
 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

395

Enhanced Berry Ravindran Pattern Matching Algorithm (EBR)

Dima Suleiman

Department of Business Information Technology, King Abdullah II School for Information Technology,
The University of Jordan, Amman 11942 Jordan

dima.suleiman@ju.edu.jo

Abstract: In this paper, a new pattern matching algorithm is proposed. The new algorithm Enhanced Berry
Ravindran (EBR) algorithm made enhancements on Berry-Ravindran (BR) algorithm. In BR, the shift value is
computed by taking two consecutive characters of the text immediately following the pattern window. The new
algorithm maximizes the shift used in BR by computing the shift value using three consecutive characters. EBR uses
two sliding windows to scan the text from the left and right simultaneously. In each sliding window the comparisons
made between the text and the pattern are made from both sides of the pattern at the same time. The proposed
algorithm shows better performance compared with the existing algorithms in terms of number of comparisons and
attempts.
[Dima Suleiman. Enhanced Berry Ravindran Pattern Matching Algorithm (EBR). Life Sci J 2014;11(7):395-
402]. (ISSN:1097-8135). http://www.lifesciencesite.com. 47

Keywords: Pattern matching, Berry-Ravindran algorithm, Two Sliding Windows algorithm, Enhanced Two Sliding
Windows Fast Pattern Matching Algorithm.

1. Introduction

Pattern matching algorithms have been used
in many applications such as anti-viruses, search
engines, anti plagiarism and many biological
applications (Bhukya et al., 2011 ; Bhukya et al.,
2010; Diwate et al., 2013; K.K.Senapati et al., 2010).
Most of pattern matching algorithms search for a
certain pattern p of length m in a text t of length n
(Boyer et al.,1977; Chao et al.,2012; Diwate et
al.,2013; Pendlimarri et al.,2010; Senapati et al.,
2012). The main goal of these algorithms is to make
the searching process faster and more efficient by
making different enhancements, such enhancements
can be made either on shifting value (Al-mazroi et
al., 2011; Berry et al., 2001; Salmela et
al.,2010;Senapati et al.,2012) during preprocessing
phase or in a searching process (Hudaib et al.,
2008;Hussain et al.,2013;Hlayel et al., 2014; Itriq et
al., 2013). Enhancements on the shift value used to
maximize the shift in case of a mismatch between the
text and the pattern; in this case the amount of shift
depends on the number of consecutive characters
immediately after the pattern window (Berry et al.,
2001; Suleiman et al., 2013). On the other hand
enhancements may be made on the number of
windows used in a searching process, some
algorithms uses one window others use two or more
(Hudaib et al., 2008; Itriq et al., 2013).

In this paper, a new pattern matching
algorithm is implemented: EBR. While EBR
algorithm uses the same comparisons techniques used
in ETSW (Itriq et al., 2013), it uses different amount
of shift in case of a mismatch.

EBR uses three consecutive characters instead of two
to determine the shift value, which make the
searching process faster. Comparisons are made
between the EBR algorithm, TSW (Hudaib et al.,
2008), ETSW (Itriq et al., 2013) and Berry-Ravindran
(BR) (Berry et al., 2001) algorithms. The
experimental results showed that EBR is faster than
the others in case of number of comparisons and
number of attempts.

2. Related Works
 Applications such as search engines, text
processing and many others depend on pattern
matching algorithms which make the searching
algorithms one of the hot topics in research (Bhukya
et al.,2011; Bhukya et al.,2010;Faro et al.,2012;
Vangipuram et al., 2011). Most of pattern matching
algorithms use two phases: preprocessing phase and
searching phase. Most of researches have been made
to make enhancements on either execution time or
memory usage or both (Salmela et al., 2010).

