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Abstract: In this paper a method for modeling integrator and derivative of effort and flow variables in a bond graph 

model is offered. In many dynamical systems there is a need to get the value of integral and derivative of a variable, 

for example in PID controller in a closed-loop controlled system. Here the way of implementing individual 

integrator and derivative elements using bond graph possibilities is presented. In this work the variables that their 

integral or derivative values are taken, are presented in the form of effort or flow variables as two fundamental 

variables of the system. This will allow us to model many systems by bond graph that they couldn’t be modeled 

before. In continue, its usage in some examples is presented. For examples classic closed-loop controlled systems by 

PID controller are used. Then the state equations, ruled over the full closed-loop system, are extracted from the 
model. It can be seen that the PID gains are appeared in the state equations. This specification is used in adaptive 

control by gain scheduling approach, and by these equations; the PID gains, required for attaining the desired system 

behavior along the time, are obtained. Using this method the PID gains for gain scheduling approach for a nonlinear 

plant can be obtained with no need to linearizing it. Furthermore this approach has the advantage of capability of 

modeling hybrid systems consist of various domains such as mechanical, electrical, hydraulic, magnetic and …, and 

designing controller for them. It can be seen that in this paper there are some novelties consist of modeling 

integrator of effort and flow by bond graph, modeling closed-loop controlled systems entirely by bond graph and 

also investigating adaptive control by bond graph. 
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1. Introduction 

In the 1950s, Henry Paynter, the professor of MIT 

mechanical engineering department,   designed a 

topic of modeling, based on the efficient 

representation of the relation between two ports by 

just one line that he called it ‘bond’. This so-called 

‘bond graph’ topic was completed later when he 
finally introduced the concept of the junction in 1959 

in a lecture. Junctions in addition to make the bond 

graph a powerful tool, have the advantage that they 

are rather abstract concepts that require another 

paradigm shift. Once this shift is made, it often 

induces over-enthusiasm and over-expectations that 

usually lead to disappointment and also unnecessarily 

scare off experienced engineers and scientists, 

because they have learned to accept the limitations of 

modeling. 

The Bond Graph works by using of a pair of 
variables named 'power variables' or "effort" and 

"flow" that in each domain of energy are different and 

special for that domain. These models are made of 

some bonds which connect together through single 

port, double port and multi port elements. Each bond 

has it effort and flow values whose product is the 

instantaneous power of the bond. For example, the 

bonds in an electrical system represent the flow of 

electrical energy and these two variables are 

electrical voltage and current, whose product is 

power. Examples of effort include force, torque, 
voltage, or pressure; while flow examples include 

velocity, current, and volumetric flow. 

In the sixties, the topic, e.g. the half arrow to 

represent positive orientation and insightful node 

labeling, was further developed with more details by 

his students, in particular Dean C. Karnopp, later 

professor at UC Davis (Ca), and Roland C. 

Rosenberg, later professor at Michigan State 

University (Mich.), [Rosenberg, 1968, 1974, 1990]. 

Rosenberg also designed the first software tool 

(ENPORT) that supported simulation of bond graph 
models [Rosenberg, 1965, 1974]. In the early 

seventies Jan J. Van Dixhoorn [1972, Evans et al., 

1974], professor at the University of Twente, NL and 

Jean U. Thoma [1975] professor at the University  of 
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Waterloo introduced bond graphs in Europe for the 

first time. 

These pioneers in bond graph topic and their students 

have been spreading its ideas worldwide [Karnopp et 

al., 1979]. Jan Van Dixhoorn used an early prototype 

of the block-diagram-based software TUTSIM to 
input simple causal bond graphs. This work about a 

decade later, resulted in a PC-based tool [Beukeboom 

et al., 1985]. This endeavors finally resulted to the 

development of truly port-based software tool 20-sim 

at the University of Twente [Broenink and 

Breedveld, 1988; www.20sim.com]. Breedveld also 

performed research in modeling more complex 

physical systems, in particular thermofluid systems 

[Breedveld, 1979].  

