Incorporation of 14C 18:2 into Different Lipid fractions of Glycine max Cotyledons

MOHAMMED ABDEL-REHEEM$^{1, *}$, AND DAVID HILDEBRAND1

1Research Center, College of Science, King Saud Univ., Riyadh, KSA, 2Biochemistry Dept. Faculty of Agric., Ain Shams Univ., Cairo, Egypt; 3Plant Science Dept., University of Kentucky, Lexington, KY 4056-0091, USA
matbio2020@gmail.com

Abstract: a pulse-chase study of radiolabeled 14C linoleoyl-CoA was carried out at an early and late stage of embryo triglyceride (TG) synthesis of in order to investigate factors that contribute to fatty acids content of normal oilseeds such as Glycine max (Soybean). Data indicate that 14C-18:2 is rapidly removed from PC and incorporated directly into TG. Also no significant changes occurred in 14C -18:3 levels in soybean. This indicates that desaturase activity decreased during the late stage in soybean embryos and most of 14C -18:2 was released from PC and incorporated into TG without being converted into 18:3.

Keywords: Glycine max, Lipid classes, Fatty acids.

1. Introduction

In developing soybean cotyledons, the accumulation of radioactive polyunsaturated fatty acids into phospholipids results from acyltransferase activity, also further desaturation of oleic acid incorporated in phospholipids was found in developing soybean cotyledons (Wilson et al., 1980). In flax seeds, incorporation of 14C from acetate into lipids was very rapid and with phospholipids and 1, 2-diacylglycerols it was within as short as 5 min. Triacylglycerols were labeled much slower (Dybing and Craig, 1968). In the biosynthesis of triacylglycerol the acyl groups are esterified at the sn-1, 2, and 3 positions of the glycerol back bone by the activities of the acyl-CoA: sn-glycerol-3-phosphate acyltransferase (GPAT), acyl-CoA:1-acyl-sn-glycerol-3-phosphate.

Therefore the production of high levels of specific fatty acid in transgenic or wild type plants is important for an efficient channeling of this fatty acid from membrane lipids into the TAG. However the mechanism for such selective channeling of certain fatty acids into the TAG is not understood (Dahlqvist et al., 1998). Another TG synthesis route has been discovered in animal (rat) and in plant (safflower) systems. Lehner and Kuksis (1993) and Stobart et al. (1997) presented evidence for a non-glycerol-3-phosphate pathway for transacylations of glycerol back bone using diacylglycerol transacylase (DGT) that catalyzes the transfer of fatty acid between two molecules of DG resulting in the production of TG and MG. Additionally in animal systems evidence for Acyl-CoA: glycerol acyltransferase (AGAT) catalyzes the direct acylation of glycerol by acyl-CoA producing MG were found in addition to the acylation of glycerol-3 phosphate by GPAT in the glycerol-3-phosphate pathway (Lee et al., 2001).
al., 1985). As reviewed by Bernerth and Frentzen (1990) the properties of some different acyltransferases, such as DGAT from *Tropaeolum majus* and *Limnanthes douglaii*, have already investigated especially for their fatty acid specificities and selectivity and they fund to be highly specific toward their substrates and this wildly vary from plant to plant. The synthesis of C18 polyunsaturated fatty acids from oleic acid and their incorporation into TAGs in oilseeds are better understood (Stymne and Stobart, 1987). It has been shown for many species that diacylglycerol (DAG) are the precursors of phosphatidylcholine (PC) and TAG. During the formation of triacylglycerols through glycerol-3-phosphate or the Kennedy pathway, (Kennedy, 1961), there is an equilibrium between the DAG pool, PC pool, and glycerol backbone (Slack et al., 1985; Stobart and Stymne, 1985).

Linoleate incorporated into TAG from the acyl-CoA pool occurs through an acyl exchange between oleoyl-CoA and linoleate at position sn-2 of PC. Then oleolyl position in the sn-2 position of PC has been fund to be important in regulating the level of polyunsaturated fatty acids availability for TAG formation. Also in castor, DAG acyltransferase (DGAT) is highly selective for DAG species and utilizes both medium and long-chain acyl-CoA species (Griffiths et al., 1988; Bafor et al., 1990; Lin et al., 1998). In addition, the conversion of PC to free fatty acids by phospholipase A₂ is strongly dependent on the enzyme itself and different phospholipases have strong specificity toward specific fatty acids (Lin et al., 1998). In addition, other acyltransferases such as glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT) from different organisms have different specificity toward different fatty acids (Lohden and Frentzen, 1992; Pillai et al., 1998; Sharma et al., 2012). The regulation and the metabolic factors of different oil accumulation levels and their wide range of fatty acid contents in oilseeds are currently unknown (Ohlrogge and Jaworski, 1997). However, sufficient acyltransferase activities and glycerol-3-phosphate levels are not the only limiting factors in TAG synthesis rates in vivo, but the amount of fatty acid produced in plastids may in part determine the amount of TAG synthesized in oilseeds (Bao and Ohlrogge, 1999).

