
Life Science Journal 2014;11(7s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 457

Modified Bloom filter for high performance hybrid NoSQL systems

A.B.Vavrenyuk, N.P.Vasilyev, V.V.Makarov, K.A.Matyukhin, M.M.Rovnyagin, A.A.Skitev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russia

Abstract. This article addresses problems of implementation of a modified Bloom filter as an additional module for
mass data storage systems in supercomputers with hybrid CPU/GPU architecture. It is proposed to use a modified
filter with counters, which makes it possible to monitor not only data addition, but also data removal. A comparative
analysis has been made of a serial CPU version and a hybrid version of the Bloom filter based on use of NVIDIA
CUDA technology.
[Vavrenyuk A.B., Vasilyev N.P., Makarov V.V., Matyukhin K.A., Rovnyagin M.M., Skitev A.A. Modified Bloom
filter for high performance hybrid NoSQL systems. Life Sci J 2014;11(7s):457-461] (ISSN:1097-8135).
http://www.lifesciencesite.com. 98

Keywords: Bloom filter, CPU/GPU hybrid architecture, NVIDIA CUDA, hashing

Introduction

Currently, in many areas of human activities, a
rapid growth in the volume of information is
observed, which fact lays very high demands to
systems of storage, data transmission and processing.
Illustrative examples are global physical experiments,
in particular, LHC - Large Hadron Collider.
According to official data, a distributed grid system
of LHC project is focused on storing, distribution and
analysis of about 25 petabytes of data (i.e., 25 million
gigabytes) [1].

For storing mass data (hundreds of terabytes to
tens of petabytes), specialized storages of various
architectures are created. To accelerate access to data
stored in such systems, developers often turn away
from the canons of building classic SQL systems [2].
For the sake of performance, database management is
decentralized, and some checks of new data are
omitted. As a result of such actions, among other
issues, the probability of data search errors increases.
Furthermore, a significant number of search queries
may be addressed to the data missing in the storage,
while time will still be spent for processing these
queries. Due to large volume of information, total
processing time can become considerable.

Thus, the problem of deleting a search query for
not stored data is urgent, and the higher the
performance of filtering "needless" queries is, the
higher the overall performance of the storage will be.

In order to alleviate the problem of suppressing
deliberately needless search queries, in 1970 Burton
Bloom proposed a probabilistic data structure, the
Bloom filter (BF) [3]. BF displays the information
about added elements in an arbitrary data storage that
contains information in the "key-value" format. In its
classical implementation, the filter is an add-on to a
data storage in form of a bit array with length M
(Bloom vector, BV) initially populated with zeros.
When a new item is added to the storage, K hash
functions (HF) are calculated from the key, and the

values of HF should range between zero and M-1.
BV bits that are determined by results of hash
functions are populated with unities.

Data search in the storage is also performed
using the Bloom filter. Before addressing the storage
directly by the key, K hash functions are calculated
for this key and the presence of unities in calculated
positions is checked. Presence of at least one zero in
either of BV found bits clearly indicates data is
absent in the storage. When all calculated BV
positions are populated with unities, there are two
possibilities. The first is that the data is actually
present, and the search operation in the storage will
be successful. The second possibility is that the
information in the data storage is missing, and the
unities had been populated in course of adding other
elements, i.e. during calculation of hash functions for
other keys (Bloom filter false positives). The reason
for this is the property of HFs themselves -
manifestation of collisions when two different
arguments lead to the same hashing result.

Thus, the Bloom filter makes it possible to
reduce the overall number of search queries to the
data storage, and the main indicator of BF
performance is probability of false positives (P). The
smaller this indicator is, the less "needless" queries
will be made to the physical media.

The probability of initially empty Bloom
vector's i-th bit remaining equal to zero after adding
N elements to the storage is represented by:

M

KN
KN

i e
M

P


)
1

1(,

 (1)
for a sufficiently large M, due to second distinctive
limit.

The probability of all K-bits calculated by hash
functions being equal to unity during searching the
data storage for an element that is not equal to either
of really added elements is:

Life Science Journal 2014;11(7s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 458

KM

KN

eP)1(




 (2)
From formula (2), we can conclude that with N

increasing, the probability of false positives
increases, while with M increasing, the number of
errors of the first kind can be reduced.

For fixed N and M, the probability of false-
positive result can be minimized by selecting K as
follows:

2ln
N

M
K 

 (3)
In choosing the size of the vector, it is important

to take into account the estimated number of
elements to be stored and to initially set the
probability of false triggering, then the length of
Bloom vector can be calculated as follows:

2)2(ln

ln PN
M 

 (4)
The Bloom filter can be easily set up using the

above ratios. It makes it possible to reduce the load
on the data access subsystem; however, it has one
essential disadvantage. Elements cannot be removed
from the classical Bloom bit vector. This means that
it can be only used in systems where data is read-
only; otherwise, the number of false positives will
inevitably increase.

