
Life Science Journal 2013;10(8s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  277 

A risk-based approach to robust economic-statistical design of control charts under duncan’s economic 

model 

 

M. Taromi1*and K. Asgharpour2 

1*
Department of Statistics, Allameh Tabataba’i University, Tehran, Iran 

E-mail: sta.allameh.uni@gmail.com 
2Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran 

E-mail: Shahkazem@yahoo.com 

 

Abstract: This paper deals with a robust economic-statistical design of control chart, in which the input parameters 

are expressed as intervals. The design procedure relies on finding the best design parameter set based on the 

minimax criterion for risks. Genetic algorithm (GA) has been used as a search tool to find the best design (input) 

parameters with which the control chart has to be designed. The proposed method minimizes the risk of not knowing 

the true parameters to be used in the design, and is robust to the true parameter values. A numerical example is used 

to illustrate the performance of the proposed economic-statistical design of the X   control chart. 

[M. Taromi, K. Asgharpour. A risk-based approach to robust economic-statistical design of control charts 

under duncan’s economic model. Life Sci J 2013;10(8s): 277-289] (ISSN:1097-8135). 

http://www.lifesciencesite.com. 44 

 

Keywords: Control chart; Robust design; Risk; Genetic algorithm. 

 

1. Introduction 

Control charts are widely used to establish and 

maintain statistical control of a process. The purpose 

of a control chart is to detect the assignable causes, if 

any, in the process as early as possible and help to 

remove them. The design of control chart involves 
the optimum selection of the control chart parameters 

such as the sample size, the sampling interval and the 

control limit coefficient. The number of design 

parameters of the control chart depends on the type of 

chart under consideration. Shewart’s variable control 

chart for averages, popularly known as X  chart 

involves finding three design parameters namely the 

sample size (n), the sampling interval (h) and the 

control limit coefficient (k). The control chart designs 

can be broadly considered in three categories as (i) 
heuristic designs, (ii) statistical designs and (iii) 

economic designs. Heuristic designs are preferred in 

industrial practice because of their simplicity. These 

designs depend on rules of thumb in the selection of 

parameters. The sample size is generally taken equal 

to 4 or 5 and the control limit coefficient is taken 

equal to 3. The sampling interval, in general, is left to 

the discretion of the practitioner. The statistical 

design of control charts is based on their statistical 

performance, over a specified in-control and out-of-

control regions of parameter values. Economic 
designs are based on either minimizing the cost or 

maximizing the profit, per unit time or per unit 

produced, without or with some constraints. 

 Duncan [1] introduced the design of X  control chart 

on the basis of economic criteria. He developed a 

model to find the control chart parameters for a 

continuous process, which goes out-of-control due to 

a single assignable cause. Panagos et al. [2] describe 

a continuous process as a process in which the 

manufacturing activities continue during the search 

for an assignable cause. Goel et al. [3] introduced an 

algorithm to find the exact solution to the Duncan’s 

single assignable cause model. Some manufacturing 
situations may not permit stopping of the process 

after the control chart signals an out-of-control 

situation and in some cases it may be advantageous to 

stop the process and take a remedial action. The 

quality characteristic observed can be a variable or an 

attribute. Lorenzen and Vance [4] developed a 

unified model for the economic design of control 

charts by incorporating different possible production 

models into it. They showed a significant monetary 

benefit of using an economic design over a heuristic 

model. But, the economic designs are criticized for 
their poor statistical properties. Woodall [5] pointed 

out the weakness of the economic design. Saniga [6] 

introduced the economic-statistical designs for 

control charts by combining the economic and 

statistical objectives. These designs are semi-

economic designs and are costlier compared to pure 

economic designs. Surtihadi and Raghavachari [7] 

have shown that for control charts with fixed 

sampling intervals, the exponential process failure 

mechanism provides a good approximation even 

though the real process follows any non-exponential 

process failure mechanism. Control charts can be 
designed to have constant parameters; time varying 

parameters and adaptive parameters. Benerjee and 

Rahim [8] showed the superiority of time varying 

sampling intervals over fixed sampling interval in 

case of Weibull process failure mechanism with an 
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increasing failure rate. Prabhu et al. [9] designed X  

control charts with adaptive parameters and showed 

that they are superior to conventional control chart 

designs. Engin [10] extended Duncan’s economic 

control chart design methodology as an alternative 
way for estimating and optimizing machine 

efficiency in the case of multi-machine assignments. 