Linoleoyl phosphatidylcholine is the main substrate for microsomal o3 desaturase, but the linoleic acid ester with galactolipids or sulfolipids is the main substrate for plastid isoforms (Kinney, 1994). The linolenate is synthesized much less at the sn-1 position of PC than that synthesized at the sn-2 position. In addition there are two genes that control linoleoyl-PC desaturation during the early stages of the high accumulation of TAG in linseed (Stymne et al., 1992). It is now evident that humans need to increase their dietary o3 fatty acid levels. Oils high in o3 fatty acids are also more useful renewable resources such as drying oils used in products such as printing inks. So in order to be able to engineer seeds oil to produce such nutritionally and industrially valuable compounds in a relatively lower commercial production expense, it is important to understand the factors that affect high 18:3 accumulation in TAG in high producer plants.

Soybean seeds contain 20% oil and 8% of it is 18:3 (Dahmer et. al., 1991). Pulse chase studies were carried in order to investigate factors that contribute to fatty acids content of normal oilseeds such as *Glycine max* (Soybean)

2. Material and Methods

2.1. Plant material

Seeds of two different cotyledons developmental stages; were TG is mostly synthesized; from soybean (7–9 mm & 9–11 mm) were taken, and seed coats were removed and cotyledons were separated.

2.2. Pulse-Chase

Radiolabeled 18:2 CoA (0.0033 μCi) / mg fresh seed tissue, 1 μL/mg fresh weight of embryo of 0.1 M potassium phosphate buffer, pH 7.2, 0.1% Tween 20 (Buffer A) were added to clean test tubes. Mixed together, and the seed tissues were added to the test tube that corresponds to their weight, and then incubated for 90 min. in the presence of fluorescent light. At the end of the 90 min. all tubes were washed 2 times with 0.1 M potassium phosphate buffer, pH 7.2, 0.1% Tween 20, each time with 1 mL. Two replicates, from each stage of soybean were taken for lipid analysis (zero time), and the rest were incubated for further chasing. Samples were collected for lipid analysis after 30, 60 (1h), and 120 min. (2h), from zero time.

2.3. Separation of lipid classes using TLC

Total lipids were extracted in chloroform: methanol (2:1 v/v). To analyze the incorporation of radiation in different lipid classes, individual lipids were separated by one-dimensional thin layer chromatography 20x20 cm TLC plate (LK60 silica gel 60 Å, Whatman) by the method of (Kumar, 1983). TLC plates were developed in two solvent systems. Phospholipids and glycerolipids were separate in chloroform: methanol: water (65:25:4, v/v) for 10 cm ascending. Neutral lipids were separated in hexane: diethyl ether: acetic acid (100: 100: 2, v/v) for 19.5 cm ascending (Miquel and Browse, 1992). Lipids were located by spraying the plates with solution of 0.005% primulín in 80% acetone, followed by visualization under UV light. The silica gel from each lipid band were scrapped, transferred to a tube containing 2 mL of...
2% (V/V) H_2SO_4 in methanol, and fatty acid methyl esters were prepared as described above.

2.4. Reverse phase TLC

To separate linoleate (18:2) and linolenate (18:3) a reverse phase TLC approach was applied. Fatty acids methyl esters, for each lipid classes, obtained from the previous steps were loaded into TLC plates (KC18 silica gel 60 Å, Whatman) plates were developed in acetonitrile: acetic acid: water (70: 10: 10 v/v) for 19.5 cm ascending. This plate was stained with iodine. 18:2 and 18:3 bands were scrapped; activity was counted using a liquid scintillation analyzer (Packard, 15000 Tri-Crab).