This problem can be solved by using a
modification of Bloom filter with counters. In this
approach, the Bloom vector is an array of L-bit
counters that store values from 0 to 2L-1. When new
data is added to the storage, the hash function
calculates the value of the key and increments the
relevant counter. In case the counter has reached the
maximum value, its state does not change. In case of
deletion, the counter is decremented by unity, or does
not change its state if its value is zero or maximum.
Due to such changes, the problem of deleting data
can be solved.

Thus, implementation of a modified Bloom
filter for supporting systems that store large amounts
of information is an urgent task.

Modified Bloom filter operation principles

In design of a modified Bloom filter it is
important to determine in advance the number of bits
of its counter (L) and the size of the vector (M). With
a fixed M, with increasing the bit number of the
counter, the "capacity" limit is increased, i.e.,
the maximum value of the counter, starting from
which the filter transfers to the classical operation
mode (only for adding data). Increasing L by l leads

to increasing vector size by M, resulting in a
considerable increase in memory consumption.

One of the indications of modified Bloom filter
correct operation is the fact that counters values
differ insignificantly. This can be achieved by
applying a qualitative hash function that provides a
uniform distribution of its values for the entire range
from 0 to M.

The qualitative hash function satisfies the
suggestion of a simple uniform hashing, i.e.,
equiprobability of each key being placed into any of
m cells independently of hashing other keys.

The universal hash function from book [4] was
taken as the basis for the hash function that works
with the Bloom filter.

Universal hashing is called the hashing method
where instead of a fixed hash function, a random
choice of a hash function occurs each time.

Building a set of the universal class of hash
functions follows from the theory of numbers.

First, a prime number p that is large enough

for all possible keys to be in the range]p[10,  is

chosen.

Suppose  1...0,1 p,,=Z p , and

 1...1,2* p,,=Z p . From the assumption that

the key space is greater than the number of cells in

the vector, it follows that m>p .

Now let us define a hash function abh for any

pZb and
*
pZa , using linear transformation

by absolute value p and then by absolute value m :

     mpb+ak=khab modmod

 (5)
The family of all such functions forms the set:

 ppabpm ZbZah  ||: *

 (6)

Each hash function abh shows pZ in mZ .

This class of hash functions has the feature that size

m of the output range is arbitrary and is not

necessarily a prime number. Since number a can be

chosen by the 1p method, and number b by p

methods, the set pmΗ totally contains  1pp

hash functions.

Within the framework of this experiment, it was
decided to ignore storage type. Storage items in the
Bloom filter were whole numbers generated with the
Math.random() random function [5].

Life Science Journal 2014;11(7s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 459

In the initial phase, an array was generated from
N random elements. Elements of this array (keys)
were added to the Bloom vector and the data
structure implemented by the HashSet class. If
overflow occurs in one of counters in the Bloom
vector, the latter is converted into a bit one, and
delete operations are prohibited. In the next phase, N
queries to Bloom filter are executed, that had also
been generated using the Math.random() function.

In accordance with the Bloom filter
organization principles, the following situations may
occur during its execution:

POSITIVE - The Bloom filter signaled the
presence of a key, the key has been found in HashSet
structure

FALSEPOSITIVE - The Bloom filter signaled
about the presence of a key, the key has not been
found in HashSet structure

NEGATIVE - The Bloom filter signaled about
the absence of a key, there is no need to check
HashSet

The testing program has counters for all above
results. Experimental value of false positives
probability can be calculated using the following
formula:

IVEFALSEPOSIT+NEGATIVE+POSITIVE

IVEFALSEPOSIT
=RESULT

 (7)

Implementation of the modified Bloom filter using
the NVIDIA CUDA technology

Tests were performed on a computing cluster of
12 computers having the following configuration:
Intel Core i7 - 2600, 4Gb DDR3, NVIDIA GeForce
GTX 260. The above video card supports CUDA
Compute capability 1.3.

In order to speed up the Bloom filter, hash
operations were executed on GPU. Coefficients from
(5) were loaded into cached constant memory. Data
for hashing were loaded into shared memory. After
that, the necessary operations were performed to
generate hash values, and results were loaded into
global memory. Calculations were performed until all
results were obtained. Ready values were passed in
host memory, where they were interpreted as indices
in Bloom vector.

