
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 743

A Distance Learning System for Content-Based Lecture Retrieval

Guang-Ho Cha

Department of Computer Engineering, Seoul National University of Science and Technology, Republic of Korea
ghcha@snut.ac.kr

Abstract: Education and training are expected to change dramatically due to the combined impact of the Internet,
database, and multimedia technologies. However, the distance learning is often impeded by the lack of effective
tools and system to manage and retrieve the lecture contents effectively. This paper introduces a system that enables
remote users to access specific parts of interest from a large lecture database by contents. The system includes
several novel techniques to achieve the content-based lecture retrieval: (1) The XML(eXtensible Markup
Language)-based semistructured model not only to represent lecture contents but also to exchange them on the Web;
(2) The technique to build structural summaries, i.e., schemas, of XML lecture databases. The structural summaries
are useful for browsing the database structure, formulating queries, building indexes, and enabling query
optimization; (3) An index structure to speed up the search to find appropriate lecture contents.
[Cha G.-H. A Distance Learning System for Content-Based Lecture Retrieval. Life Sci J 2014;11(7):743-748]
(ISSN:1097-8135). http://www.lifesciencesite.com. 109

Keywords: Distance learning; lecture model; lecture browsing; lecture querying; lecture indexing;

1. Introduction

Education and training are expected to
change dramatically due to the combined impact of
the Internet, database, and multimedia technologies.
Besides the economic impact – online education
means less traveling, hence lower cost – the
expectation is that the educational process itself will
change radically. Video is the most effective medium
for providing remote and future students with a
lecture because of its expressive power that combines
images and voice. Moreover, the ability of recording
and subsequently playing back live instruction
sessions could significantly enhance the students’
learning effectiveness because it allows them to
review class lectures repeatedly. Unfortunately,
however, the benefit of video-based lecture is often
impeded by the fundamental difficulties with
information retrieval: if one is trying to locate
specific information on a video source, finding it can
be a process that is time consuming and tedious. In
addition, the contents of class lectures are diverse,
and the same course can be given over and over again
with different contents and structures by different
instructors. Thus, we cannot conform the lecture
content to a rigid, predefined schema. Three crucial
issues that need to be addressed are: (1) the
representation of lecture contents in a form that
facilitates retrieval and interaction; (2) the structural
summary of a lecture database that guides users to
browse and query the database; and (3) the indexing
scheme to expedite the search.

Browsing and querying in a lecture database
for distance learning should provide the same ease of
use as flipping through the pages of a book and
scanning the table-of-contents and index pages to get

ideas of the content quickly, and then gradually
focusing on particular chapters or sections of interest.
For a lecture database, this is not as straightforward
as browsing and querying in a book. We have to
identify the chapters, sections, and subsections of a
lecture, and create table-of-contents and index pages
for lecture, both structured and unstructured, so that
we can get an overview and know where to find
relevant contents.

The transformation of a simple lecture into a
valuable educational tool requires five steps. First, we
partition a lecture into individual lecture segments by
exploiting the hierarchical structure of the lecture. A
lecture segment consists of a set of lecture notes and
any contiguous portion of a video clip which
constitutes a digital video lecture. Each lecture
segment is associated with the system-wide unique
identifier. Second, we abstract the contents of lecture
segments with text descriptions, meaningful
attributes, and key images, and organize them into an
effective structure that facilitates retrieval and
interaction. Third, we need tools to aid the user for
browsing a lecture database and formulating queries.
Although it may be possible to manually browse a
small database, in general forming a meaningful
query is difficult without knowledge of the database
structure. Fourth, we index all useful objects
appearing in lecture segments to efficiently locate
specific lecture segments of interest. Finally, we need
query optimization techniques to reduce the search
space and expedite the search since there are
numerous query plans for each query.

In this paper, the XML-based semistructured
model is introduced for content-based lecture access.
It fully supports XML data and represents lecture

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 744

contents without rigid, fixed schema. Database
structure summarization, i.e., schema extraction,
technique for irregular lecture database is used to
guide users in data-base browsing and querying. An
index structure is presented to efficiently locate not
only a specific lecture segment but also a collection
of semantically related lecture segments.

