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Abstract: This paper presents using Imperialist Competitive Algorithm (ICA) and its application to a least-cost 

Generation expansion planning (GEP) problem. Least-cost GEP problem is concerned with a highly constrained 

nonlinear dynamic optimization problem that can only be fully solved by complete enumeration, a process which is 

computationally impossible in a real-world GEP problem. In this paper, Imperialist Competitive algorithm 

incorporating a stochastic technique and random initial population scheme is developed to provide a faster search 

mechanism. The main advantage of the ICA approach is that the ―curse of dimensionality‖ and a local optimal trap 

inherent in mathematical programming methods can be simultaneously overcome. The ICA approach is applied to 

two test systems, one with 15 existing power plants, 5 types of candidate plants and a 14-year planning period, and 

the other, a practical long-term system with a 24-year planning period. 
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1. Introduction 

GENERATION expansion planning (GEP) is one 

of the most important decision-making activities in 

electric utilities. 

Least-cost GEP is to determine the minimum-cost 

capacity addition plan (i.e., the type and number of 

candidate plants) that meets forecasted demand 
within a prespecified reliability criterion over a 

planning horizon. 

A least-cost GEP problem is a highly constrained 

nonlinear discrete dynamic optimization problem that 

can only be fully solved by complete enumeration in 

its nature [1]–[3]. Therefore, every possible 

combination of candidate options over a planning 

horizon must be examined to get the optimal plan, 

which leads to the computational explosion in a real-

world GEP problem. 

To solve this complicated problem, a number of 
salient methods have been successfully applied 

during the past decades. Masse and Gilbrat [4] 

applied a linear programming approach that 

necessitates the linear approximation of an objective 

function and constraints. Bloom [5] applied a 

mathematical programming technique using a 

decomposition method, and solved it in a continuous 

space. Park et al. [6] applied the Pontryagin’s 

maximum principle whose solution also lies in a 

continuous space. Although the above-mentioned 

mathematical programming methods have their own 

advantages, they possess one or both of the following 
drawbacks in solving a GEP problem. That is, they 

treat decision variables in a continuous space. And 

there is no guarantee to get the global optimum since 

the problem is not mathematically convex. Dynamic 

programming (DP) based framework is one of the 

most widely used algorithms in GEP [1]–[3],[7],[8]. 

However, so-called ―the curse of dimensionality‖ has 

interrupted direct application of the conventional full 

DP in practical GEP problems.  

For this reason, WASP [1] and EGEAS [2] use a 
heuristic tunneling technique in the DP optimization 

routine where users prespecify states and 

successively modify tunnels to arrive at a local 

optimum. David and Zhao developed a heuristic-

based DP [7] and applied the fuzzy set theory [8] to 

reduce the number of states. Recently, Fukuyama and 

Chiang [9] ,Park et al [10], applied genetic algorithm 

(GA) to solve sample GEP problems, and showed 

promising results. Park et al Also Implemented A 

hybrid GA/DP to same case studies as this paper [11] 

and S.Kannan and partners Applied some 
Evolutionary Computation Techniques for GEP 

problem on also same Case studies as this paper [12]. 

However, an efficient method for a practical GEP 

problem that can overcome a local optimal trap and 

the dimensionality problem simultaneously has not 

been developed yet. 

Imperialist Competitive Algorithm (ICA) is a new 

socio-politically motivated global search strategy that 

has recently been introduced for dealing with 

different optimization tasks [13]. Recently, a global 

optimization technique using ICA has been 

successfully applied to various areas of power system 
such as economic dispatch, Distribution Systems 

[14], And Transmission Expansion Planning. ICA-

based approaches for least-cost GEP have several 
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advantages. Naturally, they can not only treat the 

discrete variables but also overcome the 

dimensionality problem. In addition, they have the 

capability to search for the global optimum or quasi 

optimums within a reasonable computation time. 

    In this paper, an imperialist competitive 
algorithm (IGA), which can overcome the 

aforementioned problems of the conventional GA to 

some extents, is developed.  

The results of the ICA are compared with those of 

the genetic algorithm, the full DP, the tunnel-

constrained DP employed in WASP, Different 

Methods of Genetic Algorithm, And Evolutionary 

Programming. 