Modeling by bond graph has advantage of being able 

to modeling nonlinear systems. It can also model 

many domains of dynamical systems. Because of 
these features, nowadays it is used as a useful tool for 

modeling various types of dynamical systems such as 

electrical, solid mechanical, hydraulic, pneumatic and 

so others. It can also model hybrid systems 

containing various subsystems [Borutzky, 2007], 

specially it has been used in mechatronics systems 

([Gawthrop, 1991], [Amerongen, Breedveld, 2003], 

[Breedveld, 2004], [Dauphin, 2008]) and in the last 

two decades it have been a topic of research or are 

being used in research at many universities 

worldwide and part of (engineering) curricula at a 
steadily growing number of universities. In the last 

decade, their industrial use also has become more and 

more important. Although it is mainly used in 

physical systems, but it also can be used in non 

physical dynamical systems. The details of modeling 

dynamical systems may be found in some resources 

like [Karnopp, 2006]. 

Dynamical systems that can be modeled by bond 

graph are a concept in mathematics where a fixed 

rule describes the time dependence of a point in a 

geometrical space. At any given time a dynamical 

system has a state given by a set of real numbers. The 
evolution rule of the dynamical system describes 

what future states from the current state will be. 

Further details may be found in other resources like 

[Katok, 1996]. In the most of these systems we are 

dealing to differential equations. Thus, it is usual to 

need the integral and derivative value of state 

variables. Additionally when these systems are 

modeled using bond graph, often the effort and flow 

variables play the role of state variables, or the state 

variables are dependent to them. So it is not unusual 

to need the integral or derivative value of effort or 
flow variables. For example one of its very common 

usages is the PID controller. A proportional–integral–

derivative controller (PID controller) is a generic 

control loop feedback mechanism (controller) widely 

used in industrial control systems (refer to [Friedland, 

2005]). 

By what that mentioned, it is sensed that there is a 

need to have integrator and derivative elements in 

bond graph modeling. These elements should catch 

the value of effort or flow variables and give them in 
the case of effort or flow again, for reusing in the 

bond graph model.  Peter J. Gawthrop, the professor 

of Glasgow University in [Gawthrop, 1994], 

presented a way for modeling PID controller using 

bond graph. But there is a lack of modeling 

individual integrator and derivative elements in bond 

graph modeling. 

In this work, first the method of modeling integrator 

and derivative by bond graph is presented in section 

2. The bond graph model of PID controller is shown 

in section 3. Then some examples of closed loop 

controlled systems, involving PID controller are 
presented in sections 4 and 5 and the state equations 

of the entire closed loop system are extracted. It will 

be seen that the PID gains are appeared in state 

equations. Thus this feature is used in the case of 

adaptive control, and it will be shown that using these 

equations, a suitable set of PID gains could be 

produced that produce the desired behavior for our 

system. 

 

2. Modeling integrator and derivative of effort 

and flow 
In this section as the first step, the equivalent bond 

graph models for the integrator and derivative of 

effort and flow are shown. For this purpose the 

inertia and capacity elements should be used. The 

conversions of the values of effort and flow variables 

in these elements follow a differential equation. Thus, 

the desired values of effort and flow can be obtained, 

using them. In this topic there are four different 

options, which are listed and explained as below: 

 

2.1 Integral of effort 

For obtaining the integral value of effort variable, an 
inertia element is used. Its schema is shown in Figure 

1. It can be seen that there is a one junction with only 

one input and one output bonds. So the values of 

effort and flow in both bonds become the same and 

equal to 𝑒1 and f. The ruled equation over it becomes 

as below: 

𝑒1 = 𝐼
𝑑𝑓

𝑑𝑡

 
  𝑒1𝑑𝑡 = 𝐼𝑓

𝐼=1
   𝑒1𝑑𝑡 = 𝑓 = 𝑒2        (1) 

It can be seen that by taking integral from both sides 

of the differential equation of the inertia element, the 

term of the integral of effort (𝑒1) is obtained. For 

simplicity the value of the parameter of I is set to 1. It 

is observed that the flow of the junction (f) keeps the 

value of the integral in itself. Thus, if a source be 

used that its output be equal to this fallow’s value; it 
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can be reused in the bond graph model. As it is seen 

in Figure 1 there are two ways for it: if the integral of 

effort is wanted in the form of effort, a source of 

effort is used (Figure1.a), and if it is wanted in the 

form of flow a source of flow is used (Figure 1.b).