The Berry-Ravindran algorithm (BR) (Berry
et al., 2001) made enhancement on the preprocessing
phase. Preprocessing phase used to determine the
value of the shift in case of a mismatch between the
text and the pattern. In BR (Berry et al., 2001) the
shift value depends on using two consecutive
characters in the text immediately to the right of the
pattern. The pre-processing and searching time
complexities of BR algorithm are O(σ2) and O(nm)
respectively.

Two Sliding Windows algorithm (TSW)
(Hudaib et al.,2008) uses the same preprocessing
technique used in BR (Berry et al.,2001). The main

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

396

difference between TSW (Hudaib et al.,2008) and BR
(Berry et al.,2001) is in the searching phase while BR
uses only one window, TSW uses two windows to
scan the text from the left and right at the same time.
By using two windows instead of one the searching
process become faster and the number of
comparisons and attempts minimized. In TSW, the
best time complexity is O(m) and the worst case time
complexity is O(((n/2-m+1))(m)). The pre-process
time complexity is O(2(m-1)).
 An enhancement has been made on TSW
(Hudaib et al.,2008) to make a new algorithm,
enhanced two sliding windows ETSW (Itriq et
al.,2013). In ETSW algorithm the comparison
technique between the text and the pattern improved
by making parallel comparisons between the left side
and the right side of the pattern at the same time. The
same process applied to the two pattern windows, the
best time complexity is O(m/2) and the worst case
time complexity is O(((n/2-m/2+1))(m/2)). The pre-
process time complexity is O(2(m-1)).

EBR algorithm uses the same searching
process used in enhanced two sliding windows
algorithm (ETSW). The searching process uses two
sliding windows and the comparisons between the
pattern and the text are made from both sides
simultaneously. EBR made enhancements on Berry-
Ravindran (BR) algorithm (Berry et al.,2001); while
BR uses two consecutive characters of the text
immediately following the pattern window to
determine the amount of shift, EBR uses three which
maximizes the shift and the efficiency of the
searching process.

3. The Enhanced Berry Ravindran (EBR)
Algorithm.

The EBR algorithm scan the text to search
for a particular pattern p in a text t from both sides by
using two sliding windows such as TSW (Hudaib
2008) algorithm, a comparison made between the
patterns and text also happened in parallel from both
sides of the pattern such as comparisons made in
ETSW (Hudaib et al.,2008) algorithm. In new
algorithm, the two widows aligned with text from
both sides one from the left and the other from the
right; in case of a mismatch the widows shifted
according to the modifications of Berry Ravindran
algorithm by using three consecutive characters
instead of two. The searching process will stop either
when the pattern found from either sides or in a case
the pattern not found at all.
The main differences between EBR algorithm and
ETSW algorithm are:
1. EBR uses new shifting algorithm which is a
modification on BR (Berry et al., 2001) algorithm

that depends on using three consecutive characters
instead of two.
2. The EBR uses two arrays; each array is a one
dimensional array of size m-2. The arrays are used to
store the shift values for the two sliding windows.
While TSW and ETSW uses two arrays of size m-1
the main reason for this is using three consecutive
characters instead of two.
3.1 Pre-processing Phase

The pre-processing phase is used to
determine the shift value in case of a mismatch at
either the left or the right side of the text. This phase
is used to generate two arrays nextl and nextr, each
one of size m-2. The values of two arrays are
calculated according to the modification on BR
algorithm. nextl contains the shift values needed in
case a mismatch happened from the left side. To
calculate the shift values, the algorithm considers
three consecutive text characters a, b, c which are
aligned immediately after the left sliding window.
 Initially, the indexes of the three consecutive
characters in the text string from the left are (m+1),
(m+2) and (m+3) for a, b and c respectively as in
Equation (1).

EBR[a,b,c]
 = min

 On the other hand, nextr contains the shift
values needed when a mismatch occurs at the right
side, initially the indexes of the three consecutive
characters in the text string from the right are (n-m-
3), (n-m-2) and (n-m-1) for a, b, c respectively, which
are used to calculate the shift values as in Equation
(2).

