss 
of generality we take α=2 in both cases considered. All 
the results are based on 1000 replications. 

The first case (when α is unknown): From the 
sample, we estimated α using the iterative algorithm 
(18). We used the initial estimate to be 2 and the 
iterative process stops when the difference between the 

two consecutive iterates are less than 10⁻⁷. Once we 
have reached an estimate for α, we estimate θ and β by 
using (15) and (16) respectively. Finally, using (20), we 
obtain the MLE of R. To find the Bayes MCMC 
estimates, we used the non informative gamma priors 
for the three parameters (we call it prior 0). Non-
informative prior (a₁=b₁=a₂=b₂=a₃=b₃=0) provides 
prior distributions which are not proper. Informative 
priors, including prior 1, a₁=3, b₁=2, a₂ =2, b₂=1, a₃=2, 
b₃=1, and by using the previous fixed values of α, θ and 
β, are used as well. We have computed the Bayes 
estimates and 95% probability intervals based on 
10,000 MCMC samples and have discarded the first 
1000 values as `burn-in'. We give the average Bayes 
estimates, mean squared errors (MSEs), coverage 
percentages, and average probability interval lengths 
based on 1000 replications in Table 2. 

 
Table (2): Simulation results and estimation of the parameters when α=2, θ=1.5, β=3 using prior 0. 

    (n, m)            ������ 
MLE Bayes using MCMC 

Mean MSE Mean MSE Length Coverge 
(6, 6) 0.3333 0.3168 0.0286 0.3215 0.0271 0.5749 0.933 
(7, 6)  0.3545 0.0243 0.3478 0.0240 0.5502 0.927 
(8, 6)  0.3178 0.0221 0.3625 0.0211 0.5355 0.946 
(7, 7)  0.3497 0.0217 0.3189 0.0198 0.4923 0.934 
(8, 7)  0.3286 0.0196 0.3496 0.0186 0.4702 0.961 
(8, 8)  0.3301 0.0191 0.3521 0.0157 0.4431 0.932 
(9, 8)  0.3222 0.0173 0.3201 0.0136 0.4277 0.948 
(9, 9)  0.3554 0.0152 0.3399 0.0130 0.4235 0.940 

α=2, θ=1.5, β=3 using prior 1. 
(6, 6) 0.3333 0.3621 0.0252 0.3399 0.0229 0.5233 0.980 
(7, 6)  0.3418 0.0250 0.3621 0.0195 0.5147 0.943 
(8, 6)  0.3145 0.0231 0.3711 0.0193 0.5122 0.961 
(7, 7)  0.3522 0.0197 0.3523 0.0186 0.5076 0.936 
(8, 7)  0.3296 0.0187 0.3210 0.0182 0.5002 0.954 
(8, 8)  0.3199 0.0181 0.3355 0.0166 0.4836 0.971 
(9, 8)  0.2986 0.0159 0.3448 0.0141 0.4599 0.993 
(9, 9)  0.3644 0.0136 0.3099 0.0110 0.4431 0.969 

 
For the second case (when α is known), we 

obtain the estimates of R by using the ML method and 
Lindley's approximation approach. We have calculated 
the exact confidence intervals and HPD interval of R by 
using the same non informative prior (prior 0) and an 

informative prior, including (prior 1), we compute the 
average estimates of R, mean squared errors (MSEs), 
coverage percentages, and average probability interval 
lengths based on 1,000 replications. The results are 
given in Table 3. 

 
Table (3): Simulation results and estimation of the parameters when  α=2, θ=3, β=2.5 using prior 0. 
 
 (n,m)      ������ 

MLE Bayes using Lindely 
Mean MSE Length Coverge Mean MSE Length Coverge 

(6,6) 0.5455 0.5113 0.0286 0.4996 0.938 0.3215 0.0271 0.5749 0.933 
(7,6)  0.4975 0.0243 0.4870 0.936 0.3478 0.0240 0.5502 0.927 
(8,6)  0.4922 0.0221 0.4737 0.923 0.3625 0.0211 0.5355 0.946 
(7,7)  0.3497 0.0217 0.4709 0.933 0.3189 0.0198 0.4923 0.934 
(8,7)  0.3286 0.0196 0.4597 0.934 0.3496 0.0186 0.4702 0.961 
(8,8)  0.3301 0.0191 0.4467 0.951 0.3521 0.0157 0.4431 0.932 
(9,8)  0.3222 0.0173 0.4347 0.941 0.3201 0.0136 0.4277 0.948 
(9,9)  0.3554 0.0152 0.4214 0.942 0.3399 0.0130 0.4235 0.940 

                                           α=2, θ=3, β=2.5 using prior 1. 
(6, 6) 0.5455 0.3621 0.0252 0.4986 0.922 0.3399 0.0229 0.5233 0.980 
(7, 6)  0.3418 0.0250 0.4867 0.934 0.3621 0.0195 0.5147 0.943 
(8, 6)  0.3145 0.0231 0.4761 0.956 0.3711 0.0193 0.5122 0.961 
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(7, 7)  0.3522 0.0197 0.4735 0.940 0.3523 0.0186 0.5076 0.936 
(8, 7)  0.3296 0.0187 0.4579 0.932 0.3210 0.0182 0.5002 0.954 
(8, 8)  0.3199 0.0181 0.4481 0.945 0.3355 0.0166 0.4836 0.971 
(9, 8)  0.2986 0.0159 0.4330 0.930 0.3448 0.0141 0.4599 0.993 
(9, 9)  0.3644 0.0136 0.4271 0.945 0.3099   0.0110 0.4431 0.969 

 
8. Conclusions 

The purpose of this paper is to develop the 
classical and MCMC Bayesian analysis for R when 
both samples on X and Y are in the form of lower 
record values, observed from independent EW random 
variables with one different shape parameter. We 
considered the general case when all the parameters are 
unknown, and when the common shape parameter is 
known. In the first case the MCMC method provided 
an alternative method for parameters estimation of the 
EWD, and also, for obtaining both point and interval 
estimators of the stress-strength reliability model R. 
The results obtained hrerein show that MCMC is more 
flexible in comparing with the traditional methods such 
as MLE based on the set of lower record values. We 
hope that our investigation will be useful for 
researchers dealing with the kind of data considered in 
this paper. From the results, we observe the following: 
 (i) When the common shape parameter α is unknown, 
it is observed that the Bayes estimator using MCMC 
technique works quite well. We have used the MCMC 
sample to construct confidence intervals that works 
quite well. When the common shape parameter α is 
known we proposed a maximum likelihood estimators 
and Bayes estimators based on the approximate method 
of Lindley. The confidence interval based on the exact 
distribution of the MLE works very well. Also, we 
recommend using a highest posterior density (HPD) 
interval. 
 (ii) Tables 2-3 show that when m=n and m,n  increase 
then MSEs, and average confidence interval lengths, 
credible interval lengths of the MLEs and Bayes 
estimators decrease and the coverage percentages reach 
the nominal level in most cases. 
 (iii) From Tables 2 and 3, it is clear that the Bayes 
estimators based on informative priors (prior 1) 
perform, are much better than the Bayes estimators 
based on non informative priors (prior 0) or MLEs in 
terms of biases, MSEs, and lengths of credible 
intervals. 
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