 
Figure 1: The bond graph model of integrator of effort 

 

2.2 Derivative of effort 

Obtaining the derivative of effort is the same as the 

previous one, except one difference: instead an 

inertia element a capacity element should be used. Its 
schema is shown in Figure 2. Its equation is as below: 

𝑒1 =
1

𝐶
 𝑓𝑑𝑡

 
 

𝑑𝑒1

𝑑𝑡
=

𝑓

𝐶

𝐶=1
   

𝑑𝑒1

𝑑𝑡
= 𝑓 = 𝑒2          (2) 

It can be seen again that the flow of the junction (f) 

keeps the value of the derivative of the effort (𝑒1) in 

itself. Again in two ways, a source of effort or flow is 

used that its output is equal to f. 

 
Figure 2: The bond graph model of derivative of effort 

 

2.3 Integral of flow 

For obtaining the integral of flow again a capacity 

elements should be used. But in the flow option 

instead of a one junction a zero junction should be 

used. Its schema could be seen in Figure 3. Because 
the junction has only one input and one output the 

effort and flow in both bonds are equal (e,𝑓1). Its 

equation becomes as below: 

𝑒 =
1

𝐶
 𝑓1𝑑𝑡

 
  𝑓1𝑑𝑡 = 𝐶𝑒

𝐶=1
    𝑓1𝑑𝑡 = 𝑒 = 𝑓2     (3) 

It can be seen in this equation that this time the effort 
of the junction (e) keeps the value of the integral of 

the flow (𝑓1) in itself. Thus, like the previous ones a 

source of effort or flow is used, that its output is 

equal to this effort.

 
Figure 3: The bond graph model of integral of flow 

 

2.4 Derivative of flow 

The last option is the derivative of flow. This option 

is similar to the previous one, except that instead of a 

capacity element an inertia element is used. Its 

schema is presented in Figure 4. It can be seen that 

again there is a zero junction and its effort value is 

used to define the output of the source. The ruled 

equation over it is as below: 

𝑒 = 𝐼
𝑑𝑓1

𝑑𝑡

 
 

𝑑𝑓1

𝑑𝑡
=

𝑒

𝐼

𝐼=1
  

𝑑𝑓1

𝑑𝑡
= 𝑒= 𝑓2                          (4) 

It can be seen that the value of derivative of the flow 

(𝑓1) is equal to the effort of the junction (e). Thus a 
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source of effort or flow is used that its output is equal to this effort. 

 
Figure 4: The bond graph model of derivative of flow 

 

3. Modeling PID controller 

In previous section the way of modeling integrator 

and derivative of the effort and flow variables in such 

way that their value can be reused in the model, was 

presented. Now by using this information a bond 

graph model for a PID controller can be designed. 
For modeling it the input error to the PID is 

considered in the form of effort or flow. Then the 

integral and derivative parts can be modeled by the 

ways described in previous section. The proportional 

part also can be modeled using a transformer. Then 

three outputs of these three parts should be added by 

a junction, and then the output of PID can be used by 

an output bond from the junction. But it must be 

considered that in this model if the parameters of the 

capacity and inertia elements be set to 1, it means that 
integral and derivative gains of PID are 1. Thus, the 

parameters of the capacity and inertia elements 

should be set in such way that satisfies the desired 

values of the gains of PID. 

 
Figure 5: The bond graph model of PID for controlling effort 

 

Although the PID controller can be modeled by this 

way but Peter J. Gawthrop has presented an easier 
way for modeling PID that it can be found in 

[Gawthrop, 1994]. In this plan again the input error to 

the PID must be considered in the form of effort or 

flow. But the difference is that the proportional part 

is modeled by a reluctance element and also the form 

of model is more integrated. 

In Figure 5 this model is presented when the input (y) 

is effort. SS presents the desired value of system that 

it’s in the form of effort too. The flow of one junction 

(u) becomes the output of the PID. The value of C, I 

and R parameters can be obtained from Equations 1-
4, and they are seen in the figure. In Figure 5.a input 

and output, both are taken from one point, such that 

input is the effort of the bond and output is the flow 

of the bond. But in Figure 5.b they are taken from 

separate points, that in this case the value of flow of 

one junction must be transmitted by a data line. In 

Figure 6 the same model is shown when the input is 

in the form of flow, and in this case output is the 

effort of the zero junction (u). 
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Figure 6: The bond graph model of PID for controlling flow 

Now that the ways of modeling integrator and 

derivative and PID controller were presented, they 
can be used in modeling various systems. In the 

following sections for example the bond graph model 

of a closed-loop controlled system is designed 

entirely.  