In general, the complexity of the models has grown 

from single assignable cause models to multiple 

assignable cause models and exponential failures to 

Weibull and gamma distributions. The quality 

characteristics considered in models have grown 

from monitoring a single quality characteristic 

(univariate) to multiple quality characteristics 

(multivariate). Control charts that can use present and 

past information effectively have been introduced. 
Use of adaptive parameters has been studied. In spite 

of many theoretical developments in the area of 

control chart designs, it is observed that very little 

has been implemented in practice. Researchers have 

attributed many reasons for this situation. Keats et al. 

[11] analyzed the causes that act as barriers to the 

implementation of economical designs. They found 

that the robustness of the control charts to the 

imprecision in the input parameters as one of the 

reasons for lack of confidence in the economically 

designed control charts. This shows the necessity of 

robust design procedures for control charts such that 
the cost of operating a control chart is minimized 

considering the impreciseness in estimating the 

parameters of the process. The designs in this line 

will lead to the robust design procedures for the 

control charts.  

Pignatiello and Tsai [12] have introduced the robust 

economic design of control charts when the cost and 

process parameters are precisely not known. This 

type of design induces confidence in the user since 

the design procedure is based on a range of values for 

every parameter instead of point estimates. Even 
though the process parameters are not known 

accurately, the losses in operating the control chart 

can be controlled by robust designs. Linderman and 

Choo [13] proposed robust economic design 

procedures for a single process assuming multiple 

scenarios. They employed three discrete robustness 

measures in the economic design of control charts 

and found the best control chart design, which works 

well for all scenarios considered. 

In this paper, a robust economic-statistical design 

procedure for X  control charts has been proposed 
under Duncan’s economic model. The design 

procedure relies on finding the best design parameter 

set based on the minimax criterion for risks. Initially, 

a parameter space has to be formed by expressing 

each cost and process parameter in a range. For each 

parameter set chosen from the parameter space, 

maximum possible risk has to be calculated. The 

parameter set with minimum of such maximum risks 

has to be considered in the design of control chart. 

Calculation of maximum risks corresponding to a 

given design parameter set has been simplified by 

reducing the solution space. GA-based search has 
been employed to find the best design parameter set 

from the parameter space. This procedure minimizes 

the risk of not knowing the true parameters to be used 

in the design, and is robust to the true parameter 

values. 

We end this introduction with a brief outline of the 

paper; the next section introduces the notation and 

the basic assumptions required for the model. Section 

3 defines the economic-statistical design and 

introduces the loss-cost function of Duncan [1]. 

Section 4 introduces the risk concept and the 

approach to find the maximum risk corresponding to 
a given design parameter set. In Section 5, the GA-

based search to find the best design parameter set 

from the parameter space, using minimax criterion 

has been discussed. A control chart design problem 

has been considered for analysis at different precision 

scenarios and robust design solutions are provided. 

Finally, a summary of the work is given in Section 6. 

 

2.  Notation and assumptions 

ATS0    
 average time to signal out-of-control situation 

b           fixed cost per sample 

c           cost per unit sampled 

d           time to search and fix the process 

D          design vector of control chart parameters 

obtained from imprecise input parameters 
*D          design vector of control chart parameters 

obtained from true input  parameters  
g

          time to test and interpret the result per 

sample unit 

h           sampling interval  

k           control limit coefficient 

M          hourly cost penalty of running the process in 

out-of-control  

MR     
maximum risk corresponding to a design 

parameter set   

n           sample size 

p            power of the chart (1- ) 

sus         stochastic universal sampling 

𝑉0           profit per hour while the process is running 

in-control 

𝑉1           profit per hour while the process is running 

out-of-control 

W         cost of finding and fixing an assignable cause 

xosp      single point cross over 

Y          cost of false alarm 
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           probability of type I error 


          

probability of type II error 

        ratio of magnitude of shift in process mean to 

the standard deviation of the process, in short, shift 

parameter 

           parameter space 

          a true parameter set  

         a design (input) parameter set 

(. )𝐷      denotes a design parameter 

(. )𝑇        denotes a true parameter 

The features to be studied in this paper are as follows 

(Duncan [1]): 

1. The process is either in-control or out-of-

control state only and is in-control state at the 

beginning. 

2. The process follow a normal distribution with a 

mean µ and standard deviation   . 

