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Abstract: In virtual machine environments, latency-sensitive tasks are difficult to support in a timely manner, 
especially when many domains have boosted priorities. Our approach considers where multiple domains compete 
CPU resource with several I/O intensive domains. This results in increased latency for time-sensitive domains, 
because the credit scheduler is not aware of the urgency of tasks within different guest domains. In this paper, we 
present a low-latency scheduling mechanism that uses VCPU shaping. The key idea of this paper is to adapt VCPU 
characteristics into a scheduling policy by investigating and measuring the behavior of each domain. Our experiment 
results show that the proposed method effectively allocates CPU resources for low-latency tasks.  
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1. Introduction 

In this paper, our key idea is to support a 
real-time framework for a Xen virtual machine. A 
virtual machine is a software implementation of a 
machine that executes programs like a physical 
machine and is separated into two categories: a 
system virtual machine and a process virtual 
machine. The system virtual machine provides a 
system platform that supports the execution of the 
complete operating system. In contrast, the process 
virtual machine is designed to run a single program, 
which means that it supports a single process. 
Traditional operating systems should be executed on 
a hardware platform; however, in virtualization 
environments, multiple operating systems can be 
consolidated into one hardware platform. Therefore, 
several operating systems running on a virtual 
machine must share hardware resources. 

Virtualization is an emerging technology 
that provides scaling solutions to computer systems 
efficiently and reduces management costs by running 
multiple operating systems simultaneously on a 
single computer [1][2]. To take advantage of this 
resource-saving potential, considerable effort has 
been made to exploit virtualization technology in a 
realtime system. A variety of possible requirements 
must be satisfied when handling realtime 
applications, such as streaming servers, telephony 
servers, and distributed systems [3]. However, 
providing realtime guarantees is not easy because of 
the difficulties in accurately predicting the CPU 
requirements of each domain. Many research groups 
are actively working on supporting latency-sensitive 
workloads in a virtualization system, and many 
studies on virtual machines are broadly focused on 
improving I/O performance, network response, CPU 

allocation, resource monitoring, and realtime 
guarantee [4][5]. 

In this paper, we present a virtual machine 
scheduling scheme using a VCPU shaping 
mechanism. In particular, our approach considers 
where multiple domains compete CPU resource with 
several I/O intensive domains. This results in 
increased latency for time-sensitive domains, because 
the credit scheduler is not aware of the urgency of 
tasks within different guest domains. The proposed 
system can give realtime priority to a latency-
sensitive domain by predicting the resource activity 
of the VCPU. Our mechanism is based on a VCPU 
shaping scheme that predicts the type of each VCPU 
running on each physical CPU. 

The rest of this paper is organized as 
follows. The next section presents the related works. 
In section 3, we will discuss the design and 
implementation of the proposed system. Section 4 
explains the experimental results. In section 5, we 
will conclude the paper and present future works. 

 
2. Related Works 

Intensive research has been carried out to 
support hard real-time guarantees for embedded 
hypervisors. Examples of these approaches have been 
proposed by many companies, such as OK Labs 
(Microkernel), Real-time Systems (RTS Real-Time 
Embedded Hypervisor) and LynuxWorks (small 
separation kernel). The characteristics of an 
embedded hypervisor are its small size, fast type-1 
hypervisor with support for multiple VMs, and low-
latency communication between system components. 
Typical real-time solutions associated with these 
approaches use a fixed hardware partition technique 
and divide non-real-time parts and real-time parts for 



Life Science Journal 2014;11(7)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  722

over-all hardware resources, including the processor, 
disk, and memory. The real- time part supports 
servicing an application’s real-time needs and the 
non-real-time part provides functionalities for 
running a general-purpose operating system (GPOS), 
such as Linux or Microsoft Windows. With these 
dual deployment strategies, the real-time part 
processes real-time workloads and the GPOS part is 
responsible for data processing, displaying, and non-
real-time workloads. In this approach, supporting soft 
real-time applications of the type that are widely used 
in a GPOS is difficult because the programs should 
be rewritten using the API of a real-time hypervisor. 
Even more unfortunate problems arise when we deal 
with mixed workloads that are latency-sensitive, 
those that come in a batch, and those that are highly 
interactive and occur in real time. 

There are other approaches for handling 
real-time workloads in virtualization environments by 
providing real-time scheduling in a hypervisor. Lee et 
al[4] suggest a soft real-time scheduler for the Xen 
hypervisor by modifying a Credit scheduler to 
calculate scheduling priorities dynamically. They 
define a laxity value that provides an estimate of 
when tasks need to be scheduled next. When a VCPU 
of a real-time domain is ready, it is inserted where its 
deadline is expected to be met. This approach allows 
low-latency tasks to be executed in a timely manner. 
However, it too cannot guarantee real-time workloads 
because it does not provide an admission control 
mechanism. Therefore, if the workloads increase, it 
cannot meet the deadline of real-time tasks.  