I. Formulation Of The Least-Cost gep 

problem 

   Mathematically, solving a least-cost GEP 

problem is equivalent to finding a set of optimal 
decision vectors over a planning horizon that 

minimizes an objective function under several 

constraints. 

The GEP problem to be considered is formulated 

as follows : 

1 2

1 2 3

, ,...,
1

( ) ( ) ( )
T

T

t t t t T t
U U U

t

Min f U f X f U


 
         .    (1) 

1 1,2,...,t t t tX X U S t T    
                     (2) 

( ) 1,2,...,tLOLP X t T  
              (3)           

( ) 1,2,...,tR R X R t T   
            (4)            

1,2,..., 1,2,...,

j

j i j

t t t

i

M x M

t T and j J



 

   


              (5)     

0 1,2,...,t tU U t T   
              (6)   

Where: 

 T = number of periods (years) in a planning  

horizon, 

 J = number of fuel types, 

j  = index set for j th fuel type plant, 

tX = cumulative capacity [MW] vector of plant 

types in year t, 

i

tx  = cumulative capacity [MW] of th plant type 

in year t 

tU  = capacity addition [MW] vector by plant 

types in year t, 

tU = maximum construction capacity [MW] 

vector by plant types in year t,  
i

tx  = capacity addition [MW] of th plant in year t 

, 

( )tLOLP X  = loss of load probability (LOLP) with 

Xt, in year t,  

( )tR X = reserve margin with Xt , in year t. 

 = reliability criterion expressed in LOLP,  

,R R = lower and Upper bounds of reserve 

margin, 

,j j

t tM M = reserve margin with Xt , in year t. 

1( )t tf U = discounted construction costs [$] 

associated  with capacity addition Ut in year t,  
2 ( )t tf X = discounted construction costs [$] 

associated  with capacity addition  Ut in year t, 
3( )T tf U = discounted construction costs [$] 

associated  with capacity addition  Ut in year t, 

   The objective function is the sum of tripartite 

discounted costs over a planning horizon. It is 

composed of discounted investment costs, expected 

fuel and O&M costs and salvage value. 

      To consider investments with longer lifetimes 
than a planning horizon, the linear depreciation 

option is utilized [1]. In this paper, five types of 

constraints are considered. Equation (2) implies state 

equation for dynamic planning problem [6]. 

Equations (3) and (4) are related with the LOLP 

reliability criteria and the reserve margin bands, 

respectively. The capacity mixes by fuel types are 

considered in (5). Plant types give another physical 

constraint in (6), which reflects the yearly 

construction capabilities. 

Although the state vector,
 tX  , and the decision 

vector,
 tU  , have dimensions of MW, we can easily 

convert those into vectors which have information on 

the number of units in each plant type. This mapping 

strategy is very useful for ICA implementation of a 

GEP problem such as encoding and treatment of 

inequality (6) and illustrated in the following (1) 

equations: 

X=  (xt
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t ) T   

→

      X'
t = (x't
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U=  (ut
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      U’
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Where : 

N = number of plant types including both existing 
and candidate plants, 
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X'
t = cumulative number of units by plant 

types in year t. 

      U'
t = addition number of units by plant types 

in year t. 

      x
'
t
i
 = ith plant type’s cumulative number of 

units in year t , 
      u'

t
i = ith plant type’s addition number of units 

in year t. 

II. imperialist competitive algorithm 

Imperialist Competitive Algorithm (ICA) [13] is a 

new evolutionary algorithm in the Evolutionary 

Computation field based on the human's socio-

political evolution. The algorithm starts with an 

initial random population called countries. Some of 

the best countries in the population selected to be the 

imperialists and the rest form the colonies of these 

imperialists. In an N dimensional optimization 

problem, a country is an 1 x n array. This array 
defined as below: 

Country= [p1,p2. …, pn[                                           (9) 

The cost of a country is found by evaluating the cost 

function f at the variables (p1,p2. …, pn). Then 

ci = F(Countryi)= F(pi1, pi2, ..., pin)                       (10) 

The algorithm starts with N initial countries and 

the Nimp best of them (countries with minimum cost) 

chosen as the imperialists. The remaining countries 

are colonies that each belong to an empire. The initial 

colonies belong to imperialists in convenience with 

their powers. To distribute the colonies among 
imperialists proportionally, the normalized cost of an 

imperialist is defined as follow 

Cn= max {ci }- cn                                                  (11) 

Where, cn is the cost of nth imperialist and Cn is 

its normalized cost. Each imperialist that has more 

cost value, will have less normalized cost value. 

