
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 721

Low Latency Task Scheduling Mechanism on Xen Virtual Machines

Young Jun Yoo1, Jin Kim1, Sun Jung Kim2, Young Woong Ko1

1. Department of Computer Engineering, Hallym University, Chuncheon , Korea
2. Department of Ubiquitous Computing, Hallym University, Chuncheon , Korea

{willow72, jinkim, sunkim, yuko}@hallym.ac.kr; yuko@hallym.ac.kr

Abstract: In virtual machine environments, latency-sensitive tasks are difficult to support in a timely manner,
especially when many domains have boosted priorities. Our approach considers where multiple domains compete
CPU resource with several I/O intensive domains. This results in increased latency for time-sensitive domains,
because the credit scheduler is not aware of the urgency of tasks within different guest domains. In this paper, we
present a low-latency scheduling mechanism that uses VCPU shaping. The key idea of this paper is to adapt VCPU
characteristics into a scheduling policy by investigating and measuring the behavior of each domain. Our experiment
results show that the proposed method effectively allocates CPU resources for low-latency tasks.
[Young Jun Yoo, Jin Kim, Sun Jung Kim, Young Woong Ko. Low Latency Task Scheduling Mechanism on Xen
Virtual Machines. Life Sci J 2014;11(7):721-725] (ISSN:1097-8135). http://www.lifesciencesite.com. 105

Keywords: Xen; realtime; scheduler; Multi-Boost; VCPU

1. Introduction

In this paper, our key idea is to support a
real-time framework for a Xen virtual machine. A
virtual machine is a software implementation of a
machine that executes programs like a physical
machine and is separated into two categories: a
system virtual machine and a process virtual
machine. The system virtual machine provides a
system platform that supports the execution of the
complete operating system. In contrast, the process
virtual machine is designed to run a single program,
which means that it supports a single process.
Traditional operating systems should be executed on
a hardware platform; however, in virtualization
environments, multiple operating systems can be
consolidated into one hardware platform. Therefore,
several operating systems running on a virtual
machine must share hardware resources.

Virtualization is an emerging technology
that provides scaling solutions to computer systems
efficiently and reduces management costs by running
multiple operating systems simultaneously on a
single computer [1][2]. To take advantage of this
resource-saving potential, considerable effort has
been made to exploit virtualization technology in a
realtime system. A variety of possible requirements
must be satisfied when handling realtime
applications, such as streaming servers, telephony
servers, and distributed systems [3]. However,
providing realtime guarantees is not easy because of
the difficulties in accurately predicting the CPU
requirements of each domain. Many research groups
are actively working on supporting latency-sensitive
workloads in a virtualization system, and many
studies on virtual machines are broadly focused on
improving I/O performance, network response, CPU

allocation, resource monitoring, and realtime
guarantee [4][5].

In this paper, we present a virtual machine
scheduling scheme using a VCPU shaping
mechanism. In particular, our approach considers
where multiple domains compete CPU resource with
several I/O intensive domains. This results in
increased latency for time-sensitive domains, because
the credit scheduler is not aware of the urgency of
tasks within different guest domains. The proposed
system can give realtime priority to a latency-
sensitive domain by predicting the resource activity
of the VCPU. Our mechanism is based on a VCPU
shaping scheme that predicts the type of each VCPU
running on each physical CPU.

The rest of this paper is organized as
follows. The next section presents the related works.
In section 3, we will discuss the design and
implementation of the proposed system. Section 4
explains the experimental results. In section 5, we
will conclude the paper and present future works.

