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Abstract: According to the rapid increase of data, the needs of intelligent data analysis and classification are also 
increasing. Though there have been developed various methods of classifying given data set into several pre-defined 
patterns, the distance-based classifier such as nearest neighbor classifier is still one of the most popular methods due 
to its simplicity and adaptability. However, in order to obtain good performances in practical applications, it is 
important to choose an appropriate distance measure considering the purpose of task and the distributional properties 
of data set. In this paper, we propose a new measure of similarity based on two probability densities: the class-
conditional probability and the probability of within-class variation. Through statistical estimation of the probability 
densities using training set, it is possible to obtain an optimized measure for the given data. The efficiency of the 
proposed measure is confirmed by computational experiments on a few pattern recognition problems using 
benchmark data sets. 
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1. Introduction 

Classifying given data set into several pre-
defined patterns is one of main tasks in the field of 
intelligent data analysis. There are diverse 
applications of intelligent data analysis, such as 
human identification using various types of bio-
signals, text categorization, object detection from 
images, and so on. For example, the face recognition 
is to classify given facial images into a number of 
pre-defined patterns, each of which is corresponding 
to an individual person. The article categorization is 
to classify given text inputs into several subject 
groups such as politics, science, culture, and 
economics. The pedestrian detection is to find a sub 
area within a whole image, which includes a pattern 
of standing human. All these applications need a 
common technology that is called pattern 
classification (Duda et al., 2001). 

In the studies on pattern classification, there 
have been developed various classifiers including 
Bayes classifier, multilayer perceptrons, and support 
vector machines (Bishop, 2006). Among them, the 
distance-based classifier, which is also known and K-
nearest neighbor classifier, is one of the most popular 
one because it can be simply implemented and has 
shown successful performances in many practical 
applications (Duda et al., 2000). 

When an input sample to be classified, 
which is usually called probe data, is given, a 
distance-based classifier determines the class label of 

the probe data based on its distance from each of the 
registered samples (gallery data). In the case of 
nearest neighbor classifier, the probe data is assigned 
to the class in which the nearest gallery data is 
included. From this procedure, one can easily realize 
that the performance of this type of classifiers highly 
depends on the method of measuring distance 
between probe and gallery data. Thus, it is very 
important to choose a good distance measure  in 
order to achieve good performance in practical 
applications. 

There are a number of distance functions 
that have been widely used in various applications. 
The classical distance functions such as Euclidean 
distance and cosine distance are the most common 
ones, and some statistical distances such as 
Mahalanobis distance have also been used as a better 
alternative to the fixed distances (Ashby and Ennis, 
2007). Though there have been a number of studies 
on comparing performances of the various distance 
measures, it is difficult to find a general guideline on 
choosing a good measure for given applications, 
because the performances are highly depending on 
the given data set as well as the purpose of 
classification tasks. 

To solve the problem, it also have been 
conducted many studies on finding an optimal 
distance measure through learning (Weinberger et al. 
2005; Moghaddam et al., 1999; Lee and Park, 2003; 
Lee and Park, 2005). Lee and Park (2003) defined the 
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similarity between two samples as the probability that 
they belong to a same class. In order to obtain an 
explicit function for calculating the probability, they 
estimated the probability density function (pdf) of 
within-class variation, which is defined as the 
difference between two samples belonging to a same 
class. Based on the previous works, this paper 
proposes a new measure of similarity through the 
combination of the class-conditional probability and 
the probability density of within-class variations. By 
additional use of the class-conditional probability, we 
expect to get more robust classifiers against noisy 
environment.  

In the next section, the conventional 
distance measures used for pattern classification are 
briefly described. The previous works on 
probabilistic learning of distance is also explained in 
the same section. In Section 3, a novel dissimilarity 
measure is defined, and the nearest neighbor 
classifier using the proposed measure is described. 
Some experimental results on benchmark data sets 
are given in Section 4, and conclusions are made in 
Section 5.  
 
