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Abstract: The purpose of this study was to investigate how the threshold condition used in a bone density scan 
influences the morphological parameters and to find an optimal threshold for predicting osteoporosis. Experimental 
subjects comprised a total of 54 post menopausal women aged over 40 years, who were classified into two groups, 
20 normal and 34 osteoporosis patients, according to their T-scores. Bone mineral density was measured on the 
femoral neck, greater trochanter, and Ward’s triangle by dual-energy X-ray absorptiometry. To set the threshold 
conditions, we employed a newly proposed thresholding method using thresholds ranging from 0 to 95% based on 
the trabecular bone area. We also selected seven evaluation parameters that composed of structural parameters, 
skeletonized parameters, and fractal dimension to evaluate the osteoporosis predictability. Based on the 
experimental results, we found that a threshold condition of 20% yields the most reliable predictability for 
osteoporosis. Quantitative evaluation also demonstrated that the statistical significances are weakened, as the 
threshold excessively increases. 
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1. Introduction 

Bone mineral density (BMD) can be 
measured by 2D or 3D methods based on dual-energy 
X-ray absorptiometry (DXA) or micro computed 
tomography (CT), respectively [Kuroda et al., 2003]. 
Among these methods, micro CT systems are 
typically used to measure BMD mainly due to the 
acquisition of the various bone properties. According 
to the definition of the World Health Organization 
(WHO), osteoporosis is determined when BMD is 
less than or equal to 2.5 standard deviations below 
the young adult mean BMD [WHO, 1994]. This 
method, however, cannot perfectly predict the 
prognosis of osteoporotic fractures, and presents a 
different predictability for osteoporosis according to 
the race of the patient [Dalstra et al., 1993; Dempster 
et al., 1993]. This is mainly because osteoporosis is 
not only characterized by a low bone mass [Houam et 
al., 2014; Mauck and Clarke, 2006]. The aggravation 
of bone architecture also plays a significant role [Shi 
et al., 2009]. 

Based on these clinical characteristics, a 
number of morphological approaches were performed 
to analyze the bone architectures. The classical global 
method commonly separates the original image with 
a single threshold based on a visual measure from the 
gray level histogram. Hara et al. selected the optimal 
thresholding values for each specimen optically to 
separate bone structures from surrounding tissues 
[Hara et al., 2002]. They also evaluated how small 

errors in the thresholds affect the mechanical 
properties. Ito et al. analyzed the bone structures 
using manually defined threshold values from 50 to 
350, and demonstrated reasonable linear correlations 
within the range of 100-200 [Ito et al., 1998]. Rajon 
et al. adopted statistical models as well as visual 
inspection to determine a suitable threshold [Rajon et 
al., 2006]. Batenburg et al. reduced the effect of the 
artifacts in the selection of the thresholds, and 
computed an optimal threshold [Batenburg and 
Sijbers, 2007]. On the other hand, local thresholding 
approaches typically apply a threshold to the original 
image by separating each voxel optimally within its 
neighborhood. Dougherty et al. successfully 
distinguished different degrees of osteoporosis by 
combining both median and local adaptive 
thresholding with a 7x7 window [Dougherty and 
Henebry, 2002]. Dufresne proposed a general local 
method based on the histogram of the local 
neighborhood voxels to compensate for the beam 
hardening effects [Dufresne, 1998]. Batenburg et al. 
suggested a local thresholding method based on 
projection distance minimization, and yielded 
accurate results [Batenburg and Sijbers, 2009]. 

Despite these efforts, current methods have 
two major limitations. First, the segmentation results 
are easily influenced by the original gray scale due to 
the threshold criteria in combination with a gradient 
analysis. Second, most existing approaches 
performed 3D analysis with micro CT. A DXA scan,  
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(a) ROI image (b) Gaussian filter 

  
(c) Normalization (d) Binarized image 

  
(e) Skeletonized image (f) Superimposed image 

Figure 1. Image processing procedure for extracting 
the trabecular patterns from the original image 

 
however, presents not only high spatial resolution, 
but also a low radiation dose and low cost compared 
to that of micro CT [White and Rudolph, 1999]. 
Therefore, if optimal threshold values that identify 
patients showing early signs of osteoporosis can be 
found on DXA scans, it will be possible to improve 
the predictability using a more convenient method. 