2. Related Works

Intensive research has been carried out to
support hard real-time guarantees for embedded
hypervisors. Examples of these approaches have been
proposed by many companies, such as OK Labs
(Microkernel), Real-time Systems (RTS Real-Time
Embedded Hypervisor) and LynuxWorks (small
separation kernel). The characteristics of an
embedded hypervisor are its small size, fast type-1
hypervisor with support for multiple VMs, and low-
latency communication between system components.
Typical real-time solutions associated with these
approaches use a fixed hardware partition technique
and divide non-real-time parts and real-time parts for

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 722

over-all hardware resources, including the processor,
disk, and memory. The real- time part supports
servicing an application’s real-time needs and the
non-real-time part provides functionalities for
running a general-purpose operating system (GPOS),
such as Linux or Microsoft Windows. With these
dual deployment strategies, the real-time part
processes real-time workloads and the GPOS part is
responsible for data processing, displaying, and non-
real-time workloads. In this approach, supporting soft
real-time applications of the type that are widely used
in a GPOS is difficult because the programs should
be rewritten using the API of a real-time hypervisor.
Even more unfortunate problems arise when we deal
with mixed workloads that are latency-sensitive,
those that come in a batch, and those that are highly
interactive and occur in real time.

There are other approaches for handling
real-time workloads in virtualization environments by
providing real-time scheduling in a hypervisor. Lee et
al[4] suggest a soft real-time scheduler for the Xen
hypervisor by modifying a Credit scheduler to
calculate scheduling priorities dynamically. They
define a laxity value that provides an estimate of
when tasks need to be scheduled next. When a VCPU
of a real-time domain is ready, it is inserted where its
deadline is expected to be met. This approach allows
low-latency tasks to be executed in a timely manner.
However, it too cannot guarantee real-time workloads
because it does not provide an admission control
mechanism. Therefore, if the workloads increase, it
cannot meet the deadline of real-time tasks.

“Vsched,” proposed by Lin and Dinda[5], is
a user-level scheduling tool using a periodic real-time
scheduling model. Vsched is implemented for a type-
II virtual machine monitor that does not run directly
on the hardware but rather on top of a host operating
system. Therefore, the domains are executed as a
process inside the host operating system. Vsched
provides an Earliest Deadline First (EDF) scheduler
using the SCHED FIFO scheduling class in Linux.
Their approach is quite straightforward to describe
real-time workloads because a domain is regarded as
a process. However, to support real-time workloads
accurately, the host operating system should support
real-time characteristics, such as fine-grained
preemption mechanisms, prevention of priority
inversion, and fast interrupt handling, among others.

3. System Overview

Virtualization allows multiple commodity
operating systems to share a single physical machine.
Efficient resource allocation on virtual machines is a
key issue in enhancing virtual machine performance.
Unfortunately, the complexity of virtualization
systems presents additional resource management

challenges. To meet the requirements for each
domain on a virtual machine, the VMM needs to
observe the exact behavior of each VCPU and
hardware resources and allocate sufficient resources
in a timely manner. Determining scheduler
parameters is non-trivial because it is hard to
characterize a VM’s behavior. We propose a
monitoring tool that analyzes scheduling information
from Xentrace[6]. Our goal is to improve response
time for low-latency domains considering VCPU
characteristics. To achieve this goal, we designed and
implemented monitoring tools and a VCPU shaping
mechanism to predict the CPU usage of each domain.

The VMM must support both CPU-intensive
and I/O-intensive domains. Although Xen supports
CPU-intensive domains fairly well, it is not as
efficient at supporting I/O domains because they
require low latency, high bandwidth and it has to
provide isolated execution regardless of the workload
effects of the other domains.

For these reasons, the Xen scheduler needs
to distinguish the I/O domains because they require a
different resource allocation approach. There are
several pieces of evidence that help to distinguish an
I/O domain. I/O domains tend to block quickly.
When a domain requests I/O operations, the Xen
scheduler blocks this domain to process I/O request
on Dom0. The I/O domain consumes a short period
of CPU time—less than an average of 10 ms.
Determining the shape of the virtual machine is
important in virtualization environments. The key to
determining a domain’s performance is a domain
scheduling mechanism. A hypervisor allocates server
resources to domains according to the scheduling
mechanism or user preference. In this study, we
closely examine a hypervisor scheduler. We detail
domain scheduling information in terms of how to
schedule various workloads. Using this information
can help load-balancing or controlling CPU
allocation.

