
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 716

Adaptive Process Management System through Biological Web Log Mining

Heung Ki Lee 1, Jaehee Jung 1, Gangman Yi 2

1. Samsung Electronics, Suwon, Korea
heungkilee@gmail.com, cleme76@gmail.com

2. Department of Computer Science & Engineering, Gangneung-Wonju National University, Korea
gangman@cs.gwnu.ac.kr

Abstract: Main memory management is critical for enhancing the performance of web server systems that include
biological information. For decreasing the transaction time of incoming requests from users, such systems create
several processes for future requests, saving the time needed to create processes that handle incoming requests from
users. However, inefficient process management can decrease the performance of web server systems, and web
cache systems connecting through proxy servers create dynamic access patterns that make it difficult to predict how
many requests are coming into a system. Furthermore, while persistent and pipeline schemes decrease transaction
time of incoming requests by sending multiple requests at the same time, these schemes waste available memory
space by requiring multiple processes in order to handle multiple connections. Too many active processes result in a
reduction of the system’s overall performance. Therefore, we suggest an adaptive process management scheme
through web log mining. In our scheme, the numbers of web processes are controlled through prediction of
incoming requests. Our management of processes saves on available memory without decreasing transaction time.
We also demonstrate the effectiveness of our scheme through application to real web workload.
[Lee H.K, Jung J, Yi G. Adaptive Process Management System through Biological Web Log Mining. Life Sci J
2014;11(7):716-720] (ISSN:1097-8135). http://www.lifesciencesite.com. 104

Keywords: Web Log Mining; Web Server Systems, Biological web pipeline

1. Introduction

The introduction of smartphones has made it
possible for a user to access the Internet at any time.
However, as a result this has dramatically increased
network traffic. Even though web server systems
have gained increased performance, users are still not
satisfied with web service. A single web document
usually requires several pieces of information,
including html, text, images, and video, and in
general, each piece of information is stored
separately. To increase response time, all of the
information associated with the requested document
should be provided to users as soon as possible.
Therefore, it is critical to increase the throughput of
web server systems. If one piece of information is
delayed, the entire requested web document is
delayed.

Modern web browsers increase performance
by establishing multiple connections with a server.
When a user requests a document, the browser
retrieves the main object from the server. After
receiving the requested main object, including html
and jsp, the browser analyzes it and extracts
additional information. To obtain this additional
information as soon as possible, the browser opens
more connections with the server. In figure 1, a user
requests ’a.htm’ from a server. After receiving
’a.htm’, the browser extracts a list of embedded
objects that are required for representing the
document to the user. The requested ’b.jpg’ and

’c.mov’ are not available in the browser’s cache, but
’d.eps’ is available. As a result, the browser reads
’d.eps’ from its own cache, and establishes another
HTTP connection with the server to obtain ’b.jpg’
and ’c.mov’ simultaneously.

Figure 1. Retrieval of Web Document

To increase performance, the web server system
creates processes before receiving requests from the
user. With too many processes, the resources of the
server are wasted, reducing performance. However,
with too few processes, the retrieval of objects is
delayed, slowing response time. To optimize
performance, the server should maintain the proper
number of processes for incoming requests. To allow
this, we suggest ConWebPro, a system that predicts

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 717

the number of requests from each web browser, and
thus increases performance according to the structure
of each document.

2. Related Works

For enhancing the performance of web
servers, there are also other management schemes for
web requests. Two popular schemes are web pipeline
and web cache.

2.1 Background
2.1.1 Persistent Connection and Web Pipeline
Scheme

A persistent connection and web pipeline
scheme decreases the overall transaction time
necessary for a user to obtain information from a web
server. First, under the persistent connection scheme,
the browser creates a persistent connection with the
web server, allowing the browser to send several
requests to the server over a single connection. If the
server provides only one object per connection, the
browser must open and close the connection with the
server for each embedded object. However, this
scheme can still save the time needed to initially
create the connection between server and client.