 

The purpose of this study is to investigate 
how the threshold variation influences various 
morphological parameters and to find an optimal 
threshold for predicting osteoporosis on DXA 
radiographs. This manuscript is organized as follows. 
We describe the details of the overall image 
processing procedures for extracting trabecular 
microarchitectures and proposed thresholding 
technique in Section 2. The experimental results and 
its discussions are provided in Section 3 and 4, 
respectively. We discuss the conclusions from our 
findings in Section 5. 

 
2. Material and Methods  
2.1 Experimental Subjects 

For our experiment, we selected a total of 54 
post-menopausal women aged over 40 years who 
approved this study with informed consent. Subjects 
who suffered from a history of malignant neoplasm, 
surgical oophorectomy, chronical organic disorder, or 
femoral and spinal fracture were excluded. We also 
excluded subjects who had taken medication that 
affects bone metabolism, such as estrogen or 
corticosteroids. According to the standard of the 
WHO, experimental subjects were classified into two 
groups, comprising 20 normal and 34 osteoporotic 
patients, based on their BMD. We measured BMD on 
the femoral neck, greater trochanter, and Ward’s 
triangle by using DXA with a Hologic Delphi W 
(Bone Densitometer, Hologic, Inc., Waltham, MA, 
USA). 

 
2.2 Segmentation Procedure of the Trabecular Bone 

To extract the trabecular patterns from the 
original DXA image, we employed a modified 
version of White’s method [White and Rudolph, 
1999]. We first identified a region of interest (ROI) 
in the original image (Figure 1(a)), and obtained a 
blurred image by using a Gaussian filter (Sigma=10 

     
(a) 10% (b) 20% (c) 30% (d) 40% (e) 50% 

     
(f) 60% (g) 70% (h) 80% (i) 90% (j) 95% 

Figure 2. Thresholding results of the proposed method 
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pixels, Figure 1(b)). Next, the blurred image was 
subtracted from the ROI image, and 128 gray levels 
were added to the output image to normalize the gray 
scale of each pixel (Figure 1(c)). The resulting image 
was then binarized with a brightness value of 128 
from which the trabecular bone was separated from 
the tissue area. We also adopted erosion and dilation 
operations in order to remove the shot noise, which 
independently appeared in the entire image (Figure 
1(d)). Lastly, the skeletonized image was obtained by 
eroding the binary image until only the central line of 
pixels appeared (Figure 1(e)). We analyzed the 
binary and skeletonized images to extract the 
morphological parameters from the trabecular bone 
patterns. Figure 1(f) shows the superimposed image 
for the ROI and the skeletonized image. All image 
processing procedures were performed using Matlab 
software (R2011b, MathWorks Inc., Natick, MA). 

 
2.3 Proposed Thresholding Technique 

We propose a novel thresholding algorithm 
to remove the influence of the original gray levels 
based on the trabecular bone area. The proposed 
method designates the thresholding values as 
percentages of the trabecular bone area after dividing 
them into thresholds ranging from 0% to 95% based 
on their area (Figure 2). 

The threshold percentage for each dataset 
can be determined by equation (1): 
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where a(x) means the area function for the trabecular 
bone with gray value x. TP is the threshold value, A 
denotes the total area of the trabecular bone, and P 
represents the percentage function. After computing 
each trabecular area, the binarized image was 
segmented based on the percentages values. A certain 
percentage of the trabecular area was removed from 
the original image. In our study, we set the thresholds 
for the trabecular area as 0, 10, 20, 30, 40, 50, 60, 70, 
80, 90 and 95%, and quantitatively evaluated the 
osteoporosis predictability for each threshold (Figure 
2). 

