
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 553

Software Development Method Using the Concurrency Control Approach Based on DEVS Simulation

Authors Yun Ho Kim, Yeong Rak Seong, and Ha Ryoung Oh

Department of Electrical Engineering, Kookmin University, Korea
yeong@kookmin.ac.kr

Abstract: Since the test results may differ according to the motion orders of a thread even in the same situation, it is
very difficult to develop multithread software. To address this problem, a software development method using a
concurrency control approach based on a discrete event simulation is proposed here. Concurrency control refers to
the pursuit of a management method to maximize the concurrent execution when it is necessary to handle many
tasks underway at the same time, while maintaining the capabilities of the system. However, it would not be cost
effective if, when testing the functions of software, changes are made to the thread’s concurrency by revising the
software directly. This study shows the feasibility of effective concurrency control through the use of simulation.
The proposed method, which is demonstrated with the development of navigation software, explains the process of
software development.
[Authors Yun Ho Kim, Yeong Rak Seong, and Ha Ryoung Oh. Software Development Method Using the
Concurrency Control Approach Based on DEVS Simulation. Life Sci J 2014;11(7):553-558]. (ISSN:1097-8135).
http://www.lifesciencesite.com. 75

Keywords: modeling; simulation; concurrency control; DEVS formalism

1. Introduction

When various concurrent tasks must be
performed in a single program, it is effective to
realize each task with an individual thread. A thread
is a flow of sequential control that is executed
independently in a program. A multithread is a type
of thread in which various threads are executed
concurrently. The execution of a multithread program
has the advantage of responding flexibly to events
occurring in any order in an external program.
However, it is very difficult to develop a multithread
program when compared to general single thread
programs. The main reason of such phenomenon is
that as the various threads in a single program are
being on the parallel executions competitively, the
motion orders of the thread may differ even by the
identical events occurring in identical orders and
times.

Because the motion orders of a thread may
affect the test results each time, this is a major factor
that affects the results of a multithread program test.
One of the ways of addressing this problem is to
control the concurrency of the threads during
execution of the program. In other words, the change
of execution orders of a thread in an event sequence
is decreased by controlling the concurrency of the
threads accordingly. In multithread software, the
performance will show no progress if the
concurrency of the thread is restricted. Meanwhile,
when too much concurrency is allowed, the
performance results will lose consistency.

Given this background, one way to ensure
the most effective concurrency control is to allow the
maximized concurrency within the constraint of not

losing the consistency of performance results.
However, it is very difficult to control the
concurrency of threads for effective operation
according to the number of event sequences.

In general, modeling and simulation are
used as a design tool to analyze the system behavior
before making a complicated system. Modeling and
simulation are also used to comprehend the
characteristics of a system without realization of the
actual system. Modeling and simulation are also used
as a tool for optimized design by forecasting the
results that might occur in actual situations.
Therefore, when developing multithread software, the
use of modeling and simulations makes verification
of the number of sequences and effective concurrent
control possible. Therefore, when developing a multi-
threaded program, if the model verified via modelling
and simulation is implemented in actual software,
then the problem of testing being difficult can be
overcome.

As an existing software development
technology via modelling, there is MDA(Mukerji and
Miller, 2003), in which a platform-independent
model is created and then converted to fit the desired
platform. Because MDA is based on UML 2.0(Object
Management Group, 2005), although it is
advantageous for verification of the model itself
when it comes to finding grammatical errors in the
model or contextual errors such as infinite loops,
because for simulation of the system a lot of work is
needed for the overall time management of the
simulation, and because it is executed only within the
case tool, it is rather limited for the purposes of
developing a typical simulator. Moreover, to

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 554

implement a system that was modelled using UML,
time management of the entire simulator has to be
included in the modelling, but this is an extremely
complex and difficult thing to do, necessitating a lot
of room for error, so there are difficulties that the
time management of the entire simulator has to be
directly programmed during software implementation.

In this paper, for the modelling language the
DEVS(Discrete Event System Specification)
formalism (Bernard, 1984) and DEVSim++ (Kim,
1994) simulation engine were used in order to resolve
the difficulty of the overall time management of the
simulation. Also, to address the problem that a
verified model has to be implemented again in actual
software code, a method of converting simulation
code to software code was suggested so that software
code could be easily implemented.

This study is organized as follows. Chapter 1
states the purpose and the background of this research.
Chapter 2 proposes and explains the concurrency
control approach based on a DEVS simulation for
software development. In addition, chapter 2 describes
the realization processes of software and navigation
software modeling and simulation through case
studies. Lastly, a conclusion and directions for future
research are given in chapter 3.