2. Video Segmentation

While a video clip consists of a sequence of
frames, it is not meaningful to use the individual
frames as the units for video retrieval. Rather, it is
advantageous to identify meaningful segments of
video to serve as retrieval units. As defined in [3], the
fundamental unit of video production is a shot that
consists of a contiguous sequence of video frames.
While the video segmentation based on image
processing techniques automates the process of video
parsing, it has the following problems for distance
learning:

 For a video clip of a class lecture, there
can be no clear visual cue for shot change detection.
Therefore, video segmentation using shot change
detection algorithms would be difficult.

 Shots do not capture the underlying
semantic structure of a class lecture, based on which
the user may wish to browse and retrieve the video
lecture.

On the ground of above motives, we do not
pay special attention to the problem of the video
segmentation based on image processing. Rather, we
automatically extract descriptive text information
from the instructor’s lecture notes, and manually
describe the necessary semantic video units and their
contextual information. After that, the video lectures
are automatically indexed, converted to a Web-ready
format, and made available to end users through the
Internet.

A lecture is organized into presentation
slides (i.e., lecture notes) and video segments. Each
slide corresponds to a single page course note
assumed to be written in XML. Instructors lecture by
showing electronic course slides, and recording of
lectures is expected to capture the video of live
lecture sessions. In our work, we define a video shot
as the video segment synchronized with a single
slide. The synchronization of slides with video
segments can be easily made because instructors are
required to explicitly switch slides during live lecture
session. When students access a particular lecture in a
course, they see the presentation similar to Figure 1.
By allowing remote or future users to not just view
presentation slides but also to see and hear the
presenter, the instructor achieves a broader reach and
increased productivity and the audience gets a richer
experience that enables them to retain more

information and saves on travel costs. However, the
more important things we need for is to locate and
retrieve a particular piece of the video lecture because
watching the whole video is time consuming.

3. Lecture Database Model

Data modeling deals with the problem of how
to represent the data to facilitate users’ access. To the
best of our knowledge, there have been no efforts to
model the lecture database. Most of early research
effort has been devoted to the shot-based video
segmentation and each video shot is described using
text descriptions and cinematic attributes. For a video
clip of a class lecture, however, there can be no clear
visual cue for shot change detection. Therefore, video
segmentation using shot change detection algorithms
would be difficult. Moreover, shots do not capture
the underlying semantic structure of a class lecture.
On the ground of above motives, we extract
descriptive information from the instructor’s lecture
notes, and describe it with XML. After that, the
lectures are indexed and converted to a Web-ready
format.

To represent the descriptive information
extracted from the lecture notes, we adopt the
semistructured data model [1, 2, 6], specifically,
XML-based semistructured model. The motivation to
employ the semistructured model comes from the
need to provide the lecture content description with
flexibility and diversity. Because the lecture contents
are diverse and rich, we cannot conform the lecture
database to a rigid, predefined schema. Moreover, the
motivation to fully support XML data is to exchange
lecture data on the Internet. By semistructured data
we mean data that has no absolute schema fixed in
advance, and whose struc-ture may be irregular or
incomplete. Like in the standard model [1, 2, 6] for
semistructured data, a lecture database is thought of
as a labeled directed graph. For example, Figure 1

Figure 1. Online presentation window

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 745

depicts a portion of a lecture database containing
three class lectures (two for a database course and
one for a multimedia course). Each node corresponds
to an XML element and can have attributes depicted
as small circles in Figure 2. Our example database is
almost tree-structured because of the hierarchical
nature of the book for lecture even though the
semistructured model permits arbitrary graph-
structured databases. Each level of our example
lecture database represents the level of content
granularity. For example, we can assume that nodes 2
through 4 are in the level of book, nodes 5 through 10
are in the level of chapter, nodes 11 through 20 are in
the level of sec-tion, and so on.

Unlike the standard semistructured model,
our data model fully supports the XML data. In other
words, it allows us to associate attributes with graph
nodes (XML elements). In our data model we call the
nodes lecture objects (LOs) in which the video
segments and presentation slides for lecture are
associated. An LO can be viewed as a 6-tuple (PID,
OID, a set of video segments, a set of presentation
slides, a set of sub-elements, a set of attributes). We
should note that the elements and the attributes
attached to LO are not pre-fixed. Each LO has a
unique object identifier (OID), such as 1 to 23 in
Figure 1, and outgoing edges that correspond to its
sub-elements. Every LO belongs to a certain type and
the type is identified by a path identifier (PID). In our
model, a type is defined by a path on the extracted
schema graph, which will be described in the next
section. Labels are attached to the edges and they
serve as names for LOs or attributes. Our example
database in Figure 2 contains one root LO which
represents the Lecture database and contains three

sub-LOs, two Databases and one Multimedia.
Database LO 2 has three attribute-value pairs
describing its instructor, textbook, and references,
while Database LO 3 has two attributes prerequisite
and room. Unlike the standard semistructured model,
sub-LOs under an LO in our model are ordered to
reflect the timing sequence of the video segments
associated with them. We can see that the database
structure based on the semistructured model is
irregular since, for example, two Database objects
(LO 2 and LO 3) have different structures.