Second, the web pipeline scheme can save
transaction time by creating multiple connections. If
the browser only creates a single connection, it is
forced to read objects sequentially, receiving each
from the server one by one. However, if the browser
instead creates multiple connections with a server, it
can then request several embedded objects in parallel.
When several requests to the server are required for
one document, the web pipeline scheme enhances the
throughput of the server.

2.1.2 Dynamic Access Pattern

In the structure of a web object, a browser
accesses the list of embedded objects after accessing
the main object. However, the incoming access
pattern for web objects is still dynamic. When a
browser requests embedded objects, some are
provided by a proxy server, not the web server. Proxy
servers hold cached web objects, and when these
objects are requested again, the proxy server provides
them to the browsers. Requests for the cached web
object are therefore not transmitted to the web server,
releasing overhead.

However, the access pattern through a proxy
server is dynamic, because requests to cached web
objects are not accessible to the web server, making it
difficult for the web server to decide how many
requests are coming from browsers. In Table 1, we
see which embedded objects are requested after
requesting the main object from a page at the
department of Computer Science and Engineering at

Texas A&M University. Five embedded objects are
requested when the main object is requested, but
other web objects are not usually requested during a
request for the main object.

Table 1: Frequency of Request for Embedded Objects

 Index Name Request
1 /html4/front.css 517
2 /html4/global.css 517
3 /images/bin.jpg 477
4 /images/header.jpg 473
5 /images/LOOK.gif 446
6 /images/random/01 75
7 /images/random/06 69
8 /images/random/07 66
9 /images/random/09 66

2.2 Previous Works

There have been many previous attempts to
predict the next requests from users. We classify
examples here into two categories: chaining schemes
based on Markov models and grouping schemes
based on clusters of web objects.

Chaining schemes are based on nth Markov
models. A higher order of Markov model can provide
more accurate predictions, but increasing the order
also increases the complexity of the prediction
scheme. As a result, chaining schemes restrict the
order of the Markov model. Some schemes [1], [2],
[3] use the top-n related objects to predict the next
requests. Other schemes [4], [5], [6]. [2] use long
access sequences. [7] designed dynamic PPM
models.

Grouping schemes form clusters of web
objects, and then predict a group of web objects for
the next incoming requests. [8] and [9] provide a
caching policy for a Content Distribution Network
platform. [10] and [11] design a caching policy for
mobile environments. [12] provides a prediction
scheme using folder structure. [13] suggests a divide-
and-merge scheme via a hybrid of top-down and
bottom-up schemes. [14] designs a proxy model for
prefetching embedded objects. [15] uses a vector
model and semantic power for a web cluster system.

Hybrid schemes design a prediction scheme
based on both Markov models and grouping schemes.
[16] suggests prediction schemes based on several
models at the same time, including Markov models,
association rules and grouping schemes. [17] uses an
abstraction scheme for defining access patterns, and
defines user access paths through a Markov model.
[18] generates a group of access patterns to web
objects using a K-means cluster scheme.

Although many examples of research
provide prediction schemes for incoming requests,

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 718

they do not provide process management schemes for
modern web frameworks.

3. Web Process Management through Log Mining
3.1 Prediction Scheme

[19] designs the web transaction prediction
scheme called a Double PPM Scheme (DPS). When
browsers request main objects, web servers also
receive requests to embedded objects. Therefore, we
create a prediction scheme based on a grouping of
one main web object and related embedded objects.

In figure 2, DPS predicts relationship
between web objects at several steps. At the first step,
DPS distinguishes between main and embedded
objects, classifying objects based on their name. For
example, when the name of an object includes ’html’,
’php’ or ’jsp’, it is likely a main object, as usually
such requests are web documents. However, when
the name of an object contains ’jpg’, ’mpg’ or ’ogg’,
it is likely an embedded object.

In the second step, DPS creates relationships
between objects. Gray circles in figure 2 indicate
main objects, while white circles indicate related
embedded objects. Arrows between circles show how
frequently two web objects are accessed together in a
single session. This demonstrates relationships within
a single web document.

Continuing in figure 2, we see that this
instance of DPS creates three groups: ’A’, ’B’ and
’C’. There are two different access patterns in this log
file. After accessing the document ’A’, some users
access document ’B’ followed by document ’C’,
while other users access document ’C’ followed by
document ’B’.