2. Distance Measures for Pattern Classification  
 The most popular measure of distance 
between two � − dimensional column vector, 
�� = [���,…, ���]

� and �� = [���,…, ���]
�, is defined 

with ��-norm of the difference vector �� − �� , which 
can be written as  
 

       �����_����,��� 

                   = ����� − ��� = � ∑ ���� − ����
�

�

�

        (1) 

 
Note that this is a general form of Euclidean distance 
and Manhattan distance since �� -norm defines 
Manhattan distance and �� -norm defines Euclidean 
distance. We can have a variety of distance functions 
by just changing the value of  �.  
Whereas ��-norm is based on the difference between 
two vectors, there is another popular measure based 
on the inner product of two vectors, ��

���. The cosine 
distance is defined using inner product, which can be 
written as 
 

�������,��� = 1 −
��
���

� (��
���)(��

���)
.              (2) 

 
Since the cosine distance measures the angular 
difference between two vectors, it is useful when the 
overlap of two vectors has more important meaning 
than the absolute subtraction between the 
corresponding elements of two vectors. Due to these 

distinct properties of the two measures, they often 
show significant difference in the classification 
performance as well. Therefore, in order to achieve 
good performance, it is very important to choose a 
proper measure carefully.  

On the other hand, the statistical distances use 
some statistics of given data set to find more 
appropriate distance measure. Mahalanobis distance 

uses the covariance matrix  ��  of given data set to 
define a proper measure for multivariate data with 
correlations, which is defined as 
 

�������,��� = ��� − ���
�
��
����� − ���,        (3) 

 
As a simpler version, the normalized Euclidean 
distance uses only diagonal elements of covariance 
matrix. Although these distances sometimes show 
improved performances, they have the limitation that 
they only use the distributional information of the 
whole data set, and ignore the class-conditional 
distributions, which are more important in the case of 
pattern classification.  

To solve the problem, metric learning 
methods try to find an optimal distance metric for the 
given task and data set by using various machine 
learning techniques (Xing et al., 2002; Weinberger, et 
al., 2005). With the same motivation, there also have 
been probabilistic approaches to define new 
similarity measures between two samples �� and ��   

based on the probability of within-class variation 
(Moghaddam et al.; 1999; Lee and Park, 2003). In the 
classification tasks, it is natural to consider that two 
samples are similar if their membership is same. 
Therefore, the similarity between two samples ��and 
��  can be written as    

 
�(��,��) = Prob [�(��) = �(��)],           (4) 

 
where �(�) denotes the class label of �. 
In order to obtain the explicit value of the probability 
of (4), Lee and Park (2003) proposed the use of new 
random vector � , which is the difference between 
two input samples, and compose the set Ω of all the 
difference vectors between two samples with the 
same class label. The set Ω can be obtained from the 
training set such as 
 

Ω = ����� ��� = �� − �� , �(��) =  �(��) }.      (5) 
 
Using the set Ω , it is possible to estimate the 
probability density function �(� | Ω), which can be 
considered as the probability of within-class 
variations. 

The previous works (Lee and Park 2003; 
Lee and Park 2012) used the estimated pdf �(� | Ω) 
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to measure the similarity between two samples �� and 
��  by calculating �(�� − �� | Ω). Furthermore, if we 

assume that the within-class variation � is subject to 
Gaussian distribution, we can get an explicit function 
of �(�� − �� | Ω) such as 

 
�(�� − �� | Ω)                                                          (6) 

= 
�

�
��� �−

�

�
��� − �� − ���

�
��
����� − �� − ���� 

 
where � is the normalization factor; the parameters 

��  and ��  are the mean and covariance of random 
variable �, which can be estimated by using the set Ω. 
This probability density function can be used as a 
similarity measure between two samples ��  and �� , 
because high probability density implies strong 
likelihood that two samples belong to the same class. 
Based on the probability density, we can define a 
simpler function for measuring dissimilarity such as 
 

       ��������,��� 

= ��� − �� − ���
�
��
����� − �� − ���.           (7) 

 
Based on this measure, we propose a new measure 
that has more desirable properties, as we shall 
describe in the following sections.  
 