3. There is one assignable cause in the 

production process. 

4. The process will have a shift in the process 

mean of 𝛿𝜎, if assignable cause occurs. 

5. The standard deviation is assumed to remain 

invariant when process shifts. 
6. The failure rate of a assignable cause 

follows an exponential whit parameter 𝜆. 

7. Production is continuous during the search 

and repair. 

8. The detection probability when assignable 

cause occurs is greater than 𝑝𝐿 . 
9. The type I error of the control chart is less 

than 𝛼𝐻.  

 

3. The method of economic-statistical design 

of control charts 

An economic-statistical design of a control chart can 

be defined as that the loss-cost function is minimized 

subject to the constrained maximum value of 

probabilities of type I and type II errors. Apart from 

constraining the type I and type II errors of the 

control chart, Saniga [6] introduced one more 

constraint to take care of the average time to signal 

the out-of-control ( ATS0
). This acts as a constraint on 

the sampling interval of the control chart. 

Let   be the set of design parameters and L be the 

expected hourly loss-cost function of an X  control 

chart economic model. Then, the economic-statistical 

model of the X  control chart can be formulated as: 

minimize  L( ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     
H 

𝑝 ≥ 𝑝𝐿
𝐴𝑇𝑆0 ≤ 𝐴𝑇𝑆𝐻 .

                                  (1) 

𝐴𝑇𝑆𝐻 and 𝛼𝐻 provide upper bounds on the average 

time to signal an assignable cause and on type I error 

probability, respectively. The power constraint 𝑝𝐿 has 

a lower bound on power such that the control chart is 

assured always with certain minimum power. 

The solution of this model is an improvement to the 
economic design because both the statistical 

properties and minimization of loss cost have been 

considered. A solution without the constraints is the 

optimum economic design of the control charts. 

  

3.1. Duncan’s loss-cost function 

Duncan’s economic control chart design model is 

based on the assumption that the cycle time in a 

production process consists of four time intervals 

(Fig.1), namely, (1) the interval during which the 

process is in control; (2) the time to signal; (3) the 

time required to sample, inspect, evaluate and plot a 
sample mean; (4) the time required to search and 

repair for the assignable cause. Duncan derived an 

expected loss-cost function, minimizing of which 

gives the optimal control chart parameters. The 

expected loss-cost function is as follows: 

𝐿 =
𝑏+𝑐𝑛

ℎ
+

𝜆𝑀𝐵+𝛼𝑌/ℎ+𝜆𝑊

1+𝜆𝐵
                                         (2) 

where, 
M V V 0              

B ah gn d                

𝑎 =
1

𝑝
− 0.5− 𝜆ℎ/12 

( )k   2         

( ) ( )p n k n k        

In economic-statistical designs of control chart, the 

control chart parameters are obtained by minimizing 

the expected loss-cost function (2) under the 

statistical constraint in equation (1). The 

effectiveness this type design of control chart relies 

on the accuracy of estimation of input parameters 

used in the model. Conventional control chart designs 

consider point estimate for the input parameters. The 

point estimates used in the design may not represent 

the true parameters and sometimes may be far from 

true values. This situation may lead to severe cost 
penalties for not knowing the true values of the 

parameters.  

In next section, we introduce a procedure to robust 

the design to not knowing the true values of the 

parameters.
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4. Robust economic-statistical design of 

control charts 

The economic-statistical design of X  control chart 
involves the selection of chart parameters by 

minimizing the loss-cost function. This requires nine 

input parameters (b, c, W, Y, M, 𝜆, 𝛿, g, d) for a 

continuous process. When the input parameters are 

not known precisely, a range can be specified to each 

of the parameters depending on the quantum of data 

used in the estimation and also based on the 

knowledge of similar processes. The true values of 

the parameters are assumed to lie in the range 

specified for each parameter. Specifying a range for 
each parameter gives rise to a possibility of 

theoretically infinite true values for each parameter. 

That is, the true value of a parameter can be any 

value among the infinite values in the specified range 

for it. By suitably dividing the parameter ranges into 

appropriate number of parts, possible true values of 

each parameter can be made finite. In other words, if 

the range of a parameter is divided into x parts, then 

the true parameter can be assumed to take any one of 

these x discrete values only. Considering nine input 

parameters for the design of control charts, and 
dividing the range of each parameter into x parts, the 

true parameter set the process can experience is one 

true parameter set out of  x 9 combinations. But this 

true parameter set realized by the process is unknown 

in the process of control chart design. In order to find 

the optimum control chart parameters, one has to find 

the best design parameter set, to be considered in the 

design. The design parameter set can be chosen from 

the parameter space formed by x 9  possible 
combinations of design parameters. Arbitrarily 

choosing one parameter set from the available 

parameter space for the design of control chart gives 

rise to two design scenarios. 