 

4. Modeling closed-loop controlling system of 

electrical motor 

In this section as an example an electrical motor is 

considered, that is connected to a source of voltage, 

and is spinning a wheel (𝐽𝑤 ). The bond graph model 

of this open loop system is shown in Figure 7. It can 
be seen that an electrical reluctance and self are 

connected to the motor.  

For a closed-loop system two options of controlling 

velocity and position of the wheel are considered. In 

following sections first these two options are 

modeled. Then the adaptive control using bond 

graph, for the second option is shown. 

 
Figure 7: The bond graph model of an electrical 

motor 

 

4.1 Controlling the velocity of the motor 
In this section a closed-loop control system for 

controlling the angular velocity of an electrical motor 

is selected for investigation. The bond graph model 

of this system is shown in Figure 8. It is seen that, a 
source of flow is used that its output is equal to the 

negative of the flow of the wheel, and another source 

of flow presents the desired value of the velocity. 

These two values are added by a zero junction, so the 

flow of the output bond is the error value of the 

velocity. 

 
Figure 8: The bond graph model of the closed loop 

control system of the velocity of the electrical motor 

 

Now the state equations of the system can be 

extracted from the model. the state variables are 
related to the self, the inertia of the wheel and the 

capacity element that represent integral gain of PID: 

𝑃 𝐿𝑎
= − 

𝐾𝑑𝐾𝑚

𝐽𝑤 𝐿𝑎
+

𝑅𝑎

𝐿𝑎
 𝑃𝐿𝑎

−
𝐾𝑝+𝐾𝑚

𝐽𝑤
𝑃𝐽𝑤 + 𝐾𝑖𝑄𝐾𝑖

+

𝐾𝑝 . 𝑟𝑒𝑓 (5) 

𝑃 𝐽𝑤 =
𝐾𝑚

𝐿𝑎
𝑃𝐿𝑎

                                                     (6) 

𝑄 𝐾𝑖
= 𝑟𝑒𝑓 −

1

𝐽𝑤
𝑃𝐽𝑤

                                     (7) 
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The velocity of the wheel in every moment by these 

equations can be found (
𝑃𝐽 𝑤

𝐽𝑤
). The equations in the 

matrix from will be: 

 

𝑃 𝐿𝑎

𝑃 𝐽𝑤
𝑄 𝐾𝑖

 =

 
 
 
 
 −  

𝐾𝑑𝐾𝑚

𝐽𝑤𝐿𝑎
+

𝑅𝑎

𝐿𝑎
 − 

𝐾𝑝

𝐽𝑤
+

1

𝐾𝑚 𝐽𝑤
 𝐾𝑖

𝐾𝑚

𝐿𝑎
0 0

0 −
1

𝐽𝑤
0  
 
 
 
 

 

𝑃𝐿𝑎

𝑃𝐽𝑤
𝑄𝐾𝑖

 +

 
𝐾𝑝

0
1

 𝑟𝑒𝑓                                                     (8) 

It can be seen that the PID gains are appeared in these 

equations.  
 

4.2 Controlling the position of the motor 

Now in this section we have the same system, but this 

time controlling the position of the wheel is desired. 

For obtaining the position of it, the integral of the 

velocity must be obtained. Thus, there is a need to 

take integral from the flow of the wheel that it can be 

done by the presented way in section 2.3 and using a 

capacity element, that one of the state variables of the 

system is related to this element. The bond graph 

model of this system is presented in Figure 9. In this 
model, e presents the integral of the velocity or the 

position. It is seen that this time the desired value for 

control system, is presented in the form of effort, so 

the bond graph model for controlling effort (Figure 

5), for modeling the PID, should be used, that the 

output flow of it presents the output of the controller 

(𝑓2). Thus, a source of effort is used, that its output is 

equal to this flow. 

The system’s state equations become as below: 

 𝑃 𝐿𝑎
= −

𝑅𝑎

𝐿𝑎
𝑃𝐿𝑎

−
𝐾𝑑+𝐾𝑚

𝐽𝑤
𝑃𝐽𝑤 − 𝐾𝑝𝑄𝑖𝑛𝑡 +

𝐾𝑖𝑃𝐾𝑖
+ 𝐾𝑝 . 𝑟𝑒𝑓 (9) 

 𝑃 𝐽𝑤 =
𝐾𝑚

𝐿𝑎
𝑃𝐿𝑎

 (10) 

 𝑄 𝑖𝑛𝑡 =
1

𝐽𝑤
𝑃𝐽𝑤

 (11) 

 𝑃 𝐾𝑖
= 𝑟𝑒𝑓 − 𝑄𝑖𝑛𝑡  (12) 

In these equations because the parameter of 𝐶𝑖𝑛𝑡  is 1, 

so 𝑄𝑖𝑛𝑡 = 𝑒 and it presents the position. 