Figure 2: Double PPM Scheme

3.2 Web Process Management

ConWebPro decides the number of web
processes to run at any time based on the access
patterns of web objects. DPS finds different access
patterns based on the structure of web objects. If one

document contains many embedded objects, the
browser will be sure to access the server after
accessing the main object. Similarly, when a
requested web document includes dynamic or
frequently changed web objects, browsers create
more HTTP connections to obtain these related
embedded objects.

In analyzing the results of web log mining,
ConWebPro classified web documents according to
their number of embedded objects. In figure 3,
ConWebPro creates three groups depending on the
number of related embedded objects. Where the web
server usually creates N processes for handling
incoming requests, the first group includes web
documents which contains more than N embedded
web objects, the second group contains web
documents which contain between N and N/2 web
objects, and the last group contains web documents
with fewer than N/2 web objects.

If the requested main object is in the first
group, the web server doubles the number of running
web processes for handling incoming requests. If it is
in the second group, the web server creates N
additional processes. If it is in the third group, the
web server maintains N total processes.

4. Performance Evaluation
4.1 System Configuration in Simulation

We demonstrate performance of
ConWebPro by applying it to real web traces
collected over the course of two days. Based on DPS
in [19], we obtain relationships between web objects
using the first day’s web traces. Then, ConWebPro
classified web documents into three groups
depending on the number of embedded objects.

Table 2 shows real traces from web sites
including the Department of Computer Science and
Engineering in Texas A&M University from [19].
ConWebPro obtains relationship between web
objects based on 'Day 1'. Based on the result of
relationship, ConWebPro creates web processes at
'Day 2'. Web browser retrieves web objects through
persistent connection and pipeline on HTTP 1.1.
Therefore, web browser retrieves multiple embedded
web objects simultaneously.
.
Table 2: Requests to Embedded Objects
 Name Day 1 Day 2 HTTP
 CS TAMU 25479 20018 HTTP 1.1

4.2 Evaluation Results

To evaluate the performance of ConWebPro,
we comapare two schemes on an Apache web server.
Usually, an Apache web server a static number of
web processes to handle incoming requests from web
users. This inefficient process management scheme

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 719

wastes the available memory of the web server,
causing the performance of the web server to drop.

Step 1: Analysis on Web Objects

ConWebPro obtains structure of web objects
based on 'Day 1' web log file. At first step,
ConWebPro makes groups of web requests from
same web user. Web log file contains whole web
requests from every web user. If multiple web users
access to web server at same time, it is difficult to
detect the relationship between web objects.
ConWebPro extracting requests from same user
based on client IP address at web log.

At second step, ConWebPro classifies web
objects into main web objects and embedded web
objects through path and access time. In general, web
user requests 'html' or 'script' documents to web
server. ConWebPro classi_es 'html' and 'script'
documents into main web object. Also, embedded
web objects are requested at same time after replying
main web objects. ConWebPro classifies web objects
into embedded web objects that are requested at same
time after requesting main web object.

Lastly, ConWebPro obtains relationship
based on frequency of web objects. At requesting
main web object, ConWebPro checks which
embedded web objects are accessed frequently. Table
3 shows eight main web objects, number of access
and related embedded web objects at Texas A&M
University.
Table 3: Analysis of Web Objects
Path Access E/O
/main.html 1781 5
/people/faculty 351 5
/academics/courses 138 5
/people/students 113 4
/academics/graduate 105 5
/department/images 78 16
/research/interests 61 3
/search 55 5

Step 2: Number of Web Processes

Figure 4 shows the number of web processes
of web server. The X axis shows the time of the
simulation, while the Y axis shows the number of
web processes in web server. Figure 4 shows average
number of web processes in one hour. We compare
our ConWebProc scheme and two static schemes
including Static-2 and Static-4. Static-2 scheme and
our ConWebProc create two web processes for
incoming web requests, while Static-4 creates four
web processes. Even though our ConWebProc creates
only two spare web processes for incoming requests,
ConWebProc shows higher performance than Static-

4. Based on the prediction of incoming requests,
ConWebProc controls number of web processes.

Figure 4. Number of Web Processes

5. Conclusion

In this paper, we applied ConWebPro to
predict the number of incoming requests from web
users based on the structure of requested web
documents. Processes determine the performance of
the web server. Inefficient process management
creates too many processes, wasting the available
memory of the web server, while a lack of processes
delay transaction time due to the need to create new
processes. To avoid these issues, ConWebPro decides
in advance the proper number of web processes for
incoming requests. In future work, we will research
how web process management affects the overall
performance of the web server.

