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Abstract: In this paper, we will emphasize the Generalized topology [1] endowed upon the vector space. Whereas 

the addition and scalar multiplication of vector space, follows the principle of Generalized continuity [3]. The 

Generalized topology and Generalized continuity enhances the horizon of understanding and application by easier 

approach. 
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Introduction 

Á. Császár [1] introduced the notion of 

generalized topology. And later on, he gave the idea 

of generalized continuity [3]. We will apply these 

fundamental results on the vector spaces and 

subspaces over the field K (Real or Complex). This 

will be done by the application of generalized 

continuity over addition and scalar multiplication. 

Further more, we will give the example of 

generalized topological space which fails to be a 

topological vector space. Generalized topology will 

also be studied upon the subspaces and the quotient 

spaces by virtue of generalized continuity over 

addition and scalar multiplication. The significance 

of generalized topology over the usual topology is 

realized by broadening the research horizon as lesser 

conditions required to be satisfied. 

1. Preliminaries 

Definition 2.1.1 [1]. Let X be any non 

empty set, μ exp( )X  is said to form generalized 

topology if the following conditions are satisfied: 

       (1).      

 (2).   Arbitrary union of elements of μ are closed. 

 The pair ( X, μ) is called the generalized 

topological space. Since generalized topological 

space need not to be closed under the finite 

intersection. Note that every topological space is 

generalized topological space but converse is not 

generally true. 

Examples 2.1.2.[4]. Let R be the real line 

and let  Λ = {[a, b] : a, b   R, a  ≤  b} and μ be the 

collection of all union of members of Λ. It is trivial 

that μ is a GT on R. 

Examples 2.1.3  Let X= {a,b,c} μ ={  ,         

{ a},{b},{a,b}, {a,c}, {b,c},{a,b,c}}   

(i).       

   (ii). Arbitrary union is closed in μ. 

Therefore μ forms the generalized topology 

in spite of the fact that  {a,c}∩{b,c}={c} μ. 

Definition 1.1: [5] A vector space V over the field 

K (Real or Complex) along with a topology 
endowed on it which can be expresses as a pair (V

) . Moreover, the scalar multiplication and vector 

addition are continuous functions 

„m‟ :V V V   

„M‟: K V V   

Where   V V and K V  are given the respective 

product topologies. Thus  ,x y X  and   U 

is an open neighborhood of  x y there must be 

open neighborhoods 

Similarly, the continuity of scalar multiplication 

implies that for given ,  K x X   and any 

neighborhood W  of  ( , x ), there is a 

neighborhood V of 𝛼 ∈ 𝐾  and a neighborhood

  U  of x  in such that V×U   W.A 

topological vector space is necessarily a topological 

group: the definition ensures that the group 

operation (vector addition) is continuous, and the 

inverse operation is the same as multiplication 

by −1, and so is also continuous.  

Examples 1.2 [5]. (1). Any real or complex 

normed space is a topological vector space when 

equipped with the topology induced by the norm. 

(2). Any vector space is a topological vector space 

when equipped with the indiscrete topology. Of 

course, this will fail to be a separated topological 

vector space unless it is the zero-dimensional space 

{0}. (3). Most frequently given examples of 

topological vector space
nR ,

nC . (4) C[0, 1] in the 

topology given by the metric d(f , g) = supt∈[0,1] |f (t) 

− g(t)|. 

 

1.2  Generalized Topological Vector Space 

In this section, we will discuss the 

generalized topological vector space. Since every 

topological space is generalized topological space but 

,   of  and ,  respectively, such that .x y x yU U x y U U U  
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the converse is not generally true. We will give some 

examples of generalized topological vector space 

which is not a topological vector space by 

introducing the generalized topology based upon the 

generalized semi open sets. We will further look into 

the structure of generalized topological vector space 

containing the additive abelian group and draw some 

nice results accordingly. 

Definition 1.2.1[1]  Let (X, G1) and (X, G2) 

are the given generalized topological spaces, f from 

(X, G1) to (X, G2) is (G1,G2)-continuous (briefly 

generalized continuous) if f 
−1

(U)∈G1for allU∈ G2. 

Definition 1.2.2  [2] Now let 𝐾 ≠ ∅ be an 

index set. 𝑋𝑘 ≠ ∅  for 𝑘 ∈ 𝐾, and 𝑋 =  𝑋𝑘𝑘∈𝐾  the 

Cartesian product of the sets 𝑋𝑘 .  We denote the 

projection 𝑝𝑘 : 𝑋 ⟶ 𝑋𝑘 . Supposing that the 𝜇𝑘  is the 

generalized topology over 𝑋𝑘 . Now consider all the 

sets of the form 𝑀𝑘 ∈ 𝜇𝑘  and with the exception of 

finite number of 𝑘 ∈ 𝐾.  Such that 𝑀𝑘 = 𝑍𝑘 = 𝑀𝜇𝑘 . 

