
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 602

Metrics for Software Requirements Traceability based on Output Deployment from Software Quality
Perspective

Chan Hoe Kim 1, Jong Bae Kim 2, Jung Won Byun 3

1. Korea Forest Service, Ministry of Agriculture, Korea

chkim@forest.go.kr
2. Graduate School of Software, Soong Sil Univ. Korea

kjb123@ssu.ac.kr
3. Computer Science and Engineering, Soong Sil Univ, Korea

jimi010327@gmail.com

Abstract: Requirements management is a very important factor in the success of software. Especially, requirements
traceability plays important roles in requirements engineering. We propose two metrics to evaluate whether a certain
software is implemented in accordance with its requirements or not. Our paper has 16 software projects of several
public organizations in South Korea as well as their results of statistical analysis. They are shown that our metrics
are helpful to software and project quality.
[Chan Hoe Kim, Jong Bae Kim, Jung Won Byun. Metrics for Software Requirements Traceability based on
Output Deployment from Software Quality Perspective. Life Sci J 2014;11(7):602-606]. (ISSN:1097-8135).
http://www.lifesciencesite.com. 83

Keywords: Requirements traceability, Output Deployment, Software and Project quality

1. Introduction

As the scope of software increases,
stakeholder is becoming diverse, and knowledge of
stakeholder is increasing, and expectation on
software is increasing [1]. The scope of software is
determined by requirements, and software increases
in its scope with many requirements and becomes
complex with complicated requirements [2]. As the
scope of software increases, the management cost to
identify the incorporation of requirements in software
increases [3]. Namely, requirements management is a
very important factor in the success of software, and
its importance further increases as the scope
increases.

The requirements traceability is an issue that
has been emphasized since the past, and there are
various studies and products that are related this [4].
However, requirements are not being traced and
managed for various problems. Its examples include
the practice of business implementation by non-
expert at the site of information project
implementation, the need to manage duplicated
requirements from multi-stage service development,
the theoretical complexity in its practical application,
etc. [5].

We propose requirements traceability
metrics to evaluate proper application of
requirements to software and confirm that software
projects in progress are being properly implemented.
First of all, it visualizes the requirements deployment
for each software development activities and clarify
the scope of the method and metrics proposed in this
study. Secondly, it presents a method of evaluating

the incorporation, namely, deployment of particular
requirements in artifacts of next activity. Thirdly, it
proposes metrics for determining the deployment
level of requirements based on the requirements
deployment status.

Based on the case application of 16 public
organizations, it shows the applicability of the
proposed requirements traceability metrics. In
addition, it presents the validity of proposed metrics
through the comparison between the values of
metrics obtained based on this study and the results
of software/project quality evaluation.

2. Related Works

Gotel and Finkelstein [6] defined the
requirements traceability as "the ability to explain
and identify the life cycle of requirements. There are
forward tracing and backward tracing in analysis,
design, development, test, and operation". In other
words, the requirements traceability refers to
checking from requirements elicitation and how they
are deployed throughout all stages.

Requirements traceability model that has
advanced based on the definition of requirements
tracing was established in considering various aspects
of requirements. The first aspect is the “source”
aspect of considering the changes in requirements
themselves. This has advanced into requirements
traceability model that becomes the main foundation
of software version & configuration management
system [7]. Permanency of requirements has been
ensured through long-term tracing of the changes in
requirements, which has positive effects on the cost

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 603

compared to value on the implementation of version
& configuration management tool.

Another traceability model has advanced in
the “stakeholder” aspect. It is a traceability model
based on the assumption that requirements come
from the relationship between stakeholder [8]. Such
model in the aspect of stakeholder examines from
whom requirements are created and utilized, and
introduces various attributes of requirements [9].

In engineering perspective, requirements
traceability model emphasizes the “process” aspect.
In the study [10], requirements refer to the
perspective on the procedure through which they are
created and utilized subsequently for software to
become implemented. This is an important aspect
that connects the “source” and “stakeholder”
described earlier, and various methodologies in
software engineering are reflecting such aspect [11].

Requirements traceability model can be
summarized into the “source” aspect model that is the
change in requirements themselves, the “stakeholder”
aspect model from whom requirements are created
and utilized, and the “process” aspect model on the
procedure being created and utilized. There is the last
aspect that has not been presented specifically even
though being mentioned in existing studies. Namely,
a specific “artifact” is materialized from “source”
through the “process” of various procedures by
“stakeholder.” The requirements traceability metrics
presented in this study is different from the existing
studies in the sense that it considers the “artifact”
aspect.

3. Metrics for Measuring Requirements
Traceability

The forest herbs species in the oak and pine
forests belongs to 21 families. The total number of
species present in the oak forest and pine forest was
32 and 41, respectively.

This study presents the requirements
traceability metrics in the artifact aspect of software
requirements. Namely, it will be considered that
software requirements and outputs (artifact) that need
traceability have already been provided. In addition, a
validity of these requirements and output is not
included in the scope of this study. From the artifact
aspect, requirements are implemented and specified
as various outputs through the software life cycle
process. In this study, this will be referred to as the
'deployment of requirements'.