EBR[a,b,c]
 = min

1 if p[m-1]=a

2 if p[m-2][m-1]=ab

m+1 if p[0]=b

m+2 if p[0]=c …(1)

m-i if p[i][i+1][i+2]=abc

m+3 otherwise

m+2 if p[m-1]=a

m+1 if p[m-1]=b

1 if p[0]=c

2 if p[0][1]=bc

…(2)

m-((m-3)-i) if p[i][i+1][i+2]=abc

m+3 otherwise

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

397

The two arrays will be invariable during the
searching process. Figure 1 illustrates the steps of the
pre-processing algorithm.

Figure 1: The pre-processing algorithm

3.2 Searching Phase

In this phase, the search starts from both
sides simultaneously using two windows, the right
window aligned with the text from the right and the
left window aligned with the text from the left. In
case of a mismatch the right window will be shifted
to the left and the left window will be shifted to the
right using the shift values stored in nextr and nextl
arrays respectively.
The two main steps of the EBR algorithm are:

Step1: After aligning the left and the right
windows with text, comparisons between the
windows and the text will happen at the same time.
Comparisons will start from the beginning and the
end of each window with the text by using four
pointers, two for each side. The pointers called left
pointer and right pointer as in ETSW (Itriq et
al.,2013) algorithm. In case of a mismatch in either
sides go to step 2; otherwise the left pointer will be
shifted one step to right and the right pointer will be
shifted one step to the left in each window in parallel,
once the pointers intersected a complete match found.

Step2: In this step, a mismatch occurs
between the patterns and the text, so that the left
window will be shifted to the right according to the
values in nextl and the right window will be shifted to
left a number of steps depending on nextr array. In
both cases the shift values depend on three
consecutive characters in the text which placed
immediately after the windows.

Both steps are repeated until the first
occurrence of the pattern is found from either sides or
until both windows are positioned beyond ┌n/2┐.

3.3 Working Example
In this section I will present an example to

clarify the new algorithm.
Given:
Pattern(P)=”ACEBCCAB”, m=8
Text(T)=”DDCBCACABCCDACEBCCABCABCA
CAACEBCACACCAEBCCDBCAEBCA”,n=50
3.3.1 Pre-processing phase:

Initially, shiftl = shiftr = m+3 = 11.
The shift values are stored in two arrays

nextl and nextr as shown in Figure 2(a) and Figure
2(b) respectively.

Shift Values from the left
Index 0 1 2 3 4 5

nextl

(a)
 Shift Values from the right

Index 0 1 2 3 4 5
3 4 5 6 7 8

nextr

(b)
Figure 2: The nextl and nextr arrays

To build the two next arrays (nextl and

nextr), I take each three consecutive characters of the
pattern and give it an index starting from 0. For
example for the pattern structure ACEBCCAB, the
consecutive characters ACE, CEB, EBC, BCC, CCA
and CAB are given the indexes 0,1,2,3,4 and 5
respectively.

The shift values for the nextl array are
calculated according to Equation (1) while the shift
values for the nextr array are calculated according to
Equation (2).
3.3.2 Searching Phase:

The searching process for the pattern P is
illustrated through the working example as shown in
Figure 3.
First attempt:

In the first attempt (see Figure 3(a)), I align
the left window with the text from the left. A
comparisons are made between the first character of
the text from the left (D) with the first character of
the window from the left (A) and at the same time
character at index (7) from the text (A) with the last
character of the window (B) a mismatch occurs;
therefore I take three consecutive characters from the
text at indexes 8, 9 and 10 which are (B, C and C)
respectively. To determine the amount of shift (shiftl)
I have to do the following:

8 7 6 5 4 3

Begin
 shiftl=shiftr=m+3

 for (each character pi Pi=0,…..m-3)