Acknowledgements:

This research was supported by Basic
Science Research Program through the National
Research Foundation of Korea(NRF) funded by the
Ministry of Education(NRF-2013R1A1A2063006)

Corresponding Author:
Gangman Yi
Department of Computer Science & Engineering
Gangneung-Wonju Nation University, Korea
E-mail: gangman@cs.gwnu.ac.kr

References
1. R. Sarukkai. Link prediction and path analysis

using markov chains. Computer Networks, 2000.
2. B.D. Davison. Learning web request patterns.

Web Dynamics: Adapting to Change in Content,
Size, Topology and Use, pp. 435–460, 2004.

3. C. Bouras, A. Konidaris, D. Kostoulas.
Predictive prefetching on the web and its
potential impact in the wide area. World Wide
Web: Internet and Web Information System,
2003.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 720

4. T. Palpanas, A. Mendelzon. Web prefetching
using partial match prediction. 4th Int’l Web
Caching Workshop, 1999

5. A. Nanopoulos, D. Katsaros, Y. Manolopoulos.
A data mining algorithm for generalized web
prefetching. IEEE Transaction on Knowledge
and Data Engineering, 2003

6. X. Chen, X. Zhang. A popularity-based
prediction model fore web prefetching. of IEEE
Computer, 2003.

7. Z. Ban, Z. Gu, Y. Jin. An online ppm prediction
model for web prefetching. Web Information and
Data Management, 2007.

8. Y. Chen, L. Qiu, W. Chen, L. Nguyen, R. H.
Katz. Efficient and adaptive web replication
using content clustering. IEEE Journal on
Selected Areas in Communications, vol. 21,
pp. 979–994, 2003.

9. G. Pallis, A. Vakali. Insight and perspectives for
content delivery networks. Communications of
the ACM, vol. 49, pp. 101–106, 2006.

10. N. Tuah, M. Kumar, and S. Venkatesh,
“Resource-aware speculative prefetching in
wireless networks. Wireless Networks, vol. 9,
pp. 61–72, 2003.

11. S. Drakatos, N. Pissinou, K. Makki, C.
Douligeris. A context-aware prefetching strategy

for mobile computing environments. Int’l Conf’
CMC, pp. 1109–1116, 2006.

12. P. Ferragina, A. Gulli. A personalized search
engine based on web snippet hierarchical
clustering. World Wide Web, 2005.

13. D. Cheng, R. Kannan, S. Vempala, G. Wang. A
divide-and-merge methodology for clustering.
SIG on Management of Data, 2005.

14. A. Serbinski, A. Abhari. Improving the delivery
of multimedia embedded in web pages. Int’l
Conf. on Multimedia, pp. 779–782, 2007.

15. E. Meneses, O. Rodriguez-Rojas. Using
symbolic objects to cluster web documents.
World Wide Web, 2006.

16. D. Kim, N. Adam, V. Alturi, M. Bieber,
Y. Yesha. A clickstream-based collaborative
filtering personalization model: Towards a better
performans. WIDM, 2004.

17. L. Lu, M. Dunham, Y. Meng. Discovery of
significant usage patterns from clusters of
clickstream data. WebKDD, 2005.

18. F. Khalil, J. Li, H. Wang. Integrating markov
model with clustering for predicting web page
accesses. Australasian World Wide Web, 2007.

19. H. K. Lee, B. S. An, E. J. Kim. Adaptive
prefetching scheme using web log mining in
cluster-based web systems. pp. 903–910, 2009.

5/26/2014