(i) The design parameters and true parameters are 

same. 

(ii) The design parameters and true parameters are 

different. 

 

The first possibility gives optimum design of control 

chart but is a very rare incident. The second 

possibility leads to a situation where there is a cost 
penalty for not knowing the real scenario.  

Denoting the input (design) parameters used in the 

control chart design with subscript D, the loss-cost 

equation with an arbitrarily chosen design parameter 

set ( , , , , , , , , )D D D D D D D D Db c W Y M g d  

can be written as: 

D D D D D D D D D

D D

b c n M B Y h W
L

h B

  



  
 

1                             

(3) 

 
By minimizing the loss-cost function (3), the 

optimum parameters (n, h, k) corresponding to the 

design parameter set can be obtained. When the 

design parameters chosen are different from the true 

parameters, and the control chart is used in the actual 
scenario, the loss-cost is not optimum but will be 

more than the optimum loss-cost. The actual loss-cost 

is given by 

( , ) T T T T T T T T T

T T

b c n M B Y h W
L D

h B

  




  
 

1
 (4)

 

 
In the above Eq. (4), the loss-cost is represented as 

function of D and  , where D represents the vector 

of parameters of the control chart (n, h, k) obtained 
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with design parameter set and   represents the true 

parameter set ( , , , , , , , , )T T T T T T T T Tb c W Y M g d  . 

In other words, the actual loss-cost is a function of (n, 

h, k) values obtained by minimizing the loss-cost 

function by considering a design parameter set, and 

the process true parameter set. 

If the design parameter set and the true parameter set 

of the process are same, it leads to optimal loss-cost. 

Denoting the control chart parameters in this case as (
* * *, ,n h k ), the optimal loss-cost can be written as: 

 
** * *

*

*
( , ) T T T T T T T

T

b c n M B Y h W
L D

h B

  




  
 

1
                            

(5) 

 
In the optimal loss-cost equation *( , )L D   ،

*D , 

represents the vector of optimal parameters of the 

control chart (
* * *, ,n h k ) obtained by optimizing 

the loss-cost function with true parameter set  . 

From Eqs. (4) and (5), the cost penalty for not 

knowing the actual scenario can be written as: 

Cost penalty *( , ) ( , )L D L D                          (6)
 

Defining risk as the cost penalty, expressed as a 

percentage, for not knowing the actual scenario and 

designing the chart for a different scenario, the risk 
can be written as under: 

Risk(%)

  

*

*

( , ) ( , )

( , )

L D L D

L D

 




 100

                         (7) 

For a chosen design parameter set, D represents the 

vector of control chart parameters (n, h, k), which is 

unique for that design parameter set. However, the 

true parameters can have any value within their 
parameter limits. This gives rise to different risks 

corresponding to different values of  . That is, the 

risk will be zero if true parameters and the design 

parameters are same and will be greater than zero for 

all other cases. Depending on the true parameters 

realized by the process, the risks would vary. Out of 

all such risks, there exists a maximum value of risk 

corresponding to the given design parameter set. This 

is the maximum risk corresponding to the given 
design parameter set. 

Mathematically, the maximum risk MR
 

corresponding to a particular design parameter set 
, can be written as: 

*

*

( , ) ( , )
(%) max

( , )

L D L D
MR

L D


 



 
   

 
100  

( , , , , , , , , )T T T T T T T T Tb c W Y M g d   
 

Such that 

( )L T Hb b b                           ( )L T Hc c c                        

( )L T HW W W   

( )L T HY Y Y                         ( )L T HM M M                    

( )L T H   
                       

 

( )L T H                          ( )L T Hg g g                          

( )L T Hd d d                                                            (8) 

From Eq. (8), it can be observed that calculating the 

maximum risk corresponding to a given design 

parameter set involves finding the risks 

corresponding to all possible combinations of true 

parameters from their respective ranges. For a given 

design parameter set, one should find the true 

parameter set that produces maximum risk. Likewise, 
for all possible different design parameter sets, one 

has to find the corresponding maximum risks. 