 
2.4 Evaluation Parameters 

We selected seven evaluation parameters 
composed of four structural parameters, two 
skeletonized parameters, and the fractal dimension 
(FD) to assess the predictability for osteoporosis. The 
structural parameters are classified into Tb.Area, 
Tb.Peri, Tb.Thick and Tb.TD, and the skeletonized 
parameters are divided into Sk.N and Sk.Length. We 
computed structural parameters and FD in the binary 
image (Figure 1(d)), while skeletonized parameters 
were obtained in the skeletonized image (Figure 
1(e)). Regarding the structural parameters, Tb.Area is 
the mean area of the total trabecular bone, and 
Tb.Peri is an assessment regarding the length of the 
trabecular perimeter. Tb.Thick shows the mean width 
for each trabecular bone, while Tb.TD indicates the 
terminal distance between the ends of adjacent bones. 
The skeletonized parameters, Sk.N and Sk. Length, 
denotes the mean number and mean length of the 
skeletonized elements, respectively. 

 

   

(a) Tb.Area (b) Tb.Peri (c) Tb.Thick 
   

(d) Tb.TD (e) Sk.N (f) Sk.Length 
Figure 3. Comparison of evaluation parameters between the normal and osteoporotic groups according to the 
different thresholding conditions (Femoral neck) 
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2.5 Statistical Analysis 

For statistical analyses, data were analyzed 
using an independent t-test based on SPSS (Ver. 12.0 
for Windows, Chicago, IL, USA). A p-value of less 
than 0.05 was considered significant. 

 
3. Results  

In the femoral neck, all parameters, except 
for Tb.TD, demonstrated significant differences 
(p<0.05) between the normal and the osteoporotic 
groups with regards to the condition involving no  
 

 
thresholds, i.e., the threshold of 0% (Figure 3). The 
mean values of Tb.Area, Tb.Peri, Sk.N and 
Sk.Length showed high statistical significances for 
all groups, as they presented consistent variances 
(p<0.05). Tb.Thick also revealed significant 
differences for low threshold ranges, whereas the 
significance levels were deteriorated when the 
threshold increases (Figure 3(c)). Under the 
condition with no threshold (0%), Tb.TD did not 
significantly differ between the two groups 
(p=0.617). Increasing the thresholds, however, 
improved the statistical significance,  

   

(a) Tb.Area (b) Tb.Peri (c) Tb.Thick 
  

 

(d) Tb.TD (e) Sk.N (f) Sk.Length 
Figure 4. Comparison of evaluation parameters between the normal and osteoporotic groups according to the 
different thresholding conditions (Greater trochanter) 

 

  

(a) Tb.Area (b) Tb.Peri (c) Tb.Thick 
  

 

(d) Tb.TD (e) Sk.N (f) Sk.Length 
Figure 5. Comparison of evaluation parameters between the normal and osteoporotic groups according to the 
different thresholding conditions (Ward’s triangle) 
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since the differences between the experimental 
groups were drastically increased (Figure 3(d)). On 
the other hand, FD presented significant differences 
only in the thresholding ranges of 0%, 20% and 90-
95% (Figure 6(a)). Consequently, the threshold 
condition of 20% yielded the most significant 
differences for all experimental groups. Figure 3 
compares the evaluation parameters between the 
experimental groups for the femoral neck. 

In the greater trochanter, all parameters, 
except for Tb.Thick and Tb.TD, yielded high 
statistical significances (p<0.05) between the 
experimental groups for the condition with no 
thresholds (Figure 4). Tb.Thick exhibited the 
significant differences only in the thresholding ranges 
of 10-20%. When using the conditions of 60% and 
70%, Tb.Thick was found to be larger in the 
osteoporotic group, which is dissimilar to what is 
observed for other conditions (Figure 4(c)). Tb.TD 
also did not show a significant difference for the 
condition with a threshold of 0% (Figure 4(d)). The 
statistical significance, however, was improved as the 
thresholds were employed. FD only revealed 
significant differences in the threshold conditions of 
0%, 20% and 95% (Figure 6(b)). The rest of the 
parameters were helpful in discriminating 
osteoporotic patients from normal subjects, 
regardless of the threshold values (p<0.05). Figure 4 
compares the parameter variances for the different 
thresholds on the greater trochanter. 