Having the normalized cost, the power of each 

imperialist is calculated as below and based on that 

the colonies distributed among the imperialist 

countries. 

1

imp

n
n N

i

i

C
p

C





                                     (12) 

On the other hand, the normalized power of an 

imperialist is assessed by its colonies. Then, the 

initial number of colonies of an empire will be NCn = 

rand{Pn × Ncol} where, 

NCn is initial number of colonies of nth empire 

and Ncol  is the number of all colonies. 

To distribute the colonies among imperialist, NCn 

of the colonies is selected randomly and assigned to 
their imperialist. The imperialist countries absorb the 

colonies towards them- selves using the absorption 

policy. The absorption policy shown in Fig .1 makes 

the main core of this algorithm and causes the 

countries move towards to their minimum optima. 

The imperialists absorb these colonies towards 

themselves with respect to their power that described 

in (13). The total power of each imperialist is 

determined by the power of its both pans, the empire 

power plus percents of its average colonies power. 

TCn = cost(imperialist ) + £ × mean{cost [(colonies 

of empiren)}                                                           (13)     

Where TCn  is total cost of the nth empire and £ is 

a positive number which is considered to be less than 

one. 

x~U (0,β×d)                                                           (14) 

In the absorption policy, the colony moves 

towards the imperialist by x unit. The direction of 

movement is the vector from colony to imperialist, as 

shown in Fig. 1, in this figure, the distance between 

the imperialist and colony shown by d and x is a 

random variable with uniform distribution. Where β 

is greater than I and is near to 2. So, a proper choice 
can be β=2 . In our implementation γ is 45 (deg) 

respectively. 

Θ ~ U(- γ, γ )                                                          (15) 

In ICA algorithm , to search different points 

around the imperialist. a random amount of deviation 

is added to the direction of colony movement towards 

the imperialist. In Fig, 1, this deflection angle is 

shown as θ, which is chosen randomly and with a 

uniform distribution. 
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Figure 1. Fig.1. Movement of colonies 

toward their relevant imperialist in a 

randomly deviated direction 

As shown in Fig.2 While moving toward the 

imperialist countries, a colony may reach to a better 

position, so the colony position changes according to 
position of the imperialist. 

In each iteration we select some of the weakest 

colonies and replace them with new ones, randomly. 

The replacement rate is named as the revolution rate. 

 

Figure 2. Fig.2. Exchanging the position of 

a colony and the imperialist 

In this algorithm, the imperialistic competition 

has an importa-nt role. During the imperialistic 

competition, the weak empires will lose their power 

and their colonies. To model this compet-etion, firstly 

we calculate the probability of possessing all the 

colonies by each empire considering the total cost of 

empire. 

NTCn = max {TCi} – TCn                                       
(14) 

Where, TCn  is the total cost of nth empire and 

NTCn is the normalized total cost of nth empire. 

Having the normalized total cost, the possession 

probability of each empire is calculated as below : 

1

. . .

. . .
n imp

n
p N

i

i

N T C
p

N T C





                                            (15) 

After a while all the empires except the most 

powerful one will collapse and all the colonies will 

be under the control of this of this unique. Fig.3 

shows the flowchart of this algorithm. 

III. CASE STUDIES  

ICA was implemented on GEP using Matlab 

R2012a on PC/Pentium G 6950,2.8 GHZ.  

A. Test System Description 

The Imperialist Competitive Algorithm methods 

have been applied in two test systems: Case I for a 

power system with 15 existing power plants, 5 types 

of candidate options and a 14-year study period, and 

Case 2 for a real-scale system with a 24-year study 
period. The planning horizons of 14 and 24 years are 

divided into 7 and 12 stages (two-year intervals), 

respectively. The forecasted peak demand over the 

study period is given in Table I. 