To show the scheduling latency over the xen
credit scheduler, we measured packet arrival latency
at time sensitive domain using ping. Five domains are
running over the Xen : Dom0, domain 1 for latency-
sensitive I/O domain, domain 2 to 4 for CPU-
intensive task, that is calculating MD-5 hash for
every 10 ms(30 \% CPU load). Then, external server
receives the ping from latency-sensitive I/O domain
(ping interval is fixed to 10ms). Our server has the 2
physical cores so the domains' VCPUs are migrating
across the physical cores by the credit load balancing.

Figure 1 shows the cumulative latency
distribution for 3,000 packets of arrival time on the
external server from the guest domain. When CPU-
intensive domains block and wake periodically, their
scheduling priority is BOOST. In this worst case, the

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 723

latency-intensive domains have to contend with the
CPU-intensive domains. As CPU utilization by the
multi-boosted domains increases, the latency for
time-sensitive domains increases.

This delay is caused not only by delayed
domains but also by Dom0. Figure 1 presents detailed
examples of delay caused by multi-BOOST. Here,
time sensitive domains are about to send a packet to
the external server. Time sensitive domains are
delayed by boosted domains. Also, Dom0 is delayed
by other boosted domains. In this multi-BOOST
situation, to improve I/O latency, Dom0 has to be
compartmentalized in to other boosted domains.

Figure 1. Multi-boost problem in Xen virtual

machine

To shape the characteristics of each domain,
we have to guess whether a VCPU is I/O-intensive or
CPU-intensive by analyzing the behavior of each
domain. Generally, I/O-intensive domains are quickly
blocked by I/O requests from tasks in a guest
operating system. When a domain has I/O operations,
the Xen scheduler blocks this domain and gives
control to domain0 to process I/O requests from guest
domains; therefore, each domain consumes very little
CPU time. Predicting the characteristics of each
domain is important in a virtualization environment,
because the VMM (Virtual Machine Monitor)
scheduler can exploit VCPU information very
effectively, if necessary. In this paper, we adapt the
VCPU shaping information for predicting latency-
sensitive workloads in a domain.

To shape each VCPU type, we measured the
scheduling count, which means the number of times
that the VCPU scheduled a task and how much CPU
time the task consumed. Further, we collected the
scheduling count for each priority (UNDER, OVER,
and BOOST) during the given timespan. For
example, CPU-intensive domains generally consume
the allotted CPU cycles with UNDER priority tasks,
I/O-intensive domains frequently switch to the
BOOST priority and consume CPU cycles
intensively.

Figure 2. System architecture for supporting low

latency task scheduling

Figure 2 shows the overall architecture of
the proposed system, which is composed of three
parts. The monitor module in a domain determines
whether realtime tasks miss their deadline. If a
deadline is missed, the monitor module of the VM
sends an urgent message to the VMM scheduler
through the hypercall interface. In this work, we
introduced a new priority RT (RealTime) to denote
the highest priority and created an additional
hypercall interface that requests RT priority from the
VMM scheduler.

In this paper, we assume that Multi-Boost is
an abnormal state where lots of I/O requests and
BOOST priority tasks dominate overall system
resources. We assume that the Multi-Boost situation
occurs when many BOOST priority domains exist
and when BOOST priority domains use more CPU
cycles than UNDER- and OVER priority domains. In
these situations, latency-sensitive domains miss the
deadlines of tasks. To overcome this situation, we
divide the system state into two states, normal and
abnormal state, respectively. We protect latency-
sensitive workloads from general non-realtime
workloads using the RT priority. When an urgent
message is received, change_rt hypercall is generated
for the scheduler to change the priority of the domain
to RT in order to avoid resource competition with
BOOST priority domains.

Finally, in hypervisor, scheduler check
whether the system is normal state or abnormal state
by using VCPU Shaper. VCPU Shaper specifies
domains into two categories, CPU-intensive domain
and I/O-intensive domain. If there are lots of I/O-
intensive domains with heavy CPU consumption,
then low-latency tasks are turn to realtime domain.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 724

With this approach, we can achieve low latency task
scheduling in virtual machine.