4. Summarizing Lecture Database

Two completely different types of lecture
retrieval requests can be expected from the end-user:
 Querying: The user retrieves particular lecture

objects for viewing or reuse.
 Browsing: The user traverses a lecture database

along the semantic links.
A query processor should respond to both

types of retrieval requests by providing the user with
query formulation tools for querying and optimal
starting points for browsing. When we model a
lecture retrieval request as an iterated sequence of
querying and browsing, each step should act as an
information filter reducing the search space and give
a more refined search space to the next step. In a
small database, although it may be possible to browse
the whole database, in general it is difficult and
tedious to browse a large database. It is reasonable to
pose a query at the start by using some attributes.
However, since our lecture database is based on the
XML-based semistructured model, i.e., it is
schemaless, it needs a tool that assists users in query
formulation by providing the information (i.e.,

Figure 2. An example lecture database (Some nodes are omitted and only a few values of attributes are shown)

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 746

schema) summarizing the database structure. The
schema allows users to browse and query easily
through the database. Also, it improves the system
performance greatly by enabling to take advantage of
indexes and query optimization.

Figure 3 shows the structural summary of the
lecture database given in Figure 2. A rectangle
corresponds to an XML element in the database, and
small black circles denote XML attributes in the
XML element. Every XML element of an original
database is described exactly once in the structural
summary, regardless of the number of times it
appears in that database. There is no XML element
that does not appear in the original database. From
the structural summary, a user can interactively query

and browse the graph-based database. Clicking on a
rectangle on the structural summary expands or
collapses LOs. The white rectangle indicates that the
LO has been expanded and the black rectangle
indicates that the LO has not. For example,
Database and Multimedia LOs have been
expanded, while Dynamic and Static LOs have not.

We develop a new technique to improve the
running time to build the structural summary of a
database. In our method, the structural summary does
not have any redundancy in nodes and edges in a
schema graph. We can best explain the difference
among our technique, Buneman et al.’s [2],
DataGuide [4], and Nestorov et al.’s [5]. Figure 4(a)
illustrates a database graph DB and 4(b) is our
summary of DB. Figures 4(c), 4(d), 4(e) show
Buneman et al.’s schema based on simulation, strong
DataGuide, and Nestorov et al.’s minimal perfect
typing, respectively. We compare the schemas by
their size. DataGuides require a powerset construct
over the underlying database, which in the worst case
can be of exponential cost. As you can see in Figure
4(d), elements 7 and 13 are replicated in nodes in the
DataGuide. The schema based on simulation
guarantees its size, that is, the size of the schema is at
most linear in that of the database. However, as we
can see in Figure 4(c), edge a outgoing from the same
node is replicated. Figure 4(e) also shows redundancy
in nodes and edges. On the other hand, our database
schema in Figure 4(b) does not have any redundancy
in nodes and edges. The compactness of our schema

Figure 3. Structural summary of the example

database in Figure 2

1

2 3 4 6 5

t
t t

t

7 8 9 10 11 12 13

a a a a a b b d c

t t
1

2 3 4 5 6

7 8 10 12 13 11 9

a b c d

1
t

2 3 4 5 6

7 8 10 12 13 11 9

a
b c d

7 13

t
1

2 3 4 5 6

7 13 11 9

a
a c d

8 10 12

b

 (c) schema by simulation (d) strong DataGuide

(a) a database graph (b) our schema

(e) Nestorov’s schema

Figure 4. Comparison of database schemas

1

2 6

8 10 12

4 3 4 5

t t t

7 13

3

9 11

a a c d

t

b

10

a a

8

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 747

results in efficiency in query evaluation as well as in
database summarization.