 

 
Figure 9: The bond graph model of the closed loop 

control system of the position of the electrical motor 

The matrix form of the equations becomes: 

 
 
 
 
 
𝑃 𝐿𝑎

𝑃 𝐽𝑤
𝑄 𝑖𝑛𝑡
𝑃 𝐾𝑖  

 
 
 
 

=

 
 
 
 
 
 −

𝑅𝑎

𝐿𝑎
−

𝐾𝑑+𝐾𝑚

𝐽𝑤
𝐾𝑚

𝐿𝑎
   0

−𝐾𝑝 𝐾𝑖

0 0

0
1

𝐽𝑤

0 0

0 0

−1 0  
 
 
 
 
 

 
 
 
 
𝑃𝐿𝑎

𝑃𝐽𝑤

𝑄𝑖𝑛𝑡

𝑃𝐾𝑖  
 
 
 

+

 

𝐾𝑝

0
0
1

 𝑟𝑒𝑓                                                   (13) 

4.3 Adaptive control of the electrical motor 

In previous sections, the bond graph model for the 

electrical motor controlling system in two cases was 

designed, and the state equations were extracted.  

Now in this section it will be shown that, how these 

equations can be used in adaptive control of the 

system. It was seen that the gains of the PID, were 

present in the state equations. This specification can 

be used to designing a suitable PID controller for the 
system that satisfies the desired requirements. In the 

equation that contains the PID gains (Equations 5 and 

9), in each moment if the system’s state parameters 

and their derivatives be specified, it will be an 

equation with three unknown variables (PID gains). 

Thus, if this equation in three moments be 

established, the PID gains could be detected. Thus, if 

the curves of the changes of the state variables in a 

specified time interval be specified, the PID gains in 

each moment can be specified, such that satisfy these 

curves. 

This operations for controlling the position option, is 
done here. Among the system’s state variables, the 

controlled variable is 𝑄𝑖𝑛𝑡  that presents the position 

of the wheel. Thus, first its curve of the changes 

should be specified. Other system variables by 
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defining initial values and knowing the value of 𝑄𝑖𝑛𝑡  

could be detected in each moment. It is needed to 

define an equation for the position’s curve, that 

satisfies the desired value for some of the system’s 

parameters, such as settling time (𝑡𝑠) and overshoot 

(𝑀𝑝). This purpose can be performed using some 

control knowledge. If it is desired that the position 

follows a curve that has a specified overshoot, and 

finally becomes constant on the desired value in a 

specified time, this curve according to the time, can 

be defined by this equation [Trimmer, 1969]: 

𝑐 𝑡 = 𝑟𝑒𝑓(1 −
𝑒−𝜀𝜔𝑛 𝑡

 1−𝜀2
sin(𝜔𝑛 1 − 𝜀2𝑡 + cos−1 𝜀)) 

     (14) 

In this equation 𝜀 is the damping ratio, and 𝜔𝑛  is the 

undamped natural frequency. The parameters settling 

time and overshoot, also can be defined according 
these two parameters as below: 

𝑡𝑠 = 4𝑇 =
4

𝜀𝜔𝑛
    (With 2% tolerance) (15) 

 𝑀𝑝 = 𝑟𝑒𝑓(1 + 𝑒𝑥𝑝(−
𝜀𝜋

 1−𝜀2
)) (16) 

Now by these equations and defining the settling time 

and overshoot, 𝜀 and 𝜔𝑛  can be obtained. Then using 
Equation 14, an equation for the position, according 

the time can be defined, that has the desired 

requirements. In this work it’s desired to go from the 

position 0 to 𝜋 3  in 5 seconds and having an 

overshoot equal to 1.3. Using Equations 15 and 16, 

these values will be obtained for 𝜀 and 𝜔𝑛 : 

 𝜀 ≈ 0.4122   ,   𝜔𝑛 ≈ 1.94 

These values are used for the system’s parameters: 

 𝐿𝑎 = 5 𝑚𝐻 

 𝑅𝑎 = 0.1 Ω 

 𝐾𝑚 = 0.5 

 𝐽𝑤 = 0.07 𝑘𝑔𝑚2 
The initial values, for the state variables are set to 

zero. The result for the PID gains along the time is 

presented in Figure 10. It can be seen that the values, 

almost are constant along the time. 