3.1 Software Life Cycle and Deployment of
Requirements

Software requirements are important data
that are created in early stage of software life cycle
and affects until the late stage [12]. Namely, this

means that they affect the entire stage of software life
cycle. Requirements can be seen as the object of
improvement or management in each stage of
software life cycle.

ISO 12207:2008 [13] presents the standard
of software life cycle. It presents the overall road
map of software product and service from acquisition,
supply and development to operation, maintenance
and disposal. Software life cycle process is composed
by dividing into system context processes group and
software specific processes group. Since the scope of
this study is limited to software, processes in which
requirements are used are the main target among the
processes in the software specific processes group.
This standard lists the activities and tasks in each
process, and indicates main input & output. In this
standard, software requirements are created through
software requirements analysis process. Every
requirement needs to be assigned as software
component in software architectural design process,
which is specialized through software detail design
process and developed into artifact through software
implementation process. The following software
qualification testing process checks the requirements
fulfillment by artifact created earlier to finalize the
completion of software. Namely, software
requirements affect the entire process from design
and implementation to test after being created, and it
is important to trace and manage them.

Based on this perspective, requirements can
be deployed in various activities, and the level of
incorporation is gradually specializing. Effects of
requirements on other output could be indirect or
direct. For example, requirements have direct effects
in design stage. However, requirements have indirect
effects (by constructing the output of the design
stage) in implementation stage. Lastly, requirements
have indirect effects (by testing the output of the
implementation stage) in test stage, and have direct
effects (that could not be incorporated in the
implementation stage).

If a requirement does not have effects in any
of the design, implementation and test stages, it is
thought that this requirement has not been deployed.
For requirements that have not been deployed,
follow-up tasks are needed. As an example of such
tasks, previous stage needs to be performed once
again or it should be specified that the requirement
will not be deployed in this release.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 604

Figure 1. Requirements Deployment Concept &
Deployment Decision Input

Figure 2. Example of Requirements Deployment
Status

3.2 Requirements Deployment Decision Method

For the purpose of deciding the effects of
requirements in the design, implementation and test
stages, stakeholder of each stage needs to record the
deployment of requirements. Such process of referred
to as requirements tracing, and requirements
deployment status needs to be recorded through the
tracing technique limited to the focus of this study.
An example of deployment status is as shown in
[Figure 2]. In this deployment status, each
requirement and output attribute needs to be included.
Cross reference becomes possible through the
deployment status attribute.

Deployment decision can be determined
very simply. It is to check the record status of the
reference point of other output in the status attribute.

In the case of code created through implementation
stage, however, it could be indirectly affected by
requirement (indirectly to the output of design stage).
Namely, tracing of reference point is needed. For
example, if R1 has been deployed in the design
document D1 and D1 has been deployed to the
implementation code C1, it means that R1 has been
deployed as C1. Namely, for at least two outputs of A
and B (A is called input and B is called output based
on creation time), the case in which an item of input
A is connected to the items of output B for at least 1
is referred to as having been deployed.

Figure 3. Deployment Status Decision

3.3 Proposal of Metrics for Displaying
Requirements Traceability

In this study, two metrics are proposed for
displaying the requirements traceability. The first

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 605

metric is requirements deployment level for

measuring the effects of a requirement on various
outputs. The second metric is requirements
deployment density for specifying the deployment of
a requirement in specifics.

3.3.1 Requirements deployment level

The level of association of items included in
input to output needs to be identified. Since the every
item input needs to be deployed to output, this
deployment level will be expressed as a certain
percentage (0 ~ 1), and values close to 1 indicate that
every item of input has been deployed to output. This
can be expressed through the following [Formula 1].

Deployment Level (Ap1, Ap2) =
fd-count(AP1 | AP2) / ft-count(AP1)

However, A is an artifact,
APn is an artifact in nth activity Pn,
(e.g.) analysis, design, implementation, test, etc.

ft-count(X) is the total number of items of artifact X
(e.g.) ft-count(requirements specification) is the
number of included requirements

fd-count(X | Y) is the number of items included in
artifact X designated as reference point to artifact
Y
(e.g.) fd-count(requirements specification | GUI
specification) is the number of requirements
specified with requirements (items of requirement
specification) in the reference point of each item
of GUI specification.

Since this study presents requirement

traceability evaluation technique, X is fixed as
requirements specification. In the case of P1, it is
restricted as the analysis stage of making
requirements specification. In the Pn stage of

inputting requirements specification, however,
various outputs can exist. Namely, APn indicates that
not one output but various outputs can exist. Since
the concept of deployment metric is to determine the
deployment of requirements, formula fd-count(AP1 |
APn) is expanded as follows in this case.

[Formula 2] shows the “deployment level”

of input associated with every output at a particular
stage. The range is 0 ~ 1 and values close to 1
indicate that every artifact (input) of P1 has been
deployed to every artifact (output) of stage P2. For
example, the result of 0.97 from computing the
deployment metric of stage P2 for 100 requirements
indicates that 97 requirements have been deployed
and specified to stage P2. In other words, it shows
that 3 requirements have not been deployed.