 {nextl[i]=m-i,nextr[i]=m-((m-3)-i)}

if P[m-1]=a {shiftl=1}
else if p[m-2][m-1]=ab { shiftl=2}
else if p[0]=b { shiftl=m+1}
else if p[0]=c { shiftl=m+2}
else if p[i][i+1][i+2]=abc { shiftl=nextl[i]}

if p[0]=c { shiftr=1}
else if p[0][1]=bc { shiftr=2}
else if P[m-1]=a {shiftr=m+2}
else if P[m-1]=b {shiftr=m+1}
else if p[i][i+1][i+2]=abc { shiftr=nextr[i]}
End

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

398

Since p[m-1]=a; B=B then according to a
preprocessing algorithm the shift value will be 1.
Second attempt:

In the second attempt (see Figure 3(b)), I
align the right window with the text from the right. A
comparisons are made between the character at index
(42) from the text (D) with the first character from
the right window (A) and at the same time between
the last character of the text (A) with the last
character of the window (B) a mismatch occurs;
therefore I take the three consecutive characters from
the text at indexes 39, 40 and 41 which are (B, C and
C) respectively. To determine the amount of shift
(shiftr), I have to do the following two steps:

a) Find the index of BCC in the pattern which
is 3.

b) Since the search occurred from the right side
I use nextr array for index (3):

 nextr[3]=6, then the shift value will be 6.
Therefore the window will be shifted to the left 6
steps.
Third attempt:

In the third attempt (see Figure 3(c)), a
match occurs from the left between text character (B)

at index (8) and pattern character (B) but since a
mismatch occurs between text character (D) at index
(1) and pattern character (A) , so comparisons will
stop and a mismatch occurs; therefore I take the three
consecutive characters from the text at indexes 9, 10
and 11 which are (C, C and D) respectively, since
CCD is not found in the pattern, so the window will
be shifted to the right 11 steps.
Fourth attempt:

In the fourth attempt (see Figure 3(d)), a
match occurs from the left between text character (B)
at index (43) and pattern character (B) but since a
mismatch occurs between text character (C) at index
(36) and pattern character (A), so comparisons will
stop and a mismatch occurs; Since P[0][1] =AC =cd
according to a preprocessing algorithm equation(2)
the shift value will be 2 so the pattern will be shifted
two steps to the left.
 Fifth attempt:

 Align the left most character of the pattern
P[0]with T[12]. Comparisons between the pattern and
the text characters leads to a complete match at index
12. In this case, the pattern was found using the left
window.

Figure 4: Working Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …

D D C B C A C A B C C D A C E B C C A B C A B C A

A C E B C C A B

1 A C E B C C A B

(a)

 Pattern

Text

Pattern

After shift

…. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

 C A A C E B C A C A C C A E B C C D B C A E B C A

 A C E B C C A B

 A C E B C C A B 6 5 4 3 2 1

 (b)

Text

Pattern

Pattern

After shift

…. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

 C A A C E B C A C A C C A E B C C D B C A E B C A

 A C E B C C A B

 A C E B C C A B 2 1

 (d)

Pattern

Pattern

After shift

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …

D D C B C A C A B C C D A C E B C C A B C A B C A

 1 2 3 4 5 6 7 8 9 10 11 A C E B C C A B

 (e)

 Pattern

Text

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 …

D D C B C A C A B C C D A C E B C C A B C A B C A

 A C E B C C A B

 1 2 3 4 5 6 7 8 9 10 11 A C E B C C A B

 (c)

Pattern

After shift

 Pattern

Text

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

399

4. Analysis
Preposition 1: The space complexity is

O(2(m-2)) where m is the pattern length.
Preposition 2: The pre-process time

complexity is O(2(m-2)).
Lemma 1: The worst case time complexity

is O(((n/2-m+1))(m))
Proof: The worst case occurs when at each

attempt a match occurs between all pattern character
except the one at the middle, and at the same time the
shift value is equal to 1.
Lemma 2: The best case occurs when the pattern is
found at the first index or at the last index (n-m). In
these cases the complexity is O(m).