3. Proposed Measure and Classifier  

Although the probabilistic measure (7) 
defined by using within-class variation has shown 
successful performances in various pattern 
recognition problems (Moghaddam et al., 1999; Lee 
and Park 2003), instability and performance 
degradation have also been reported in some cases 
(Lee and Park, 2012). Since the measure is based on 
the estimated probability density �(� | Ω), it is 
obvious that the inaccurate estimation of �(� | Ω) 
leads to low classification performance. When the 
number of training data is not sufficient or the 

dimensionality of estimation parameter (�� and ��) is 
large, it is difficult to get good estimation of the 
parameters. In these situations, we cannot expect to 
get good classification performance using the 
measure ��������,��� . In addition, the measure 

��������,���  only takes the within-class variations 
into account, and the distributional relationship 
among classes is ignored, which may cause the loss 
of important information for discriminating among 
all the classes. This drawback would be emphasized 
when the number of classes is large.  

Considering these problems of the previous 
measure, we propose a new dissimilarity measure by 
combining two probabilities: the probability density 
of within-class variations �(� | Ω) and the class- 

conditional probability density �(�|��) . The class-
conditional probability density �(�|��)  implies the 
likelihood that an input feature � is observed in the 
ith class ��. The estimation of �(�|��) can be done by 
using the subset of whole training set that can be 
defined as �� = {�|  �(�) =  � }. Through the 
additional use of this class-conditional probability, 
we can utilize the information on the distribution of 
classes and thus can expect to increase the 
discriminative ability of the measure.  

Using the two probability densities, we can 
define a new measure of similarity between a training 
data �� and the newly given input ����, which can be 
written as 
 
�(��,����) = �(�� − ���� | Ω) �(����|��(��)).  (8) 

 
This first factor in right hand of equation (8) implies 
the likelihood that �� and ���� belong to a same class. 
Similarly, the second factor implies the likelihood 
that ���� is observed from the class ��(��), in which 

�� is included. Consequently, the similarity measure 
gives large values when the class labels of ��  and 
���� are same.  
 To obtain an explicit form for calculating 
the similarity, we simply use the Gaussian model 
with unit covariance matrix for class-conditional 
probability density. Then the simplified function for 
measuring dissimilarity can be given as   
 
�����(��,����) 

= (�� − ���� − ��)
���

��(�� − ���� − ��).     

           + ����� − ��(��)�
�
����� − ��(��)�.             (9) 

 
where the parameter ��(��) is the mean vector of class 

��(��), which can be estimated by the sample mean of 

the subset �� = {�|  �(�) =  � }.  
In order to classify a newly given probe data 

���� using the nearest neighbor classifier, we 
calculate the value of dissimilarity �����(��: ����) 

for all ��  in the previously registered gallery 
(training) set �, and find the nearest neighbor ��� , 
which can be written as 

 
        ��� = argmin��∈�{ �����(��, ����)}.         (10) 

 
Then we can assign ���� to the same class to which 
the nearest neighbor ���belongs, such as 
 

 �(����) = �(���).                                (11) 
 

Although we use the Gaussian model for estimating 
�(� | Ω) and �(�|��) in this paper, other various 
models can also be applied. 
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4. Experimental Results  

In order to confirm the efficiency of the 
proposed dissimilarity measure and the related 
classifier, we conducted a number of experiments on 
two benchmark data: FERET face database (available 
at http://www.itl.nist.gov/iad/humanid/feret/feret_ma 
ster.html) and PICS face database (available at 
http://pics.psych.stir.ac.uk/). The examples of the two 
databases are shown in Figure 1.  