4.1 The Algorithm

We define some terminologies before
proceeding.
Definition 1. A data object is a node, i.e., LO, in a
database graph.
Definition 2. A target set for a path l is a set of data
objects that can be reached by traversing a path l in a
database graph.
Definition 3. A schema object is a node in the
schema graph that corresponds to a target set of a
path l in a database graph.

The schema extraction is easy to implement
with our algorithm. The root data object becomes a
root schema object. In a depth-first fashion, we
extract all child schema objects reachable by all
unique paths outgoing from a schema object. Each
time we encounter a new target set for a unique path l,
we create a new schema object s. If we reach a
schema object s via a path l and a data object o is
already included in the schema object s with a
different path m, rather than creating a new schema
object we instead add an edge l to the schema object s.
The algorithm is specified as follows.

Algorithm ExtractSchema(o)
// Input: root oid o of a database
// Output: database schema s
{

s : CreateSchemaObject();
Insert {o} to s;
RecursiveMake(s);

}

Algorithm RecursiveMake(s)
{

Let S be a set of current target sets under s;
Let Sj denote a certain target set included in S;
For each unique label li outgoing from s {

o : target set reachable by li;
If (o and Sj have data objects in common) {

Add an edge li from s to the schema object
corresponding to Sj;

Sj : o Sj;
}

 Else {
 s2: CreateSchemaObject();

 Insert s2 to s;
 Add an edge li from s to s2;

 RecursiveMake(s2);
}

}
}

5. Indexing

In this paper, we propose a new index
structure called P-index (path index) to index paths
on the database graph. The structure of the P-index is
based on the B+-tree. The internal node of the P-index
has the same structure as that of the B+-tree. The leaf
node has a format different from that of an internal
node. Each index entry in the leaf node has a form
shown in Figure 5. For path indexing, the P-tree
maintains in a leaf node the lecture objects on the
label paths from the qualifying objects to the root.
The P-index is somewhat similar to the class-
hierarchy indexing [7] used in object-oriented
databases. The class-hierarchy indexing maintains
one index on a common attribute for a hierarchy of
classes. On the other hand, there is no concept of a
common attribute in the irregular semistructured
database. Instead, the P-index maintains one index on
every path from the qualifying objects to the root.

6. Conclusions

We presented a new approach to the
distance learning based on the XML-based
semistructured model. By employing this model, we
could provide the lecture contents with flexibility and
diversity as well as exchange them conveniently on
the Internet. Based on this model, we described the
technique to extract schemas from a graph-based
database. In irregular semistructured database,
without schema, it is difficult to query and browse
the database, to construct indexes, and to perform
query optimization. An index structure for path query
was also introduced to speed up the search. Read-
intensive lecture database applications justify the
extensive use of index structures to speed up the
query processsing.

Acknowledgements:

This study was financially supported by
Seoul National University of Science and
Technology.

 Figure 5. An entry of a leaf node of the P-index

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 748

Corresponding Author:
Dr. Guang-Ho Cha
Department of Computer Engineering
Seoul National University of Science and
Technology, Seoul 139-743, Republic of Korea
E-mail: ghcha@snut.ac.kr

References
1. S. Abiteboul, "Querying Semistructured Data,"

Proc. of ICDT, pp. 1-18, 1997.
2. P. Buneman, "Semistructured Data," Proc. of

ACM PODS, pp. 117-121. 1997.
3. G. Davenport, T.A. Smith, and N. Pincever,

“Cinematic Primitives for Multimedia,” IEEE
Computer Graphics and Applications, pp. 67-74,
1991.

4. R. Goldman and J. Widom, “DataGuides:
Enabling Query Formulation and Optimization
in Semistructured Databases,” Proc. of the
International Conference on Very Large Data
Bases, pp. 436-445, 1997.

5. S. Nestorov, S. Abiteboul, R. Motwani,
“Extracting Schema from Semistructured Data,”
Proc. of ACM SIGMOD, pp. 295-306, 1998.

6. Y. Papakonstantinou, H. Garcia-Molina, and J.
Widom, "Object Exchange Across
Heterogeneous Information Sources," Proc. of
ICDE, pp. 251-260. 1995.

7. W. Kim, K.-C. Kim, and A. Dale, "Indexing
Techniques for Object-Oriented Databases,"
Object-Oriented Concepts, Databases, and
Applications, pp. 372-394, ACM Press, 1989.