Lemma 3: The Average case time
complexity is O(n/(2*(m+3)))

Proof: The Average case occurs when the
three consecutive characters of the text directly
following the sliding window is not found in the
pattern. In this case, the shift value will be (m+3) and
hence the time complexity is O([n/(2*(m+3))]).

5. Experimental Results and Discussion

 Many experiments have been done in EBR
algorithm using Book1 from the Calgary corpus to be
the text (Calgary corpus). Book1 consists of 141,274

words (752,149 characters). Patterns of different
lengths are also taken from Book1.

Table 1 and Figure 4 show the results of
comparing the algorithms TSW, ETSW and EBR and
Figure 4(a) and Figure 4(b) represents the average
number of attempts and comparisons respectively.

In Table 1 the first column represents the
pattern length; second column is the number of words
of a certain length. It’s obvious from the results that
the number of attempts and comparisons in EBR is
better than the other algorithms. For example, as
shown in Table 1, 1167 words of length 8, the
average number of comparisons in TSW is 11087, in
ETSW is 10115 and in the new algorithms is 9198
which is the minimum value among the others values.
The same results can be shown about the average
number of attempts.

Although EBR algorithm uses the same
techniques of comparisons used in ETSW it uses
different shifting algorithm which depends on using
three consecutive characters of the text, while ETSW
and TSW algorithm uses only two consecutive
characters, so that the average number of
comparisons and attempts in ETSW and TSW
algorithm are more than that of EBR.

Table 1: The average number of attempts and comparisons of TSW, ETSW and EBR algorithms

Pattern
length

Number of
words

TSW ETSW EBR

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

5 4535 4456 4896 4456 3549 3174 3193
6 2896 7596 8311 7596 7633 6777 6818
7 1988 9341 10263 9341 9118 8223 8276
8 1167 10056 11087 10056 10115 9131 9198
9 681 9538 10538 9538 9590 8707 8765

10 382 9283 10272 9283 9339 8512 8576
11 191 5451 5967 5451 5482 5009 5045
12 69 6384 7168 6384 6433 5908 5966
13 55 7947 8673 7947 7986 7364 7408
14 139 19437 21319 19437 19535 18031 18144
15 32 19682 21739 19682 19782 18253 18367
16 10 20029 21596 20029 20092 18569 18641
17 3 21897 25404 21897 22147 20340 20639

Table 2 shows the average number of

attempts and comparisons for 100 words taken from
the right side of Book1. Clearly can be seen that EBR
is the best among the others since it maximize the
shift value in case of a mismatch.

Table 3 shows the average number of
attempts and comparisons for 100 words taken from
the middle of Book1 while Table 4 shows the average
number of attempts and comparisons for 100 words
taken from the left side of Book1 and the same
results shown in Table 2 are shown here.

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

400

 (a)

 (b)

Figure 4: The average number of attempts and comparisons of TSW, ETSW and EBR algorithms

Table 2: The average number of attempts and comparisons performed to search for (100) patterns selected from the
right side of the text

Pattern
length

Number of
words

TSW ETSW EBR

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

5 100 185 206 185 187 165 167
6 100 227 255 227 230 201 205
7 100 347 388 347 351 314 318
8 100 504 568 504 510 458 465
9 100 670 750 670 677 612 619

10 100 1160 1290 1160 1170 1065 1076
11 100 622 705 622 628 568 574
12 100 865 972 865 878 797 811

Table 3: The average number of attempts and comparisons performed to search for (100) patterns selected from the
middle of the text

Pattern
length

Number of
words

TSW ETSW EBR

A
tt

em
pt

s

C
o

m
pa

ri
so

ns

A
tt

em
pt

s

C
o

m
pa

ri
so

ns

A
tt

em
pt

s

C
o

m
pa

ri
so

ns

5 100 13965 15140 13965 11618 9113 9145
6 100 16682 18317 16682 16771 14895 14997
7 100 27267 30095 27267 26242 23701 23855
8 100 27830 30915 27830 28015 25262 25470
9 100 33929 37200 33929 34069 30928 31087