3.3.2 Requirements Deployment Density

Considering various situations of
deployment, there are limitations in measuring the
tracing level with deployment level only. One of the
limitations is a case in which a requirement is
deployed to multiple outputs of the next stage. In
such case, measuring with deployment level alone
will lead to deployment of requirements to multiple
outputs, which cannot be reflected by deployment
level.

For the purpose of improve such situation,
concept of density of the requirements deployment is
introduced. In this study, 'deployment density' refers
to the deployment metric of particular requirements
as outputs in subsequent stage. It can be expressed as
[Formula 3].

Deployment Density (Rx, Pn) =
fa-count(Pn | Rx) / fa-count(Pn)
However,
 Pn is a particular stage,

Rx is particular requirement,
fa-count(Pn) is the number of outputs in stage Pn,
fa-count(Pn | Rx) is the number of outputs deployed
with Rx in stage Pn

The range of deployment density is above 0,

and Deployment Density (Rx) = 0 indicates that
requirement Rx has not been deployed, and 1
indicates that requirement Rx has been deployed to
one output. For example, the result of 2 from
computing the deployment density of requirement R1
at stage Pn indicates that R1 has been deployed in
two outputs out of the entire outputs of Pn.

The mean of the deployment density of
every requirement is called “mean deployment
density”. For example, the result of 1.41 mean

fd-count(AP1 | APn) = Count (fd(AP1
x, APn-1) | ∑

fd(AP1-x, APn-m) == true),

However, fd(AP1

x, APn-k) = {true, false},
this indicates that item AP1

x (requirement) in the
order of x of output AP1 (requirements
specification) in the P1 stage has been deployed
to output APn-k in the order of k of output APn in
the Pn stage.

M indicates the number of every output of Pn.
In ∑, m = 1 ~ M,
APn-m indicate output in the order of m of APn.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 606

deployment density at stage Pn with 3 outputs on 100
requirements indicates that a requirement is deployed
to 141% of output items of Pn (1.41 items) in general.

4. Conclusion

This study proposed requirements
traceability level measurement metrics from output
centered perspective. The following limitations were
identified while conducting this study. The proposed
traceability metrics was found to have correlation
with software quality, but specific plan to improve
software quality has not been presented. Namely, the
issue of requirements without traceability can be
presented, but it has not presented a solution to such
issue.

As for future study, the limitations
mentioned earlier need to be resolved. First, it is
necessary to present a solution when traceability
issue has been identified and reveal that this can be
helpful in improving traceability and software quality.
Second, it is necessary to ensure the generality of the
proposed study result through case studies on non-
public projects.

Corresponding Author:
Prof. JongBae Kim
Graduate School of Software
SoongSil University
Seoul, Korea
E-mail: kjb123@ssu.ac.kr

References
1. Pillai, K and Sukumaran Nair, V.S., “A Model

for Software Development Effort and Cost
Estimation”, IEEE Trans. on Software Eng.,
Vol.23, No.8, pp.485-497, 1997.

2. Karl Wigers, Software Requirements, Microsoft
Press, 2003.

3. Lagerström, Robert, et al. "Identifying factors
affecting software development cost and
productivity." Software Quality Journal, Vol.20,
No.2, pp.395-417, 2012.

4. Carrillo de Gea, Juan M., et al. "Requirements
engineering tools: Capabilities, survey and
assessment." Information and Software
Technology, Vol.54, No.10, pp.1142-1157, 2012

5. Torkar, Richard, et al. "Requirements
traceability: A systematic review and industry
case study." International Journal of Software
Engineering and Knowledge Engineering,
Vol.22, No.3, pp.385-433, 2012.

6. O. Gotel and A. Finkelstein, Analysis of the
Requirements Traceability Problem,º Proc. First
Int'l Conf. Requirements Eng., pp. 94±101, 1994.

7. R. Conradi and B. Westfechtel, Version Models
for Software Configuration Management, ACM
Computing Surveys, vol. 30, pp. 232-282, 1998.

8. E. Yu and J. Mylopoulos, Understanding 'Why'
in Software Process Modeling, Analysis and
Design, Proc. 16th Int'l Conf. Software Eng., pp.
159-168, 1994.

9. Seo Jung-ho, Study on the Priority Selection and
Classification Guideline of Requirement Based
Output Properties, Soongsil University, Master's
Degree Thesis, 2009.

10. K. Pohl, Process Centered Requirements Eng.
Somerset, U.K.: John Wiley Research Studies
Press Ltd., 1996.

11. Software Engineering Research Team, MaRMI-
III Development Methodology, Electronics and
Telecommunications Research Institute, 2003

12. Karl Wiegers, “Software Requirements”, MS
Press, 2003.

13. ISO/IEC 12207, International Standard
Organization, 2008.

14. Roger S. Pressman, Software Engineering – A
Practitioner’s Approach, McGraw-Hill, 2009.

15. National Information Society Agency, Electronic
Government Project Quality Management
Manual, Ministry of Public Administration and
Security, 2013.

7/1/2013