“Vsched,” proposed by Lin and Dinda[5], is 
a user-level scheduling tool using a periodic real-time 
scheduling model. Vsched is implemented for a type-
II virtual machine monitor that does not run directly 
on the hardware but rather on top of a host operating 
system. Therefore, the domains are executed as a 
process inside the host operating system. Vsched 
provides an Earliest Deadline First (EDF) scheduler 
using the SCHED FIFO scheduling class in Linux. 
Their approach is quite straightforward to describe 
real-time workloads because a domain is regarded as 
a process. However, to support real-time workloads 
accurately, the host operating system should support 
real-time characteristics, such as fine-grained 
preemption mechanisms, prevention of priority 
inversion, and fast interrupt handling, among others.  

 
3. System Overview 

Virtualization allows multiple commodity 
operating systems to share a single physical machine. 
Efficient resource allocation on virtual machines is a 
key issue in enhancing virtual machine performance. 
Unfortunately, the complexity of virtualization 
systems presents additional resource management 

challenges. To meet the requirements for each 
domain on a virtual machine, the VMM needs to 
observe the exact behavior of each VCPU and 
hardware resources and allocate sufficient resources 
in a timely manner. Determining scheduler 
parameters is non-trivial because it is hard to 
characterize a VM’s behavior. We propose a 
monitoring tool that analyzes scheduling information 
from Xentrace[6]. Our goal is to improve response 
time for low-latency domains considering VCPU 
characteristics. To achieve this goal, we designed and 
implemented monitoring tools and a VCPU shaping 
mechanism to predict the CPU usage of each domain.  

The VMM must support both CPU-intensive 
and I/O-intensive domains. Although Xen supports 
CPU-intensive domains fairly well, it is not as 
efficient at supporting I/O domains because they 
require low latency, high bandwidth and it has to 
provide isolated execution regardless of the workload 
effects of the other domains.  

For these reasons, the Xen scheduler needs 
to distinguish the I/O domains because they require a 
different resource allocation approach. There are 
several pieces of evidence that help to distinguish an 
I/O domain. I/O domains tend to block quickly. 
When a domain requests I/O operations, the Xen 
scheduler blocks this domain to process I/O request 
on Dom0. The I/O domain consumes a short period 
of CPU time—less than an average of 10 ms. 
Determining the shape of the virtual machine is 
important in virtualization environments. The key to 
determining a domain’s performance is a domain 
scheduling mechanism. A hypervisor allocates server 
resources to domains according to the scheduling 
mechanism or user preference. In this study, we 
closely examine a hypervisor scheduler. We detail 
domain scheduling information in terms of how to 
schedule various workloads. Using this information 
can help load-balancing or controlling CPU 
allocation. 

To show the scheduling latency over the xen 
credit scheduler, we measured packet arrival latency 
at time sensitive domain using ping. Five domains are 
running over the Xen : Dom0, domain 1 for latency-
sensitive I/O domain, domain 2 to 4 for CPU-
intensive task, that is calculating MD-5 hash for 
every 10 ms(30 \% CPU load). Then, external server 
receives the ping from latency-sensitive I/O domain 
(ping interval is fixed to 10ms). Our server has the 2 
physical cores so the domains' VCPUs are migrating 
across the physical cores by the credit load balancing. 

Figure 1 shows the cumulative latency 
distribution for 3,000 packets of arrival time on the 
external server from the guest domain. When CPU- 
intensive domains block and wake periodically, their 
scheduling priority is BOOST. In this worst case, the 



Life Science Journal 2014;11(7)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  723

latency-intensive domains have to contend with the 
CPU-intensive domains. As CPU utilization by the 
multi-boosted domains increases, the latency for 
time-sensitive domains increases. 

This delay is caused not only by delayed 
domains but also by Dom0. Figure 1 presents detailed 
examples of delay caused by multi-BOOST. Here, 
time sensitive domains are about to send a packet to 
the external server. Time sensitive domains are 
delayed by boosted domains. Also, Dom0 is delayed 
by other boosted domains. In this multi-BOOST 
situation, to improve I/O latency, Dom0 has to be 
compartmentalized in to other boosted domains. 
 

 
Figure 1. Multi-boost problem in Xen virtual 

machine 
 

To shape the characteristics of each domain, 
we have to guess whether a VCPU is I/O-intensive or 
CPU-intensive by analyzing the behavior of each 
domain. Generally, I/O-intensive domains are quickly 
blocked by I/O requests from tasks in a guest 
operating system. When a domain has I/O operations, 
the Xen scheduler blocks this domain and gives 
control to domain0 to process I/O requests from guest 
domains; therefore, each domain consumes very little 
CPU time. Predicting the characteristics of each 
domain is important in a virtualization environment, 
because the VMM (Virtual Machine Monitor) 
scheduler can exploit VCPU information very 
effectively, if necessary. In this paper, we adapt the 
VCPU shaping information for predicting latency-
sensitive workloads in a domain. 