We denote 𝛽 the  base of collection of all these sets. 

We call 𝜇  as the product of topologies of 𝜇𝑘  and 

denote it by 𝑃𝑘∈𝐾𝜇𝑘 . If each 𝜇𝑘 is a topology then 

clearly 𝜇 is the product topology of the factor 𝜇𝑘 . 
Definition1.2.3 A vector space V over the 

field K (usually R or C) is said to be generalized 

topological vector space if V is endowed with the 

generalized topology μ. Then (𝑉, 𝜇)  is called 

generalized topological vector space if the following 

two axioms are satisfied: 

(i) 𝑚: 𝑉 × 𝑉 ⟶ 𝑉 is a generalized continuous 

where 𝑚 is defined by, 

𝑚 𝑣1, 𝑣2 = 𝑣1 + 𝑣2    ∀ 𝑣1 , 𝑣2 ∈ 𝑉. 
(ii) 𝑀: 𝐾 × 𝑉 ⟶ 𝑉  is a generalized continuous 

where 𝑀  is defined by,  𝑀 𝛼, 𝑣 = 𝛼𝑣    ∀ 𝑣 ∈
𝑉 𝑎𝑛𝑑 𝛼 ∈ 𝐾. 

               Surely X will forms a discrete generalized 

topological space and therefore    X X will be 

product of Generalized topological space which is 

itself a Generalized topological space [2].  

Every topological vector space is a 

generalized topological vector space where as 

generalized topological vector space is not 

topological vector space since  the generalized 

continuity may not be continuum. In the following 

example we will discuss the generalized topology 

which is not a usual topology. In the next example we 

will give the example of generalized topological 

vector space which is not a topological space. 

Example1.2.3. Let (𝑋, 𝜓) be a generalized 

topological space. And A  X is called generalized 

semi open in (𝑋, 𝜓) if there exist a generalized open 

set O such that  
( )O A cl O 

 where A X  

and 
.O 
 The notion of Generalized topological 

space and generalized semi open sets were introduced 

by Császár  [3]. 

Corollary 1.2.4.   (a). Every open set is 

semi-open.  (b).Union of any number of semi open 

set is semi open. (c). Intersection of two or more semi 

open sets need not to be a semi open. 

Example 1.2.3.Let X be the vector space 

and any collection of semi open subsets of X satisfies 

the condition of semi continuity overaddition and 

scalar multiplication[6]. 

 

2.0 GENERALIZED TOPOLOGICAL VECTOR 

SUBSPACES 

Definition 2.1. Let V be the vector space 

over the field K (R or C) and S is the subset of V 

such that S itself satisfies to be vector space over K 

with respect to addition and scalar multiplication. 

Definition 2.2. A vector subspace of the 

vector space V over K is said to be the Generalized 

topological vector subspace of Generalized 

topological vector space if  V endows the 

Generalized topology (like Def. 1.2.2) and U inherits 

the Generalized topology (i.e., by relative generalized 

topology, induced generalized topology or trace 

generalized topology). 

Theorem 2.3. In a generalized topological 

vector subspace, the closure of generalized 

topological vector subspace is a generalized 

topological subspace. 

Proof. Let U be the generalized topological 

vector subspace of generalized topological vector 

space V. According to Definition 1.2.2, the addition 

and scalar multiplication‟s generalized continuity will 

be satisfied by the U, i.e., 

„m‟  : U U U   

„M ‟: R U U 
 

And for closure of U, we can stat that:

cl( )U U = cl( ) cl( ) cl( )U U U   

Similarly we can express the closure over 

the scalar multiplication as, cl( )R U =

cl( ) cl( ) cl( )R U U  this completes the proof. 

Theorem 2.4. Every proper generalized 

topological vector subspace U of generalized 

topological vector space V has empty interior. 

Proof.  Let int( ),x U  means that there 

exists g-open set O such that Ox U  . Since 

x U  and { }U x  is contained in „V‟ that 

contains the origin.For ,x V  we consider 

:xf K K V   defined by ( )xf K  . Since 

the generalized continuity of  xf  is confirmed by the 

fact that K is itself a generalized topological vector 

space. As the generalized continuity has been 

established, we will proceed by considering that for 
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any vector v V we will define 
vf   in the same 

way as 
xf . Then 

1( { })vf U x   is g-open set. 