In Ward’s triangle, all parameters, except for 
the FD, demonstrated low significances (p>0.05) of 
differences between the experimental groups for the 
conditions with no thresholds (Figure 5). The 
significance of the differences between the normal 
and the osteoporotic groups, however, was 
continuously improved after applying the thresholds. 
In addition, Tb.Thick also showed significant 
differences between the threshold conditions of 10 
and 20% (Figure 5(c)). On the other hand, the FD 
presented reasonable differences only in the ranges of 
0%, 20-30%, and 90-95% (Figure 6(c)). Based on 

these experimental results, we found that the 

 
threshold condition of 20% reveals the highest level 
of significance for all parameters. It is also clear that 
Tb.Thick and FD provide a lower accuracy for all 
regions compared to the other parameters. Figure 5 
compares the evaluation parameters between the 
normal and osteoporotic groups for Ward’s triangle. 

 
4. Discussions 

Tb.Area, Tb.Peri, Tb.TD, Sk.N, and 
Sk.Length demonstrated relatively stable variation 
tendencies. Tb.Thick, however, did not show 
consistent variations for each condition. The 
differences of Tb.Thick between two groups were 
very small in the greater trochanter, although the 
significant differences were revealed within the 
thresholding condition of 20-30%. Tb.Thick is 
typically larger in the normal group than that of 
osteoporotic patients, since the values tend to 
decrease faster as BMD declines. In our experimental 
results, the femoral neck reflected this behavior, and 
Ward’s triangle also allowed for significant 
discrimination. The greater trochanter, however, 
presented significant differences within narrow 
ranges, and significance levels were not improved as 
the threshold values increased. Similarly, FD also 
yielded an irregular tendency for each region. FD was 
larger in the normal group during the thresholding 
condition of 0% (p<0.05), while the threshold of 20% 
produced significantly opposite results (p<0.05). In 
current studies, there are numerous conflicting results 
as to whether FD increases [Chen and Chen, 1998] or 
decreases [Bollen et al., 2001] when the BMD 
decreases. Moreover, FD can be easily influenced by 
various factors due to its relatively small variances. 
In order to cope with these limitations, it is necessary 
to perform additional experiments with an extensive 
number of subjects. Next, in Ward's triangle, all 
parameters, except for FD, showed low significances 
for the condition with no thresholds. This result 
comes from the abovementioned absorptance 
behavior of Ward's triangle. Ward’s triangle reflects 
more metabolic changes than other regions, whereas 

  

 

(a) Femoral neck (b) Greater trochanter (c) Ward’s triangle 
Figure 6. Comparison of FD between the normal and osteoporotic groups according to the different measuring 
regions 
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the deviations for each absorptance largely differ 
from individual to individual. It is therefore 
considered that the differences of the evaluation 
parameters were shown to be small for the 
experimental groups, and the reliability for 
diagnosing osteoporosis was low. 

 
5. Conclusions 

The results of the present study showed that 
the threshold condition of 20% yields the most 
reliable predictability for osteoporosis. We also found 
that the statistical significances are weakened, as the 
threshold excessively increases. Based on these 
experimental results, we found the clinical 
applicability of the proposed approach for 
discriminating osteoporosis. A limitation of this study 
is that the numbers of experimental subjects are 
relatively small. To make the results more robust, we 
will analyze the trabecular patterns obtained from 
DXA and micro CT with more data numbers. 
Moreover, we will assess the predictability for 
osteoporotic fractures by quantifying trabecular 
microarchitectures. 
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