10 100 29676 32817 29676 29845 27208 27403
11 100 23195 24646 23195 23242 21234 21283
12 100 26806 30222 26806 27009 24804 25052

Table 5 compares between four algorithms

BR, TSW, ETSW and EBR. The results are
reasonable EBR is the best among the other
algorithms and this is related to three reasons: First: It
scans the text from both side simultaneously using

two windows. Second it compares the pattern with
text using two pointers at the same time. Finally it
uses three consecutive characters instead of two so
that the shift value will be maximized

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

401

Table 4: The average number of attempts and comparisons performed to search for (100) patterns selected from the
left side of the text

Pattern
length

Number of
words

TSW ETSW EBR

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

5 100 271 297 271 270 208 210
6 100 364 402 364 368 325 329
7 100 402 447 402 405 361 365
8 100 536 592 536 541 487 493
9 100 776 859 776 783 710 717

10 100 1579 1756 1579 1593 1451 1466
11 100 619 669 619 624 572 577
12 100 1667 1872 1667 1685 1547 1567

Table 5: The average number of attempts and comparisons for patterns with different lengths

Pattern
length

Number of
words

TSW BR ETSW EBR

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

A
tt

em
pt

s

C
om

pa
ri

so
ns

4 8103 3904 4213 6409 7039 3904 3875 3174 3193
5 4535 4456 4896 9577 10645 4456 3549 6777 6818
6 2896 7596 8311 10898 12173 7596 7633 8223 8276
7 1988 9341 10263 11953 13345 9341 9118 9131 9198
8 1167 10056 11087 13256 14807 10056 10115 8707 8765
9 681 9538 10538 14149 15892 9538 9590 8512 8576

10 382 9283 10272 14127 15799 9283 9339 5009 5045
11 191 5451 5967 12808 14243 5451 5482 5908 5966
12 69 6384 7168 9598 10923 6384 6433 7364 7408
13 55 7947 8673 10334 11370 7947 7986 18031 18144
14 139 19437 21319 19548 21673 19437 19535 18253 18367
15 32 19682 21739 19817 22384 19682 19782 18569 18641
16 10 20029 21596 26086 28644 20029 20092 20340 20639
17 3 21897 25404 22554 28148 21897 22147 3174 3193

1. Conclusion and Future Work

In this research a new pattern matching
algorithm EBR was implemented. While EBR uses
the same comparisons techniques used in ETSW
(Itriq et al.,2013), it also enhances the techniques of
calculating the shift value. The shift value calculated
depends on using three consecutive characters instead
of two to determine the amount of shift to maximize
the shift value and reduce the number of comparisons
and attempts. As many searching algorithms, EBR
can be used in applications related to Biological
sequence such as DNA.

Performance of EBR was evaluated by
comparing it with many algorithms such as BR, TSW

and ETSW, and in all cases it was considered the
best.

References
1. Al-mazroi A, Rashid N. A Fast Hybrid

Algorithm for the Exact String Matching
Problem. American J. of Engineering and
Applied Sciences. 2011, 4 (1): 102-107.

2. Berry, T. and Ravindran, S., “A Fast String
Matching Algorithm and Experimental Results”.
In Proceedings of the Prague Stringology Club
Workshop ’99 (eds Holub, J.and Simanek, M),
Collaborative Report DC-99-05, Czech
Technical University, Prague, Czech Republic,
2001, pp. 16-26.

 Life Science Journal 2014;11(7) http://www.lifesciencesite.com

402

3. Bhukya R., Somayajulu D. Multiple Pattern
Matching Algorithm using Pair-count. IJCSI
International Journal of Computer Science
Issues, Vol. 8, Issue 4, No 2, July 2011 ISSN
(Online): 1694-0814.