 

Figure 3. Fig.3. Flowchart of the proposed 

algorithm

Table 1. Forcasted Peak Demand 

Stage 

 (Year) 

0 
(2012) 

1 
(2014) 

2 
(2016) 

3 
(2018) 

4 
(2020) 

5 
(2022) 

6 
(2024) 
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Peak 

 (MW) 
5000 7000 9000 10000 12000 13000 14000 

Stage 

 (Year) 

- 

- 

7 

(2026) 

8 

(2028) 

9 

(2030) 

10 

(2032) 

11 

(2034) 

12 

(2036) 

Peak  

(MW) 
 15000 17000 18000 20000 22000 24000 

 

B. Parameters for GEP and ICA 

There are several parameters to be pre-

determined, which are related to the GEP problem 

and ICA-based programs. In this paper, we use 8.5% 

as a discount rate, 0.01 as LOLP criteria, and 15% 

and 60% as the lower and upper bounds for reserve 
margin, respectively. The considered lower and upper 

bounds of capacity mix are 0% and 30% for oil-fired 

power plants, 0% and 40% for LNG-fired, 20% and 

60% for coal-fired, and 30% and 60% for nuclear, 

respectively. Parameters for ICA are selected through 

experiments. Especially number of initial empires 

and revolution rate. 

Table 2. Parameters for ICA Impelementation 

Initial countries 300 

Initial Imperialist 30 

Number of Colonies 300-30=270 

β 2 

γ 45(deg) 

 

Table 3. Technical and Economic Data of Candidate Plants 

Name 

(Fuel Type) 

No.of 

 Units 

Unit 

Capacity 

(MW) 

FOR 

(%) 

Operating 

Cost 

($/KWh) 

Fixed O&M 

Cost 

($/Kwh-Mon) 

Oil #1 
(Heavy Oil) 

1 200 7.0 0.024 2.25 

Oil #2 
(Heavy Oil) 

1 200 6.8 0.027 2.25 

Oil #3 
(Heavy Oil) 

1 150 6.0 0.030 2.13 

LNG G\T #1 
(LNG) 

3 50 3.0 0.043 4.52 

LNG C\T #1 
(LNG) 

1 400 10.0 0.038 1.63 

LNG C\C #2 
(LNG) 

1 400 10.0 0.040 1.63 

LNG C\C #3 
(LNG) 

1 450 11.0 0.035 2.00 

Coal #1 
(Anthracite) 

2 250 15.0 0.023 6.65 

Coal #2 
(Bituminous) 

1 500 9.0 0.019 2.81 

Coal #3 
(Bituminous) 

1 500 8.5 0.015 2.81 

Nuclear #1 
(PWR) 

1 1000 9.0 0.005 4.94 

Nuclear #2 
(PWR) 

1 1000 8.8 0.005 4.63 

 

Table 4. Technical and Economic data of candidate Plants 

Candidate 

Type 

Const- 

ruction 

Upper 

Limit 

Capa-city 

(MW) 

FOR 

(%) 

Opera-ting 

Cost 

($/K-Wh) 

Fix-ed 

O&M 

Cost 

Capital 

Cost 

($/KW) 

Life 

Time 

(yrs) 

Oil 5 200 7.0 0.021 2.2 812.5 25 
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LNG C\C 4 450 10.0 0.035 0.90 500.0 20 

Coal 
(Bitum.) 

3 500 9.5 0.014 2.75 1062.5 25 

Nuc. 
(PWR) 

3 1000 9.0 0.004 4.6 1625.0 25 

Nuc. 
(PHWR) 

3 700 7.0 0.003 5.5 1750.0 25 

C. Numerical Results 

The developed ICA was applied to two test 

systems, and compared with the results of DP, TCD 

,WASP-DP, Different Methods of Genetic Algorithm 

,And Other Evolutionary Computation Methods. 