2. Concurrency Control Approach Based on
DEVS Simulation

This paper proposes a method that enables
control over the concurrency of threads effectively by
using a DEVS modeling simulation. Furthermore, the
process of navigation software development is cited
as a case study for developing multithread software
by applying the proposed method. Navigation
software provides basic functions to guide
destinations commanded by users, and multitasking
functions showing other places. It also offers
additional information such as the current location
change, speed, and expected time to the final
destination through GPS.

The method proposed in this study adheres
to the development process of the prototyping model
(Randy, 1991) under the Software Development Life
Cycle, but modeling and simulation processes replace
feedback loops after the prototype is designed and
implemented. Software development using DEVS-
based concurrency control approach can be largely
divided into 4 stages: requirement analysis, discrete
event modeling, simulation, and software
implementation. This is shown in (Figure 1).

Figure 1. Software development process using
concurrency control approach

2.1. Analysis of Requirements

The first stage involves the analysis of
system characteristics and user requirements. In this
stage, the events and functions required for the
software are organized.
The functions and requirements to be implemented in
the navigation system are as follows:

1. Processing of asynchronous user input
2. Display of scaled and translated maps
3. Refresh of current location based on periodically

updated GPS data
4. Processing and end movement must be

simultaneously achieved for each command
5. If various functions are performed

simultaneously, the system must measure
response lag or incorrect delivery of information

2.2. Modeling

The second stage involves the modeling of
software characteristics and requirements from the
previous stage into a simulation model. In this study,
simulation is used to measure changes in results or
system status while varying the priority of event
sequences or threads. Thus, a simulation model must
be developed ahead of the actual simulation.

The developed system was expressed as a
discrete event system before modeling. A discrete
event system is a dynamic system in which discrete
state variables change according to randomly
occurring events. All manmade systems can be
considered as discrete event systems. The transition
rule of discrete state variables can be expressed using
set theory rooted in discrete mathematics (Donald,
1977), and the DEVS formalism is the mathematical
framework for expressing discrete event systems
based on state equation set theory (Bernard , 2001).
The DEVS formalism has the following advantages
(Bernard, 1990).

1. Provision of a system theoretical (input, output,

state, and state transition) modeling framework
2. Model expression using functions and relations

based on set theory

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 555

3. Provision of a mathematical foundation for
hierarchical modeling following system
modularization

4. Provision of abstract simulator algorithm to
facilitate systematic, clear development

The DEVS model allows simulation to be

easily performed using the DEVSim++ simulator,
which is an implementation of the abstract simulator
algorithm.

In this section, the DEVS formalism was
applied to the modeling of navigation components
developed based on system requirements. (Figure 2)
is a block diagram of input/output relationships
between models constituting the navigation system.

Figure 2. Components of navigation system and
input/output relationships

Each model reflects the requirements
specified in section 2.1.1. The function described in
(1) is implemented in the INPUT model, (2) in the
MAP model, (3) in the GPS and LOC models, and
(4) in the MGR model. The USER model measures
simulation results with consideration of the
requirement in (5). The DISP model delivers
information provided by the navigation to the user.

The navigation system consists of 7 atomic
models and 1 coupled model, but only this paper only
covers the DISP model due to space constraints. The
DISP model distinguishes between input of the MGR
model and the MAP model to enable simultaneous
processing of responses to asynchronous user request
such as map control and information request, in
addition to synchronous location information. (Figure
3) shows the DISP model, modeled by using DEVS
formalism.

Figure 3. DISP model applying atomic DEVS model
formalism

2.3. Simulation
The third stage involves the simulation of

the DEVS model, which has been successfully
modeled in the previous stage. In the previous section,
the functions provided by the navigation software
were each implemented into a model. This section
uses the DEVSim++ simulator to simulate user
response in accordance with model priority. In
addition, changes in user response and operational
status of the navigation were examined with varying
priority. (Table 1) presents the navigation movement
scenario according to user commands. And (Table 2)
presents the simulation result of navigation model.

Table 1. Navigation movement scenario according to
user commands

User command Navigation Action

Turn on navigation
Receives GPS data and
updates current location

Select destination
Displays path to
destination

Select path
Displays distance and
expected time to
destination

Navigation request Begin navigation

Scale (zoom in/out)
or translate map

Displays scaled or
translated map

View current
location

Displays current location

Turn off navigation
Ends navigation to
destination

Table 2. Simulation result of navigation model

Case
Thread priority

(INPUT–MGR–MAP–
GPS–LOC–DISP)

Average waiting
time

1 1 – 2 – 3 – 4 – 5 – 6 412 ms

2 2 – 3 – 4 – 5 – 6 – 1 396 ms

3 3 – 4 – 5 – 6 – 1 – 2 453 ms

… … …

10 1 – 2 – 4 – 5 – 6 – 3 374 ms (best)