Finally, the design parameter set which corresponds 

to the minimum of all maximum risks is to be 

considered as the best design parameter set with 

which the control chart has to be designed. This 

design parameter set assures a safe design in a 

situation when nothing can be known about the 

distribution of true parameters within their 

corresponding ranges. 

 
4.1. Maximum risk corresponding to a given 

design parameter set 

Designing the control chart with a design (input) 

parameter set chosen arbitrarily from the approximate 

parameter space will lead to risk, and the maximum 

risk that may be possible with that particular design 

parameter set depends on the true parameter values 

the process realizes. In other words, the design 

parameter set that has the parameters very close to 

true parameters of the process will lead to low risk. 

Similarly, the design parameters that are far off from 

the true parameters will lead to higher risks. Since the 
true parameters of the process are unknown, one has 

to consider each possible true parameter set form the 

parameter space to find the risks. 

In order to find the possible true parameter set, which 

causes maximum risk for a given design parameter 

set, studies have been carried out using genetic 

algorithm (GA) as an efficient tool for search. The 

procedure adopted is as follows: 
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 Step 1: choose a design parameter set 

arbitrarily from the parameter space. Find the 

optimum parameters (n, h, k) of the control chart by 
minimizing the loss-cost function, L, a function of the 

chosen design parameter set. 

 Step 2: choose arbitrarily some possible true 

parameter sets from the parameter space. This creates 

a population of true parameter sets in the genetic 

algorithmic sense. 

 Step 3: find the optimum costs 
corresponding to each possible true parameter set of 

step 2. 

 Step 4: using the control chart parameters (n, 

h, k) obtained in the step 1 and the true parameters 

find the actual costs. Find the risks for each true 

parameter set using the actual costs and the optimum 

costs obtained in the step 3. 

 Step 5: find the fitness value of each true 
parameter set based on the risk it causes. Choose the 

true parameter sets based on the risks obtained. The 

true parameter sets with higher risks are to be 

preferred in the selection process. 

 Step 6: with the selected true parameter sets, 
form new parameter sets to represent the true 

parameter sets for the next generation. To form the 

new parameter sets, the genetic operations like 

crossover and mutation with appropriate probabilities 

have to be used. 

 Step 7: repeat the steps from 3 to 6 obtain 

the new true parameter sets. Continue the process till 

there is no improvement in the maximum value of the 

risk obtained from the true parameter sets. 

 Step 8: stop the search process. Find the true 

parameter set that has the highest risk from 

population corresponding to the last generation. This 

gives the true parameter set corresponding to 

maximum risk.  

The above procedure has been employed to find the 

maximum risks corresponding to different design 

parameter sets of the same control chart design 

problem and also with different control chart design 

problems. In all the cases, it has been observed that 

for any design parameter set, the maximum risks 
occur with a true parameter set formed by the 

extreme values of the parameters. Based on these 

results, a proposition regarding the maximum risks 

corresponding to a given design parameter set has 

been stated and proved graphically using GA. 

Proposition. For any given design (input) parameter 

set, the maximum risk will occur with the true 

parameter set formed by the extreme values of the 

parameter ranges. 

 Graphical proof: 
The above proposition can be proved graphically by 

considering any control chart design problem, 

completely specified by all parameters and the 

precision with which the parameters are estimated. It 

can be shown that for the maximum risk to occur, the 

true parameters will tend towards the extreme values 

to either low or high values. 

 Numerical example: 
A control chart design problem with the following 

cost and process parameters in Table 1 has been 

considered from Duncan [2] to prove the above 

proposition.  

 
Precision in the estimates of each input parameter is 

assumed to be ±50%. Table 2 shows the range for 

each parameter, covering their true parameters.

 
 

Considering the mean values of the parameter ranges 

for the design parameter set, the numerical values for 

all parameters are given in Table 3. 

Then optimizing the loss-cost Eq. (2) with the above 

design parameter set and with statistical constraints 

as: 
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𝛼𝐻 =0.005,      𝑝𝐿=0.95,       𝐴𝑇𝑆𝐻=5 

The control chart parameters are obtained as under: 

n=5,        h=1.37,        k=3.08 

 

To find the true parameter set, causing the maximum 

risk corresponding to the above control chart 

parameters, GA-based search has been carried out. 