Throughout the tests, the solution of the conventional 

DP is regarded as the global optimum and that of 

TCDP as a local optimum. Both the global and a 

local solution can be obtained in Case 1; however, 
only a local solution can be obtained by using TCDP 

in Case 2 since the ―curse of dimensionality‖ prevent 

the use of the conventional DP. Table VIII 

summarizes costs of the best solution obtained by 

each solution method. In Case 1, the solution 

obtained by ICA is  within 0.07% of the global 

solution costs while the solutions IGA3 is within 

0.18% and SGA and TCDP are within 1.3% and 

0.4%, respectively. In Case 1 and Case 2, ICA has 

achieved a 0.32% and 0.30% improvement of costs 

over TCDP, respectively. Although SGA and IGA’s 

have failed in finding the global solution, ICA have 

provided better solution than GA. Furthermore, 
solutions of ICA are better than that of TCDP in both 

cases, which implies that it can overcome a local 

optimal trap in a practical long-term GEP. 

Table 5. Summary of the Best Results Obtained By Each Solution  Methods 

Solution Method 

Cumulative Discounted Cost (10
6
 $) 

Case1 

(14-yearStudy Period) 

Case2 

(24-yearStudy Period) 

DP 11164.2 Unknown 

TCDP 11207.7 16746.7 

SGA 11310.5 16765.9 

IGA 
IGA1 
IGA2 
IGA3 

11238.3 
11214.1 
11184.2 

16759.2 
16739.2 
16644.7 

WASP-DP 11207.7 16746.7 

RGA 
RGA1 
RGA2 
RGA3 

11238.3 
11222.0 
11202.5 

16759.2 
16751.8 
16723.7 

HGA 11711.9 16635.7 

IES 14483 - 

IEP 14555 - 

ICA 11171.9 16695.2 

Fig. 4 illustrates the convergence characteristics  of various GA-based methods in Case 1.

 

Figure 4. Convergence characteristic of ICA method in Case 1 system 
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Table IX summarizes generation expansion plans of Case 2 obtained by IGA3. 

Table 6. Cumulitve Number of Newly Introduced Plants in case 2 by iga3 

Type 

Year 

Oil 

(200- 

MW) 

LNG C\C 

(450-MW) 

Coal  

(500-MW) 

PWR 

(1000-MW) 

PWR 

(1000-MW) 

2012 2 0 0 3 2 

2014 2 0 0 6 2 

2016 2 0 0 6 2 

2018 2 0 2 9 2 

2020 2 0 2 9 2 

2022 2 0 2 9 3 

2024 2 0 2 9 4 

2026 7 0 2 9 7 

2028 9 3 2 9 7 

2030 9 6 5 9 7 

2032 9 6 5 12 7 

2034 14 6 5 12 7 

The execution time of GA-based methods is much 

shorter than that of TCDP and IGA.That is,IGA 

requires approximately 3.7 and 6 times of execution 

time in Case 1 and Case 2, respectively .In the system 

with 11 stages, it takes over 9 days for DP, and 
requires about 1.2 millions of array memories to 

obtain the optimal solution while it takes only 1 hour  

by ICA to get the near optimum. 

The proposed method definitely provides quasi 

optimums in a long-term GEP within a reasonable 

computation time. Also, the results of the proposed 

ICA method are better than those of TCDP employed 

in the WASP, which is viewed as a very powerful 

and computationally feasible model for a practical 

long-term GEP problem. Since a long-range GEP 

problem deals with a large amount of investment, a 

slight improvement by the proposed IGA method can 
result in substantial cost savings for electric utilities. 

IV. Conclusion 

This paper developed an Imperialist Competitive 

Algorithm [11] (ICA) for a long-term least-cost 

generation expansion planning (GEP) problem. The 

proposed ICA is a new evolutionary algorithm in the 

Evolutionary Computation field based on the human's 

socio-political evolution 

      The ICA has been successfully applied to 

long-term GEP problems with 2 different planning 

period(14 and 24 Years). It provided better solutions 
than the conventional GA. Moreover, ICA was found 

to be robust in providing quasi optimums within a 

reasonable computation time and yield better 

solutions compared to the TCDP employed in 

WASP. Contrary to the DP, computation time of the 

proposed ICA is linearly proportional to the number 

of stages. 

The developed ICA method can simultaneously 

overcome the ―curse of dimensionality‖ and a local 

optimum trap inherent in GEP problems. Therefore, 
the proposed ICA approach can be used as a practical 

planning tool for a real-system scale long-term 

generation expansion planning. 
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