4. Experiment Results

In this experiment, we made a various
experiments to draw all the aspects of the proposed
system capabilities. Table 1 shows experiment
environment including hardware and software
configurations.

Table 1. Experiment

Environment

Our hardware platform has quad core

processor and can be extended to 8 cores logically
using hyper-threading. The software platform is
based on CentOS Linux kernel that is widely used in
Xen virtualization. We installed 12 domains on Xen
hypervisor and allocated 400MByte memory for each
domain. To conduct the experiment, we created 1
domain0 and 10 guest domains to generate CPU, disk
I/O, and network activity. We also launched three
latency-sensitive domains with periodic realtime
tasks; namely, a CPU-intensive domain and a disk-
intensive domain. The CPU-intensive domain
periodically calls an MD5 hash function, the disk-
intensive domain processes disk I/O operations.

Figure 3-(a) shows the runtime of each
priority when the Multi-Boost problem occurred
under CPU-intensive workloads. However, in that
situation, the overall CPU runtime was dominated by
UNDER priority tasks. Figure 3-(b) shows the results
under disk-intensive. In Figure 3-(a), latency-
sensitive workloads failed to meet their deadline, due
to the excessive number of BOOST priority domains.
Even though CPU consumption was fairly small,
CPU switching was very frequent, and this caused
realtime tasks to miss their deadlines. In Figure 3-(b),
I/O workloads caused frequent CPU switching
between VCPUs, and most domains remained in
BOOST priority. Note that the CPU consumption of
BOOST priority tasks is very high compared with the
CPU-intensive case.

Figure 3. Experiment result of latency sensitive

domains and non-realtime domains

5. Conclusion

In this work, we propose a practical
scheduling mechanism for supporting latency-
sensitive guest domains using a realtime priority
approach. To support realtime guarantees for tasks
running on guest domains, both the guest domain and
the VMM must have realtime capabilities. To achieve
this goal, we adapted the VCPU shaping mechanism
that predicts the whether the behavior of a VCPU in
the domain is CPU-intensive or I/O-intensive. We
modified the credit scheduler and extended several
modules to support latency-sensitive domains. With
this approach, we can guarantee the latency for
realtime workloads while satisfactorily handling non-
realtime workloads.

Acknowledgements:
This research was supported by Basic Science
Research Program through the NRF funded by the
MEST(.2012R1A1A2044694)

Corresponding Author:
Dr. Young Woong Ko
Department of Computer Engineering
Hallym University
Chuncheon, Gangwondo 200702, South Korea
E-mail: yuko@hallym.ac.kr

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 725

References
1. Barham, P. Dragovic, B. Fraser, K. Hand, S.

Harris, T. Ho, A. Neugebauer, R. Pratt, I. and
Warfield, A., Xen and the art of
virtualization,ACM SIGOPS Operating Systems
Review, 2003:37(5):164-77.

2. Praveen G, V., Analysis of Performance in the
Virtual Machines Environment, J. Advanced
Science and Technology, 2011;32:53-64.

3. Gernot Heiser., The role of virtualization in
embedded systems. In IIES ’08: Proceedings of
the 1st workshop on Isolation and integration in
embedded systems, 2008;11–16

4. Lee, M. and Krishnakumar, AS and Krishnan, P.
and Singh, N. and Yajnik, S., Supporting soft
realtime tasks in the xen hypervisor, ACM
Sigplan Notices, 2010;45(7):97-108.

5. Lin, B. and Dinda, P.A., Vsched: Mixing batch
and interactive virtual machines using periodic
realtime scheduling, Proceedings of the 2005
ACM/IEEE conference on Supercomputing,
2005:8-2

6. A. Menon, J. R. Santos, Y. Turner, G.
Janakiraman, and W. Zwaenepoel., Diagnosing
Performance Overheads in the Xen Virtual
Machine Environment. In 1st ACM/USENIX
VEE, 2005.

5/26/2014