Table 4 provides the details of the parameters used in 

the GA search. 

 
Each string in the population represents a possible 

true parameter set for the calculation of risk. In the 
first generation, ‘30’ parameter sets are taken for 

study. For each parameter set the risk is calculated 

and is taken as the objective value for each string to 

find its fitness. Depending on fitness values, selection 

is done by stochastic universal sampling. A single 

point crossover is performed among the best strings 

and the offspring are formed. Mutation is carried out 

with a low probability ( 𝑝𝑐 /l where 𝑝𝑐  is the 

probability of cross over and l is the length of 

chromosome). The process is continued till the 

specified number of generations is over. Apart from 
the convergence of the objective function, i.e. the 

maximum risk; each parameter is observed for its 

convergence. It can be observed from the graphs 

(Fig. 2(a)–(j)), that all the true parameters are 

converging to either minimum or maximum, in the 

maximum risk condition. This shows that the 

maximum risk will occur when the true parameters 

assume the extreme values of the parameter ranges. 

The true parameters where the maximum risk occurs 

are given in Table 5. This completes the graphical 

proof. 

 

For this example problem, the maximum risk 

obtained by keeping the design parameters at their 
average values = 171.81%. 

Since it is observed that the maximum risks occur 

when the true parameters take values at the extremes 

of the parameter ranges, the solution space to find 

maximum risk becomes 29alternatives for a chosen 
design vector of (n, h, k). That is, to find the 

maximum risk corresponding to a particular design 

parameter set, one has to find the actual costs and 

optimum costs for all combinations of parameter sets 

formed by the extreme values of the parameter 

ranges. 

 

5. Robust economic-statistical design of control 

chart with multiple parameter variation 
The problem of robust control chart design can be 

considered as two categories: 

1. Robust design with single parameter variation. 

2. Robust design with multiple parameter variation. 

In the case of single parameter variation, the 

uncertainty in the estimation of one of the important 

process parameters, like mean shift of the process 

will be considered and the corresponding parameter 

will be expressed in a range. The control chart has to 

be designed 
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Fig. 2. (a)–(j) Convergence proof for control chart cost and process parameters. 



Life Science Journal 2013;10(8s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  285 

considering the range for the single parameter under 

consideration. When more than one parameter is 

expressed in a range, the design can be categorized as 

robust design with multiple parameter variation. In 

this case, it is obvious that each cost and process 

parameter has its own minimum and maximum 
values. True value of any parameter is unknown to 

the designer. The cost and process parameters 

expressed in ranges, form a design parameter space. 

This design parameter space is infinite since each 

design parameter can take any number of values 

within it’s own range. By suitably dividing the range 

of each design parameter into some appropriate 

number of parts, the design parameter space can be 

made finite. Any possible set of parameters can be 

taken from the finite (approximate) design parameter 

space for the design purpose. Similarly, the true 

parameters can be thought of forming a true 
parameter space of same dimensions as design 

parameter space. Hence any parameter set chosen for 

design would give (size of parameter space-1) 

situations where the actual cost is higher than 

optimum cost, thereby leading to cost penalties. But 

it is required to see that the design parameter set 

chosen for control chart design is superior to any 

other possible design parameter set. The present 

design procedure depends on the principle of 

minimizing the maximum risk that occurs as a result 

of not knowing the true parameters and designing the 
chart with other than true parameter set. 

Denoting the approximate parameter space by  , 

the best design parameter set0 , which corresponds 

to minimum of maximum risks can be written as: 

 min MR


 


 0
                                           (9) 

where MR
 represents the maximum risk 

corresponding to the design parameter set  .  

The procedure to find the best design parameter set (

0 ) from the approximate design parameter space is 

given below: 

1. Choose a design parameter set such that 

each design parameter belongs to its own range, i.e. a 

design parameter set is to be chosen from design 

parameter space. 

2. Calculate the maximum risk corresponding 

to the design (input) parameter set chosen (as 

discussed in Section 4.1). 

3. Based on the maximum risk of the above 

design parameter set, choose a new design parameter 

set logically such that the maximum risk may be less 

compared to the previous design parameter set. 

4. Continue the process till a design parameter 

set is obtained which corresponds to a minimum of 
maximum risks or in other words repeat the steps 1, 2 

and 3 till the improvement in the reduction of 

maximum risks is not possible or negligible. 