 
Figure 10: The gains of PID: 𝐾𝑝  red, 𝐾𝑖  green, 𝐾𝑑  

blue. 

 
Figure 11: The position of the wheel along the time 

 

Now the system can be tested by the obtained PID 

gains. The result is presented in Figure 11. It can be 

seen that the resulted gains, satisfy the desired 

requirements. Because the changes of the gains are 
very little, the average values of them can be used in 

whole time that almost has the same result. 

The control method that was used here is an offline 

method because the position trajectory was 

predetermined. However, it can be used online too, 

because if the state variables in each moment and its 

previous moment, be known, and the desired values 

for them for the first future moment be specified too, 

by establishing equation 9 in these tree moments, the 

PID gains can be found for the first future moment. 

 

5. Modeling Hydraulic system 
In the previous sections a simple system (electrical 

motor) was modeled. Now in this section for another 

example, a more complicated system is investigated. 

The system that is considered is a bidirectional 

hydraulic system, that is controlled by a 5/3 valve. 

The schema of this system is shown in Figure 12. The 

valve that is used, works by magnetic force and a 

spring. It has 3 states consist of stop, left and right. It 

is shown in these 3 states in Figure 13. It has a spool 

that moves to the left and right by the force of the 

magnetic coil and the spring. It can be seen in the 
figure that in stop state, the input and two output 

ports, all are closed. When the spool moves to the left 

and right the input port becomes open to one of the 

pipes to the cylinder, and the other pipe becomes 

connected to the output. But the movement of the 

spool is rational. It means that a port in every 

moment is not essentially fully closed or open. The 

spool may be in such state that a percentage of the 

area of the port be open. Thus, by controlling the 

position of the spool, and therefore the open area of 

the port, the position of the piston can be controlled 

(for further details of hydraulic systems refer to 
[Shames, 2002]). 
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Figure 12: The hydraulic system 

 
Figure 13: The used valve in three different states 

 

5.1 Modeling closed-loop controlled system 

Now that the performance of the system was 

explained, we try to model its closed-loop controlled 
system, by bond graph. The controlling of the system 

is performed by controlling the electrical current of 

the magnetic coil. The magnetic force that is applied 

to the valve is obtained by a coefficient multiplied to 

the electrical current. A PID controller is used to 

determine the value of the electrical current. In 

hydraulic systems the effort variable is the pressure 
(P) and the flow variable is the Debbie (Q). The bond 

graph model of the entire closed-loop system is 

presented in Figure 14.  

The middle part of the figure presents the model of 

the valve. The flow of the one junction presents the 

velocity of the spool, that by obtaining its integral by 

the mentioned method the position of the spool can 

be found. But because here there is a C element for 

the spring, there is no need to use an additional C 

element (𝑄𝑠𝑝presents the position of the spool). It can 

be seen that there is two sources of pressure 

(𝑆𝑒1 ,𝑆𝑒2). In every moment one of these sources is 

the input source, and the other is the output source. 

So for defining the switching of them in the model, 

two transformers are used that have conditional 

coefficients (𝑛1 ,𝑛2). Their values are defined as 

below: 

𝑛1 =  
5    𝑖𝑓    𝑄𝑠𝑝 > 0

1    𝑖𝑓    𝑄𝑠𝑝 < 0
        𝑛2 =  

−1    𝑖𝑓    𝑄𝑠𝑝 > 0

−5    𝑖𝑓    𝑄𝑠𝑝 < 0
  

The value of 𝑛2 is negative, because the second 

source moves the piston in the negative direction. 

When the absolute value of each of them is more, it 

means that this source is the input.  
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Figure 14: The bond graph model of closed-loop controlled hydraulic system 

 

The pressure that is produced by the source is 

subjected to the reluctance of the valve (𝑅𝑣), 

reluctance of the fluid in pipe and cylinder (𝑅𝑓𝑝 ,𝑅𝑓𝑐 ), 

and the inertia of the fluid in pipe and cylinder 

(𝐼𝑓𝑝 , 𝐼𝑓𝑐 ).These values are obtained by the following 

formulas: 

 𝑅𝑣 =
1

2
𝐾𝜌

𝑄2

𝐴2    (17) 

 𝑅𝑓 =
𝑓𝑓𝐿𝑄

𝐷𝐴2    Reluctance of fluid (18) 

 𝐼𝑓 =
𝜌𝐿

𝐴
   Inertia of fluid  (19) 

In these equations A is the cross area, L is the length 

of the path and 𝑓𝑓  is the friction coefficient of the 

fluid. 