Since Bloom filter itself, as well as the testing
shell were written in Java, and jCuda library [6] was
used to link the main program and the CUDA
coprocessor, library which is a set of functions for
compilation, transmission of parameters, configuring
and calling the cuda-kernel.

Studying efficiency of the modified Bloom filter

Execution time of the sequential part of the
program was measured on CPU by using the

System.nanoTime() function that returns the current
time value of a working Java virtual machine with
high resolution capability, in nanoseconds.
Subtracting the value before calculation from the
value returned by this function after calculation, we
obtain the execution time.

The execution time of the testing program was
determined with the use of the graphical processor
using API of CUDA events [7]. In CUDA, an event
is a GPU timestamp recorded by a user at a certain
moment.

Below are diagrams of some results obtained
during the testing. From formula 2 it is obvious that
with increasing number of added elements with
predetermined number of hash functions and with
fixed vector length, the probability of false positives
will increase.

The diagram shown in Figure 5 fully
corresponds to this formula (parameters: M=100,
K=4, N=[1..1000].)

Fig. 5. Probability of false positives on the number
of added data dependency diagram

False positives on vector length dependency
diagram (Figure 6) show that for a fixed number of
added elements, and for a fixed number of hash
functions (on the diagram: N=1000, K=4,
M=[1..100]), increasing the length of the Bloom
vector reduces the number of false positives.

Life Science Journal 2014;11(7s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 460

Fig. 6. False positives on Bloom vector length
dependency diagram

Fig. 7. Probability of false positives on counter's
number of bits dependency diagram

From the diagram in Figure 7 it is evident that

as early as at L=3, the percentage of false positives
increases from 0.1 to 0.6, thus it follows that the bit
number of the counters should be chosen precisely.

Use of the GPU co-processor makes it possible
to achieve significant gain in performance. Figure 8
shows that parallel implementation (black line) is 15
times more productive than the serial one (red line).
The achieved high efficiency is in general consistent
with the results obtained by other researchers, for
example, in [8, 9], but it should be noted that these
works studied the Bloom bit vector. Fluctuations of
the CPU diagram are associated with work of the
Java "garbage collector" [10].

Fig. 8. Execution time on the hashed data volume
dependency diagram

However, if the volume of hashed data is small,

successive implementation shows better results due
to absence of the extra need for copying data into the
memory of CUDA device (Figure 9).

Fig. 9 Performance with small volumes of hashed
data

Conclusion

Principles of Bloom filter operation have been
studied, and its modification has been proposed. It
makes it possible not only to add data, but to delete
data as well. Main characteristics of the Bloom filter
and their influence on quality of its operation have
been described. Basic aspects of implementation of
successive CPU and parallel GPU versions of the
filter have been studied. Experimental diagrams have
been analyzed, and growth of efficiency of a hybrid
BF was detected in case of increasing the number of
queries and data storage size, if compared to the CPU
version.

Life Science Journal 2014;11(7s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 461

The modified Bloom filter focused on hybrid
computing systems can, according to the authors, be
effectively used in modern supercomputers as a tool
for cutting off many useless search queries in
deployment of a variety of systems for storage and
processing large volumes of data.

Corresponding Author:
Dr. Vavrenyuk A.B.
National Research Nuclear University MEPhI
(Moscow Engineering Physics Institute)
e-mail:abvavrenyuk@mephi.ru

References

1. Worldwide LHC Computing Grid (official
website). DateViews:02.04.2014
http://wlcg.web.cern.ch.

2. Glover, A., 2010. Java development 2.0:
NoSQL. IBM Corporation, pp: 14.

3. Bloom,B., 1970.Space/time trade-offs in
hash coding with allowable errors. Communications
of ACM, 13(7): 422-426.

4. Cormen,Th.H. et al, 2009. Introduction to
Algorithms, third edition. The MIT Press, pp: 1312.

5. Schildt, H. 2011. Java: the Complete
Reference, 8thEdition. McGraw-Hill Osborne Media,
pp.1152.

6. Java bindings for CUDA – Websitej Cuda.
Date Views: 02.04.2014 http://jcuda.org.

7. NVIDIA CUDA C Programming Guide 5.5
(official website). Date Views: 02.04.2014
https://docs.nvidia.com/cuda.

8. Ma, L., R.D. Chamberlain, J.D. Buhler and
M.A. Franklin, 2011. Bloom Filter Performance on
Graphics Engines. In the Proceedings of the 2011
International Conference on Parallel Processing, pp:
522-531.

9. Rao, V., 2010. Implementation of the Bloom
Filter on GPU using CUDA. University of
Minnesota, pp: 6.

10. Hunt, Ch., 2011.Java Performance.
Addison-Wesley Professional, pp: 720.

12/06/2014