Thus making the value , we see 

that { }v U x   ,i.e, { }U x is  contained in V 

and therefore This proves that 

V=Ui.e, U is not proper and which is the reason that 

interior of U is empty.  

Theorem 2.5. The product of family of 

generalized topological vector subspaces is a 

generalized topological vector subspace under the 

point wise  algebraic operations and the product 

generalized topology. 

Proof. Let {( , ) : }i iX i I   be the 

family of generalized topological subspaces and let 

i
i I

X X


  and 
i

i I
 


  .   We will show only that 

addition and multiplication on X is continuous. Let 

( ) ( ) and ( ) ( )
f g

i i i i
f g

x x y y
 

  in X. Then 

f

i i
f

x x


  and 
g

i i
g

y y


  in Xi for each i, so 

also 
,

+ if g

i i i i
f g

x y x y


   in Xi  for each „i‟. 

Since the product generalized topology of point wise 

convergence, we see that 

( )+ ( )f g

i ix y
,

( + ) ( ) ( ) ( )
f g

i i i i i i
f g

x y x y x y


     

Defininition 2.6.   For a subset K of X, 

let f= {x X:fK(x) = f(x)}. Now we have the 

following characterizations of a f-proximinal 

subspace K of X. 

Theorem 2.7.If K is a subspace of X and f 

is e real function, then K isf-proximinal if and only if 

X = K + K


f . 

Proof. If K is proximinal and x X, then 

there exists k0K such thatfK(x) = f(x − k0). Hence x 

− k0 Kˆf. Thus x = k0 + (x − k0) K + f.  

Therefore X = K + f. For converse let x X. Then 

there exists k1Kand k2 f such that x = k1 + k2.  

Thus x − k1 = k2 f. HencefK(x − k1) = f(x − k1). 

Since K is subspace f(x − k1) = fK(x). Thusk1Pf.K(x) 

and K is f-proximinal. 

Definition 2.8A subset Kof a topological 

space Xis called f-closed if forall sequence {kn} of 

Kand x X such that f(x − kn) → 0, we have x K. 

 

2.0 Quotient Generalized Topological Vector 

Space 

Let M be the Generalized topological vector 

subspace of Generalized topological vector space V 

over the field K (R or C). Then the quotient 

generalized topological vector space is defined as 

V/M over K (R or C) which satisfies generalized 

continuity with respect to addition and scalar 

multiplication. That is 

   „+‟ : V/M × V/M→ V/M                                            

„.‟ :R × V/M→ V/M 

For understanding the structure of 

generalized topological vector subspace, we should 

take a look at the structure of cosets. V+M = {v+m: 

m M } is called the cosets of generalized 

topological vector subspace M over generalized 

topological space V. “The collection of all cosets for 

the structure of quotient generalized topological 

vector space.” Therefore for ,a b V

, /a M b M V M    and 

( ) ( ) ( )a M b M a b M       and

( ) .a M a M     

Corollary 3.1:  Let M be the closed 

subspace of V then quotient map : /f V V M  is 

generalized open, that is, carries g-open set to g-open 

set. 

Proof. Let U be g-open set in V. then 
1 1( ( )) ( )

m M
f f U f U M U M U m 


      

 Whereas union of g-open set is g-open. 

Definition 3.2. Let M and N are Generalized 

topological vectorsubspaces of Generalized 

topological vector space V such that {0}M N 

. The direct sum of M and N is the set of vector  

{ :  and }.M N m n m M n N      

Theorem 3.3. Let V be a generalized 

topological vector space and W be generalized 

topological subspace. Then V is isomorphic to 

/W V W . 

Proof. Let   be the base of V/W, and 

:f V  such that ( )f b V holds for b  . 

We will show that { ( ) : }f b b  is linearly 

independent. 

   Let‟s define : /g V W V  by 

( ) ( )n n

n n

g b f b    

Consider, 

: /T W V W V  defined by 

. Obviously T is linearly. 

Let‟s show T is injective. This is to show that 

T(w,x)=0 implies w=0 and x=0. 

1( { })vf U x  

v V  .v V

K




  K


K


K


K


( , ) ( )T w x w g x 
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Let x= , 0=T(w,x) implies that 

( ) Wg x  .  

Hence, 0=x= ( )n

n

f b =
n

n

b =x.  Thus 

x=0, g(x)=0 and w=0. Let Vy , and  [y]= 
n

n

b  

then we have,  =[y]- ( )n

n

f b = [y- ( )n

n

f b ]=[y]- 

n

n

b =0. 

Thus y  ( )n

n

f b , we get  

T( y  ),[y])=y. Hence T is 

injective. 
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