After these branches, the reminder of the effort 

(pressure) is converted to the force by a transformer 

that its coefficient is the cross area of the cylinder 

(𝐴𝑐), because 𝐹 = 𝑃 𝐴 . In continue, there is a one 
junction that two forces from the pressure sources are 

entered to it. It can be seen that, the output bonds 

from this junction are the reluctance of the friction of 

the piston (𝑅𝑝), the mass of the piston (𝑀𝑝) and the 

mass of the burden that is conveyed by the piston 

(𝑀𝑏). The flow of this junction is the velocity of the 

piston, so its integral presents the position of the 
piston, that it is the variable that should be controlled. 

Taking integral from it is performed by the explained 

way and the effort of 𝐶𝑖𝑛𝑡  presents the integral value 

(e). The desired or reference value of the system, is 

presented in the effort form that is subtracted from e 

and its output is delivered to the PID. As explained 

before, the flow of the junction before the PID 

presents the output of the PID (𝑓2). This value is 

transmitted to the source of flow that produces the 

electrical current of the coil. 
Now the state equations of the system can be 

established. In this system there are 5 integral 

variables that are 𝑄𝑠𝑝 , 𝑃𝑠 ,𝑄𝑖𝑛𝑡 ,𝑃𝐾𝑖
 and 𝑃𝑝𝑖𝑠 , that 

respectively are related to spring, spool, integrator of 

position, integral of PID and piston. The state 
equations will be obtained as below: 

𝑄 𝑠𝑝 =
𝑃𝑠

𝑀𝑠
    (20)

 𝑃 𝑠 = 𝐾𝑚𝑎𝑔  𝐾𝑖𝑃𝐾𝑖
+ 𝐾𝑝 𝑟𝑒𝑓 − 𝑄𝑖𝑛𝑡  −

𝐾𝑑

𝑀𝑝
𝑃𝑝𝑖𝑠  −

𝑅𝑠

𝑀𝑠
𝑃𝑠 − 𝐾𝑠𝑝𝑄𝑠𝑝     (21) 

 𝑄 𝑖𝑛𝑡 =
𝑃𝑝𝑖𝑠

𝑀𝑝
 (22) 

 𝑃 𝐾𝑖
= 𝑟𝑒𝑓 − 𝑄𝑖𝑛𝑡  (23) 

 𝑃 𝑝𝑖𝑠 =

 
 
 

 
 𝐴𝑐

𝛿
 𝑛1𝑆𝑒1 − 𝑛2𝑆𝑒2 −

𝑅𝑝

𝑀𝑝 𝛿
𝑃𝑝𝑖𝑠 −

(
2α

𝑄𝑠𝑝
+2𝛽+𝛾)𝐴𝑐

2

𝑀𝑝𝛿
𝑃𝑝𝑖𝑠

2   , 𝑃𝑝𝑖𝑠 > 0

𝐴𝑐

𝛿
 𝑛1𝑆𝑒1 − 𝑛2𝑆𝑒2 −

𝑅𝑝

𝑀𝑝 𝛿
𝑃𝑝𝑖𝑠 +

(
2α

𝑄𝑠𝑝
+2𝛽+𝛾)𝐴𝑐

2

𝑀𝑝𝛿
𝑃𝑝𝑖𝑠

2   , 𝑃𝑝𝑖𝑠 < 0

      (24) 

Where 

 α =
𝐾𝜌𝐴𝑐

2𝑀𝑝𝐷𝑝
 (25) 

 𝛽 =
𝑓𝑓𝐿𝑝𝐴𝑐

𝐷𝑝𝐴𝑝
2 𝑀𝑝

 (26) 

 𝛾 =
𝑓𝑓𝐿𝑐

𝐷𝑐𝐴𝑐𝑀𝑝
 (27) 

 𝛿 = 1 +

2𝜌𝐿𝑝𝐴𝑐
2

𝐴𝑝
+𝜌𝐴𝑐𝐿𝑐+𝑀𝑏

𝑀𝑝
 (28) 

In these equations 𝑀𝑠 is the mass of the spool, 𝑅𝑠 is 

the reluctance of the friction of the spool, 𝐷𝑝  is the 

diagonal of the pipe, 𝐿𝑝  is the length of the pipe, 𝐴𝑝  

is the cross area of the pipe and 𝐷𝑐  is the diagonal of 

the cylinder. In this work for simplicity the cross area 

of the input and output ports of the valve are 

considered in the square shape, so the open area of 

the valve is equal to 𝑄𝑠𝑝𝐷𝑝 . It is seen that in this 

system the state equations are nonlinear, and unlike 

the previous examples the matrix form of the 

equations can’t be established. 