… … …

703 6 – 5 – 2 – 1 – 3 – 4 687 ms (worst)

… … …

720 6 – 5 – 4 – 3 – 2 – 1 529 ms

2.4. Software Implementation

The final stage implements the actual
software based on the model verified through
simulation. For coding of the actual navigation
software, the verified navigation model must be
converted to a software code. Further, the software

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 556

code should be verified to ensure that the simulation
model has been properly implemented. This paper
proposes a method of using the simulation code to get
a software code. Since the DEVS abstract simulator
algorithm was implemented in C++ for simulation,
the same requirements can be easily reflected in the
actual software code, which is written in the same
language. With the proposed method, we can expect
the software to operate in the same manner as the
simulation.

The simulation code can be converted to
software code as follows.

1. Each atomic model, with consideration of the

simulation code, is implemented to match a
single-thread.

2. The input/out relationships and hierarchical
structure of atomic models are flattened into a
single-layered structure, and managed by the
scheduler thread.

3. The scheduler thread is in charge of delivering
messages between atomic models.

4. Input/output events occurring at atomic models
are classified according to message type sent
from the scheduler thread to each thread.
i) External transition function is performed if the

message type is IM (input message)

ii) Output function and internal transition
function are performed if the message type is
TEM (time expired message)

5. In the Atomic Thread, TimeAdvanceFn() is a
function for the time during which the current
state is maintained. The time for maintaining the
current state is defined in TimeAdvanceFn().
This value represents the time to the next event,
and the SetEvent() function is used for sending to
the scheduler thread. If the set time is INFINITY,

the waiting time becomes infinite without having
to update the atomic thread.

The block diagram and pseudo code in
(Figure 4) show the message processing between
Atomic Thread and Scheduler Thread.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 557

Figure 5. Code of the DISP_thread

(Figure 5) is the code of the DISP model

implemented with the proposed method. ExTransFn()
in (Figure 4) is equivalent to7~26 in (Figure 5),
OutputFn() equal to 30 in (Figure 5), IntTransFn() in

32 in (Figure 5), and TimeAdvanceFn() equal to
35~59 in (Figure 5).

The other models constituting the navigation
system were each implemented into a thread to
complete the navigation software. The program is
verified with the test cases used during the validation
process. (Figure 6) gives the test results of the
navigation software. From the test results, we can
confirm that the proposed structure satisfies the
specified requirements.

3. Conclusion

This paper proposes the concurrency control
method on the basis of DEVS modeling and

simulation, which can be used in developing multi-
thread software. The proposed method controls
concurrency of each thread to solve decreasing
consistency of a result, which makes development of
multi-thread software difficult, and uses DEVS
simulation to measure the minimum range of
concurrency control, which ensures consistency of
performance results. In addition, this paper suggests
the method to transform simulation codes to actual
software codes for quick and easy preparation of
software codes, considering the results of simulation.
Furthermore, the process to develop multi-thread
software using methods presented in navigation
software development cases is explained.

For future study, the scope of the method
proposed in this study should be expanded in order to
apply it to not only C++ language platform but also
other types of platforms and a study on an automatic
software code generation tool is also required to
develop quicker and more accurate multi-thread
software.

Corresponding Author:
Prof. Yeong Rak Seong
Department of Electrical Engineering
Kookmin University, Korea
E-mail: yeong@kookmin.ac.kr

References
1. Mukerji J, Miller J. Model Driven Architecture

Guide V1.0.1. 2003. http://www.omg.org/cgi-
bin/doc?omg/03-06-01

2. OMG Architecture Board MDA Drafting Team.
Model Driven Architecture - A Technical

Figure 6. Test result of navigation software

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 558

Perspective. 2001. http://www.omg.org/chi-
bin/doc?ormsc/01-07-01.pdf

3. Unified Modeling Language Home Page:
http://www.uml.org.

4. Object Management Group. UML 2.0
Specification. 2005.
http://www.omg.org/spec/UML/2.0/.

5. Bernard PZ. Theory of Modeling and Simulation.
John Wiley. New York 1984.

6. Kim TG. DEVSim++ User's Manual: C++ Based
Simulation with Hierarchical Modular DEVS
Models. 1994.

7. Randy SW. Prototyping and the Systems
Development Life Cycle. Journal of Information
Systems Management 1991; 8(2): 47-53.

8. Donald FS, David FM. Discrete Mathematics in
Computer Science. Prentice Hall 1977.

9. Bernard PZ. DEVS Representation of Dynamical
System : Concepts, Algorithm, and Simulation.
Journal of Parallel and Distributed Computing
2001; 9: 271-281.

10. Bernard PZ. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press
1990.

5/26/2014