3. RESULTS & DISCUSSIONS

3.1. 14C incorporation into different lipid fractions of soybean

Figure 1A shows that the incorporation of 14C - 18:2 in soybean PC at the first stage is increased at ½h of the chase time until the end of the chasing period, while 14C -18:2 level in PC of the second stage decreased dramatically after 1/2h. The 14C - 18:3 level in PC slightly increased by the end of chasing period. Figure 1B data showed that 14C -18:2 levels in TG is increased dramatically in the first stage seeds after 1/2h and reached a maximum level at 2h. Also data showed that the 14C -18:2 level in TG is rapidly increased after 0h and reached the maximum level at 1/2h and remained mostly steady till the end of the chasing time (2h), while 14C -18:3 level is slightly increased in both stages. Data from Figures (1A&1B) highly suggest that ω-3 desaturase activities are low in both stages and convert a low amount of 14C -18:2 from PC into 14C -18:3. Also the data suggest that most of 14C -18:2 is transferred from PC into TG which emphasizes high activity of acyltransferases enzymes and their specificity toward the incorporation of 18:2 in TG over 18:3 which also is not available at a high concentration. This data agree with Rubel et al. (1972), Carver and Wilson (1984), Wang et al (1987), Dahmer et al. (1989), and Suryadevara et al, (2008). The increase in lipid content in the soybean seed is accompanied by a shift in lipid composition from PC to TAG accumulation (Privett et al., 1973; Suh et al., 2002). Figure 1C data showed that 14C incorporation level in soybean DAG is at a very low level in both stages but the incorporation of both 14C -18:2 and 14C -18:3 levels is dramatically decreased in DAG of soybean seeds at the first stage, while 14C -18:2 and 14C - 18:3 level is almost steady at the second stage during the chasing time. These may be due to the rapid conversion of DAG into TAG indicating that DGAT is very active and has high efficiency transferring 18:2 into TG (Figure 1B). From Figures 1D& 1E it is apparent that the 14C incorporation level in MAG and free FA is very low. Also the 14C -18:2 levels in both the first and second stages is much higher than 14C -18:3 levels (2 fold). Moreover Figure 1D shows that the 14C -18:2 level in MAG of first stage seeds is increased after 1/2h of chase time and 14C -18:2 level in MAG of second stage increased till 1/2h and remain steady till the end of chasing time (2h). However Figure 2A shows that the percentage of 14C incorporation in both TG and PC of the first stage; of soybean cotyledon developmental stages; is increased, while the 14C percentage in both DG and FFA pools is dramatically decreased during the chasing time while 14C level in MAG slightly increased. However Figure 2B shows that the 14C level in PC of the seeds at the second stage decreased after 1/2h while it increased in TG of the same stage toward the end of the chasing time. Also Figure 2B shows that 14C level in all other lipid fractions (MAG, DAG, and FFA) is almost steady during the chasing time, and there were only slight increases in FFA levels toward the end of the chasing time, this may be due to that both PC and TG reaching a steady state by the end of the chasing time and therefore there is no use for the FFA pool. MAG showed a slight decrease toward the end of the second stage. Data from both Figures 1& 2 emphasize that the lipid metabolism in soybean is in favor of accumulating 18:2 into TG, also these data highly suggest that ω-3 desaturase activities is low compared with D. moldavica. Figure 3 illustrates a suggested pathway in favor of accumulating 18:2 into TG, also these data roll out that more than one pathway may exist for storage lipid biosynthesis in plants (Slabas et al., 2001). Figures 3 illustrated the pathway of the biosynthesis of triacylglycerols soybean since 14C -18:2 incorporation and its conversion into 14C -18:3 were chased in different lipid classes; PC, TG, DG, MG; in both plants.
Figure 1: Soybean seeds from 2 different cotyledon developmental stages were fed 14C-18:2CoA for 90 minutes, the incorporation of 14C into both 18:2 and 18:3 were chased in the different lipids fractions at 0h, 1/2h, 1h, and 2h. (A) 14C incorporation in phosphatidyl choline, (B) 14C incorporation in triacylglycerol, (C) 14C incorporation in diacylglycerol, (D) 14C incorporation in free fatty acids, and (E) 14C incorporation in monoacylglycerol.

Figure 2 (A): % 14C-18:2 incorporation in lipid fractions in soybean first stage
Figure 2: The percentage of 14C incorporation in lipid fractions in soybean cotyledon at two different developmental stages. (A) First cotyledon developmental stage, (B) Second cotyledon developmental stage. Both stages were fed 14C-18:2 CoA for 90 minutes, the incorporation of 14C into both 18:2 and 18:3 were chased in different lipids fractions at 0h, 1/2h, 1h, and 2h.

Figure 3: Suggested illustration for TG synthesis in soybean seeds. As 14C-18:2 incorporation and its conversion into 14C-18:3 were chased in different lipid classes; PC, TG, DG, MG, and FFA; in soybean seeds.

This Figure is based on Kennedy pathway (Kennedy, 1961)
Acknowledgements:
This project was supported by King Saud Univ., Deanship of Scientific Research, College of Sciences’ Research Center. Authors are expressing their recognitions to the United Soybean Board, and the KY Agricultural Experiment Station, USA.

Corresponding Author:
Dr. Mohammed A. T. Abdel-Reheem
Address: Research Center, College of Science, King Saud Univ., P. O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia.
E-mail: matbio2020@gmail.com

References