To shape each VCPU type, we measured the 
scheduling count, which means the number of times 
that the VCPU scheduled a task and how much CPU 
time the task consumed. Further, we collected the 
scheduling count for each priority (UNDER, OVER, 
and BOOST) during the given timespan. For 
example, CPU-intensive domains generally consume 
the allotted CPU cycles with UNDER priority tasks, 
I/O-intensive domains frequently switch to the 
BOOST priority and consume CPU cycles 
intensively. 
 

 
Figure 2. System architecture for supporting low 

latency task scheduling 
 

Figure 2 shows the overall architecture of 
the proposed system, which is composed of three 
parts. The monitor module in a domain determines 
whether realtime tasks miss their deadline. If a 
deadline is missed, the monitor module of the VM 
sends an urgent message to the VMM scheduler 
through the hypercall interface. In this work, we 
introduced a new priority RT (RealTime) to denote 
the highest priority and created an additional 
hypercall interface that requests RT priority from the 
VMM scheduler.  

In this paper, we assume that Multi-Boost is 
an abnormal state where lots of I/O requests and 
BOOST priority tasks dominate overall system 
resources. We assume that the Multi-Boost situation 
occurs when many BOOST priority domains exist 
and when BOOST priority domains use more CPU 
cycles than UNDER- and OVER priority domains. In 
these situations, latency-sensitive domains miss the 
deadlines of tasks. To overcome this situation, we 
divide the system state into two states, normal and 
abnormal state, respectively. We protect latency-
sensitive workloads from general non-realtime 
workloads using the RT priority. When an urgent 
message is received, change_rt hypercall is generated 
for the scheduler to change the priority of the domain 
to RT in order to avoid resource competition with 
BOOST priority domains.  

Finally, in hypervisor, scheduler check 
whether the system is normal state or abnormal state 
by using VCPU Shaper. VCPU Shaper specifies 
domains into two categories, CPU-intensive domain 
and I/O-intensive domain. If there are lots of I/O-
intensive domains with heavy CPU consumption, 
then low-latency tasks are turn to realtime domain. 
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With this approach, we can achieve low latency task 
scheduling in virtual machine. 
 
4. Experiment Results  

In this experiment, we made a various 
experiments to draw all the aspects of the proposed 
system capabilities. Table 1 shows experiment 
environment including hardware and software 
configurations. 

 
Table 1. Experiment 

Environment

 
 
Our hardware platform has quad core 

processor and can be extended to 8 cores logically 
using hyper-threading. The software platform is 
based on CentOS Linux kernel that is widely used in 
Xen virtualization. We installed 12 domains on Xen 
hypervisor and allocated 400MByte memory for each 
domain. To conduct the experiment, we created 1 
domain0 and 10 guest domains to generate CPU, disk 
I/O, and network activity. We also launched three 
latency-sensitive domains with periodic realtime 
tasks; namely, a CPU-intensive domain and a disk-
intensive domain. The CPU-intensive domain 
periodically calls an MD5 hash function, the disk-
intensive domain processes disk I/O operations.  

Figure 3-(a) shows the runtime of each 
priority when the Multi-Boost problem occurred 
under CPU-intensive workloads. However, in that 
situation, the overall CPU runtime was dominated by 
UNDER priority tasks. Figure 3-(b) shows the results 
under disk-intensive. In Figure 3-(a), latency-
sensitive workloads failed to meet their deadline, due 
to the excessive number of BOOST priority domains. 
Even though CPU consumption was fairly small, 
CPU switching was very frequent, and this caused 
realtime tasks to miss their deadlines. In Figure 3-(b), 
I/O workloads caused frequent CPU switching 
between VCPUs, and most domains remained in 
BOOST priority. Note that the CPU consumption of 
BOOST priority tasks is very high compared with the 
CPU-intensive case. 

 

 
Figure 3. Experiment result of latency sensitive 

domains and non-realtime domains 
 
5. Conclusion  

In this work, we propose a practical 
scheduling mechanism for supporting latency-
sensitive guest domains using a realtime priority 
approach. To support realtime guarantees for tasks 
running on guest domains, both the guest domain and 
the VMM must have realtime capabilities. To achieve 
this goal, we adapted the VCPU shaping mechanism 
that predicts the whether the behavior of a VCPU in 
the domain is CPU-intensive or I/O-intensive. We 
modified the credit scheduler and extended several 
modules to support latency-sensitive domains. With 
this approach, we can guarantee the latency for 
realtime workloads while satisfactorily handling non-
realtime workloads. 
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