5. Use the design parameter set obtained in the 

step 4 in the design of control chart parameters, 

namely, (n, h, k) values. 

The above procedure clearly suggests to logically 

choosing a design parameter set such that the 

maximum risk is less compared to the previous 

design parameter set considered. This logical search, 

in the proposed method, is accomplished with the 

help of genetic algorithm (GA). The procedure 
followed to obtain the best design parameter set such 

that the maximum possible risk is minimized, can be 

explained as follows: 

1. Take a pre-determined number of design 

parameter sets from the design parameter space. This 

represents the population size in GA. 

2. Now to each design parameter set 

considered, find the maximum risk. Using the 

maximum risk as the basis for fitness, obtain the best 

design parameter sets for further selection of new 

design parameter sets. Here, the selection is based on 
the minimization of the maximum risks. That is, the 

design parameter sets having minimum values of 

maximum risks will have higher chances for 

selection. This represents the selection process in the 

genetic algorithm. 

3. Using the design parameter sets obtained in the 

step 2, obtain new design parameter sets by using 

crossover principle. This leads to the creation of 

better offspring or the design parameter sets. 

4. Mutation is allowed in the process to avoid 

premature convergence in the process. 

5. The process is repeated till a pre-determined 
number of generations are over and the best design 

parameter set is obtained from the final population. 

 

The control chart parameters can be found 

corresponding to the best design parameter set 

obtained from the above search. Fig. 3 gives a 

summary of the proposed method. 
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5.1. Application of the proposed robust 

economic-statistical design procedure 

The proposed robust economic-statistical design 

procedure needs the input parameters, only to be 

specified in ranges. This risk-based approach is 

extremely useful when the designer is 

completely unaware of the distribution of a 

parameter in the considered range. 

Table 6 

 
A control chart design problem (Table 1) has been 

considered for a process with the following cost and 
process parameters:  

Five different precisions in the estimates at ±10, ±20, 

±30, ±40 and ±50% are considered for control chart 

designs. The parameter ranges for different precision 

scenarios are shown in Table 6. 

Based on the results of parametric study, the 

population size is fixed in the range of 100–300. The 

mutation probability is found to be close to (1/string 

size) for all scenarios. Linear ranking method has 

been employed in calculating the fitness of the 
strings. Stochastic universal sampling has been 

employed in the selection process. A single point 

cross over is found to give good results. An elitist 

strategy with a generation gap of 0.9 has been 

employed. The solutions for all precision scenarios 

are found to converge at less than 100 generations. 

Table 7 shows the combinations of GA parameters 

used in each scenario. 
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Table 7 

 
Using the above parameters, the GA is run and the 

results obtained are provided in the following tables 

(Tables 8 and 9). In order to compare the 

performance of average and risk-based methods, risks 

surfaces have been shown at different precision 

scenarios. Fig. 4(a)–(e) show the risk surfaces 

between the process failure rate and the process mean 

shift, with other parameters maintained at maximum 

risk condition.  It can be observed that the average 

based designs and the risk-based designs do not differ 

much in terms of the risk at low precision levels. 

Table 8 

 

Table 8 gives the details of the best design parameter 

sets at each precision scenario, to find the control 

chart parameters. The last column of the table 

indicates the maximum possible risk with each 

scenario. For example, in the  ±40% precision 

scenario, the maximum possible risk is 31.69%,  

which indicates that the risk will not be more than 

this value for any real scenario of the process.  

Table 9 gives the results of the risk-based robust 

economic-statistical designs at different precision 

scenarios.

Table 9 
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6. Summary and conclusions 

 

A simple robust economic design methodology for an 

X  control chart has been discussed. The design is 
made robust to the values of the true cost and process 

parameters in their specified ranges. The principle of 

minimization of maximum risk has been used in the 

design, which is simple to understand. Apart from 

simplicity of the approach, this method has the 

advantage of incorporating statistical constraints into 

the design, which is very much essential in the 

control chart designs. Genetic algorithm has been 

used as an efficient search tool for finding the best 

design parameter set. This methodology assumes 
primarily that no information is known about the 

distribution of the parameter in its own range. This 

will help to find a robust economic-statistical design 

when very little information about the parameter is 

available. Results of the robust designs indicate that 

the average based designs and the risk-based designs 

do not differ much in terms of the risk at low 

precision levels. At higher levels of uncertainty in the 

estimation of parameters, the advantages of using 

robust design are profound. 
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