 

5.2 Adaptive control of the hydraulic system 

Now like the electrical motor example in this section 

adaptive control for the hydraulic system is 

performed to design a PID controller. 𝑄𝑖𝑛𝑡  presents 

the position of the piston and is the variable that 

should be controlled. Thus, like the previous example 

first a curve for its changes must be defined. This 

time we want define a curve that hasn’t any 

overshoot. For this purpose 𝜀 must be equal to1 or 

more. But if it is exactly one in Equations 14 and 16 

divide to zero will be occurred, and if it is more than 

one under the radical will be negative. Thus, for 

avoiding these problems it is considered near one 
(0.999). The desired settling time is 4 seconds and 

𝜔𝑛 = 1.5. The length of the piston is 1.5 meters and 

desired position is 1.15. If it is simulated using 

Equation 14, it can be seen that the response has the 

desired requirements (Figure 15). 
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Figure 15: The position of the piston 

 
Figure 16: The gains of PID: 𝐾𝑝  red, 𝐾𝑖  green, 𝐾𝑑  blue. 

 
Figure 17: The movements of the spool along the time 
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The initial values for the system’s state variables are 

considered 0. In each moment by knowing 𝑄𝑖𝑛𝑡  and 

its derivative, using Equations 22 and 23, 𝑃𝑝𝑖𝑠  and 

𝑃𝐾𝑖
can be obtained. Then using Equation 24 𝑄𝑠𝑝  will 

be obtained. Then by Equation 20 𝑃𝑠 is resulted (and 

then its derivative). Thus, in Equation 21 three 
unknown parameters will be remained that are the 

PID gains. Therefore by establishing this equation in 

three moments the gains can be found. These gains 

along the time are shown in Figure 16. It can be seen 

that despite the example of the electrical motor, this 

time the gains aren’t constant along the time. In 

Figure 17 the movements of the spool is presented. 

As it was mentioned before, the cross area of the 

ports is considered in the square shape, and the length 

of its edge is 2 cm. It can be seen that the spool don’t 

entirely open the input port in this operation. 

In this example the advantages of the presented 
method is observed. A nonlinear hybrid system 

consist of solid mechanic, magnetic and hydraulic 

fields was modeled and required PID gains for gain 

schedule control of it, such that the desired output be 

produced, obtained. It was seen that using this 

method there is no need to linearize the system. 

 

6. Conclusion 

In this paper it was seen that first a new way for 

modeling the integrator and derivative of the effort 

and flow variables in bond graph modeling was 
presented. It has some useful effects. In many 

dynamical systems there is a need to the value of the 

integral and derivative of some system’s variables, so 

obtaining the effort and flow variables as two key 

variables of various systems, is a useful thing. It was 

seen that by the presented way, these values can be 

obtained using bond graph elements, and it can be 

reused in the model. These specifications make it 

possible to model more various systems by bond 

graph, and increase the domain of bond graph usage. 

It was mentioned that one of the obvious instances of 
it, is PID controller, but it was modeled by bond 

graph, before. It was seen that by combining this 

method with our invented method a closed loop 

controlled system for various plants can be modeled 

entirely by bond graph, and it is one of its important 

usages. In continue for example two different plants 

that are controlled by PID were modeled by bond 

graph, and the system equations were extracted. It 

was seen that the PID gains are participated in these 

equations, and this specification allows us to use 

bond graph for designing PID for various systems. 

Thus, by using it bond graph can be used in adaptive 
control. It means that if the desired behavior of the 

system is defined and the closed loop system is 

modeled by bond graph, the PID gains along the time 

that satisfy the desired requirements can be obtained. 

Using this method adaptive control for nonlinear and 

hybrid systems can be performed without linearizing 

them. This task in this work was performed for two 

example systems.  
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