4. Bhukya R., Somayajulu D. An Index based
Forward Backward MultiplePattern Matching
Algorithm. World Academy of Science,
Engineering and Technology 42 2010: 1513-
1521.

5. Boyer, R. S. and Moore, J. S., “A Fast String
Searching Algorithm”. Commun. ACM, 1977,
20, 762-772.

6. Calgary Corpus available at:
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.comp
ression.corpus/

7. Chao Y. An Improved BM Pattern Matching
Algorithm in Intrusion Detection System.
Applied Mechanics and Materials (Volumes 148
- 149) 2012.

8. Diwate R, Alaspurkar S. Study of Different
Algorithms for Pattern Matching. International
Journal of Advanced Research in Computer
Science and Software Engineering. 2013;
Volume 3, Issue 3, 615-620.

9. FARO S, EFFICIENT VARIANTS OF
THEBACKWARD-ORACLE-MATCHING
ALGORITHM. International Journal of
Foundations of Computer Science, 2009, Vol.
20, No. 6: 967–984.

10. Faro S, K¨ulekci‡M. O. Fast Packed String
Matching for Short Patterns.arXiv:1209.6449v1
[cs.IR] 28 Sep 2012.

11. Hudaib A., Al-Khalid R., Suleiman D., Itriq M.
and Al-Anani A. A Fast Pattern Matching
Algorithm with Two Sliding Windows (TSW).
Journal of Computer Science 2008; 4 (5): 393-
401.

12. Hussain I, Kausar S, Hussain L, Khan M.
Improved Approach for Exact Pattern
Matching(Bidirectional Exact Pattern
Matching). IJCSI International Journal of
Computer Science Issues. 2013; Vol. 10, Issue
3, 59-65

13. Hussain I,Kazmi S,Khan I,Mehmood R.
Improved-Bidirectional Exact Pattern Matching.
International Journal of Scientific &
Engineering Research. 2013; Volume 4, Issue 5,
659-663.

14. Hlayel, Abdallah A.; Hnaif, Adnan A. A New
Exact Pattern Matching Algorithm (WEMA).
Journal of Applied Sciences . 2014, Vol. 14
Issue 2, p193-196. 4p.

15. Itriq M., Hudaib A., Al-Anani A., Al-Khalid R.
and Suleiman D. Enhanced Two Sliding
Windows Algorithm For Pattern Matching
(ETSW). Journal of American Science
2012;8(5): 607- 616.

16. K.K.Senapati, G.Sahoo, S.Sahana” An Efficient
pattern matching algorithm for biological
sequence”. Proceedings of the International
conference on Image processing, Computer
Vision and Pattern Recognition (IPCV2010),
VOL-II, PP-755-759, LasVegas, USA.

17. Pendlimarri D. and Petlu P. B. B. Novel Pattern
Matching Algorithm for Single Pattern
Matching.International Journal on Computer
Science and EngineeringVol. 02, No. 08, 2010,
2698-2704

18. Suleiman D,Hudaib A, Al-Anani A,Al-Khalid
R, Itriq M. ERS-A Algorithm for Pattern
Matching. Middle East Journal of Scientific
Research.2013. Vol. 15 Issue 7, p 1067-1075

19. Salmela L. Tarhio J. Kalsi P. Approximate
Boyer-Moore String Matching for Small
Alphabets. Volume 58, Number 3, November
2010 , pp. 591-609(19)

20. Senapati K.K., Mal S., Sahoo G. RS-A Fast
Pattern Matching Algorithm for Biological
Sequences. International Journal of Engineering
and Innovative Technology (IJEIT)Volume 1,
Issue 3, March 2012: 116- 118.

21. Vangipuram R. K.,Sandeep S. J., Reddy A. Text
Segmentation Based Pattern SearchAlgorithm.
International Journal of Wisdom Based
Computing, Vol. 1(3), December 2011

4/15/2014