 

 
Figure 1. Samples of facial images used in the 
experiments: (a) FERET database, (b) PICS database  
 

FERET database is composed of 450 facial 
images with nine different poses from 50 subjects. 
Using the FERET database, we conducted two types 
of classification tasks: face recognition and pose 
recognition. For face recognition, the left (+60o), 
right (-60 o), and frontal images of each subject were 
used as training (gallery) set, and the remaining 300 
images were used for testing (probe data). For pose 
recognition, images from 25 different subjects were 
used for training, and the remaining 225 images from 
the other 25 subjects were used for testing.  

The PICS database is composed of 276 
images from 69 persons; four images with different 
expressions were taken from each person. For the 
PICS database, we also conducted two types of 
classification tasks: face recognition and expression 
recognition. For face recognition, we used three 
images from each person for training, and the 
remaining one image with a neutral expression was 
used for testing. For expression recognition, 20 
images per each facial expression were used for 
training and the remaining 49 images were used for 
testing.  

Instead of using raw input images, we apply 
the principal component analysis (PCA) to original 

images so as to obtain low dimensional features 
(Martinez and Kak, 2001). The dimensionality of the 
feature vectors obtained through PCA was chosen to 
give the best performance for each distance measure 
and task. We compared the performance of the 
proposed measure (�����) with those of four other 

conventional measures: Euclidean distance (������), 
the cosine distance (����) , Mahalanobis distance 
(����), and the probabilistic dissimilarity based on 
within-class variations (�����). Figure 2 shows the 
classification rates of the measures in the four 
classification tasks.  
 

 

 
Figure 2. Classification performances of the distance 
measures in the four tasks: (a) face and pose 
recognition on FERET database, (b) face and 
expression recognition on PICS database. 
 

From the figure, we can see that the 
proposed measure gives the best performance for all 
the four tasks. We can also see that performances of 
Euclidean distance (������) and the cosine distance 
( ���� ) are dependent on the database and tasks; 
������ gives relatively good performance for face 
recognition on FERET data but is worst for pose 
recognition on the same data; ����  shows relatively 
better performance for pose and expression 
recognition. On the other hand, the probabilistic 
learning approaches (�����  and ����� ) show stable 
performances for all the tasks. 
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Figure 3. Change of performances depending on the 
dimensionality of input feature: (a) face recognition 
on FERET data, (b) pose recognition on FERET data, 
(c) face recognition on PICS data, and (d) expression 
recognition on PICS data. 
 
 

Since we use the features obtained from 
PCA, we also need to check performance sensitivity 
to the change of the dimensionality of feature vector. 
Figure 3 shows the change of classification rates 
according to the increase of the dimensionality of 
PCA features. Whereas ������ and ���� show stable 
performances in the change of dimensionality, ����  
and �����  show performance degradation according 
to the increase of dimensionality in Figure 3 (a) and 
(c). Because these two measures have parameters to 
be estimated through learning with training data, the 
increase of dimensionality can cause inaccurate 
estimation, and thus leads to low classification 
performances. Nevertheless, we can see that the 
proposed measure can achieve stability in the 
performances. 

 
5. Conclusions  

In order to improve the performance of the 
distance-based classifier, we proposed a probabilistic 
learning method for obtaining an appropriate measure 
of dissimilarity. By combining class conditional 
probability and the probability of within-class 
variations, we achieved reliable performances on 
various pattern classification problems. Compared to 
the fixed arithmetic distances, the proposed measure 
can achieve good performance by obtaining 
appropriate measures through learning. Compared to 
the Mahalanobis distance and the probabilistic 
distance based on within-class variation, the proposed 
method can improve classification rates and stability 
by adding class-conditional probability. Though we 
use Gaussian model for estimating the probability 
densities, it would be interesting to use more 
sophisticated models. In addition, it is also necessary 
to investigate the efficiency of the proposed measure 
in diverse applications with various types of input 
signals.  
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