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Abstract. This article addresses problems of implementation of a modified Bloom filter as an additional module for 
mass data storage systems in supercomputers with hybrid CPU/GPU architecture. It is proposed to use a modified 
filter with counters, which makes it possible to monitor not only data addition, but also data removal. A comparative 
analysis has been made of a serial CPU version and a hybrid version of the Bloom filter based on use of NVIDIA 
CUDA technology. 
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Introduction 

Currently, in many areas of human activities, a 
rapid growth in the volume of information is 
observed, which fact lays very high demands to 
systems of storage, data transmission and processing. 
Illustrative examples are global physical experiments, 
in particular, LHC - Large Hadron Collider. 
According to official data, a distributed grid system 
of LHC project is focused on storing, distribution and 
analysis of about 25 petabytes of data (i.e., 25 million 
gigabytes) [1]. 

For storing mass data (hundreds of terabytes to 
tens of petabytes), specialized storages of various 
architectures are created. To accelerate access to data 
stored in such systems, developers often turn away 
from the canons of building classic SQL systems [2]. 
For the sake of performance, database management is 
decentralized, and some checks of new data are 
omitted. As a result of such actions, among other 
issues, the probability of data search errors increases. 
Furthermore, a significant number of search queries 
may be addressed to the data missing in the storage, 
while time will still be spent for processing these 
queries. Due to large volume of information, total 
processing time can become considerable. 

Thus, the problem of deleting a search query for 
not stored data is urgent, and the higher the 
performance of filtering "needless" queries is, the 
higher the overall performance of the storage will be. 

In order to alleviate the problem of suppressing 
deliberately needless search queries, in 1970 Burton 
Bloom proposed a probabilistic data structure, the 
Bloom filter (BF) [3]. BF displays the information 
about added elements in an arbitrary data storage that 
contains information in the "key-value" format. In its 
classical implementation, the filter is an add-on to a 
data storage in form of a bit array with length M 
(Bloom vector, BV) initially populated with zeros. 
When a new item is added to the storage, K hash 
functions (HF) are calculated from the key, and the 

values of HF should range between zero and M-1. 
BV bits that are determined by results of hash 
functions are populated with unities. 

Data search in the storage is also performed 
using the Bloom filter. Before addressing the storage 
directly by the key, K hash functions are calculated 
for this key and the presence of unities in calculated 
positions is checked. Presence of at least one zero in 
either of BV found bits clearly indicates data is 
absent in the storage. When all calculated BV 
positions are populated with unities, there are two 
possibilities. The first is that the data is actually 
present, and the search operation in the storage will 
be successful. The second possibility is that the 
information in the data storage is missing, and the 
unities had been populated in course of adding other 
elements, i.e. during calculation of hash functions for 
other keys (Bloom filter false positives). The reason 
for this is the property of HFs themselves - 
manifestation of collisions when two different 
arguments lead to the same hashing result. 

Thus, the Bloom filter makes it possible to 
reduce the overall number of search queries to the 
data storage, and the main indicator of BF 
performance is probability of false positives (P). The 
smaller this indicator is, the less "needless" queries 
will be made to the physical media. 

The probability of initially empty Bloom 
vector's i-th bit remaining equal to zero after adding 
N elements to the storage is represented by: 
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for a sufficiently large M, due to second distinctive 
limit. 

The probability of all K-bits calculated by hash 
functions being equal to unity during searching the 
data storage for an element that is not equal to either 
of really added elements is: 
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From formula (2), we can conclude that with N 

increasing, the probability of false positives 
increases, while with M increasing, the number of 
errors of the first kind can be reduced. 

For fixed N and M, the probability of false-
positive result can be minimized by selecting K as 
follows: 
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 (3) 
In choosing the size of the vector, it is important 

to take into account the estimated number of 
elements to be stored and to initially set the 
probability of false triggering, then the length of 
Bloom vector can be calculated as follows: 
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 (4) 
The Bloom filter can be easily set up using the 

above ratios. It makes it possible to reduce the load 
on the data access subsystem; however, it has one 
essential disadvantage. Elements cannot be removed 
from the classical Bloom bit vector. This means that 
it can be only used in systems where data is read-
only; otherwise, the number of false positives will 
inevitably increase. 

This problem can be solved by using a 
modification of Bloom filter with counters. In this 
approach, the Bloom vector is an array of L-bit 
counters that store values from 0 to 2L-1. When new 
data is added to the storage, the hash function 
calculates the value of the key and increments the 
relevant counter. In case the counter has reached the 
maximum value, its state does not change. In case of 
deletion, the counter is decremented by unity, or does 
not change its state if its value is zero or maximum. 
Due to such changes, the problem of deleting data 
can be solved. 

Thus, implementation of a modified Bloom 
filter for supporting systems that store large amounts 
of information is an urgent task. 
 
Modified Bloom filter operation principles 

In design of a modified Bloom filter it is 
important to determine in advance the number of bits 
of its counter (L) and the size of the vector (M). With 
a fixed M, with increasing the bit number of the 
counter, the "capacity" limit is increased, i.e., 
the maximum value of the counter, starting from 
which the filter transfers to the classical operation 
mode (only for adding data). Increasing L by l leads 

to increasing vector size by M, resulting in a 
considerable increase in memory consumption. 

One of the indications of modified Bloom filter 
correct operation is the fact that counters values 
differ insignificantly. This can be achieved by 
applying a qualitative hash function that provides a 
uniform distribution of its values for the entire range 
from 0 to M. 

The qualitative hash function satisfies the 
suggestion of a simple uniform hashing, i.e., 
equiprobability of each key being placed into any of 
m cells independently of hashing other keys. 

The universal hash function from book [4] was 
taken as the basis for the hash function that works 
with the Bloom filter. 

Universal hashing is called the hashing method 
where instead of a fixed hash function, a random 
choice of a hash function occurs each time. 

Building a set of the universal class of hash 
functions follows from the theory of numbers. 

First, a prime number p  that is large enough 

for all possible keys to be in the range ]p[ 10,   is 

chosen. 

Suppose  1...0,1 p,,=Z p , and 

 1...1,2* p,,=Z p . From the assumption that 

the key space is greater than the number of cells in 

the vector, it follows that m>p .
 
 

Now let us define a hash function abh  for any 

pZb  and 
*
pZa , using linear transformation 

by absolute value p  and then by absolute value m : 

     mpb+ak=khab modmod  

  (5) 
The family of all such functions forms the set: 

 ppabpm ZbZah  ||: *

  
 (6) 

Each hash function abh  shows pZ in mZ .
 

This class of hash functions has the feature that size 

m  of the output range is arbitrary and is not 

necessarily a prime number. Since number a  can be 

chosen by the 1p  method, and number b  by p  

methods, the set pmΗ  totally contains  1pp  

hash functions.
 
 

Within the framework of this experiment, it was 
decided to ignore storage type. Storage items in the 
Bloom filter were whole numbers generated with the 
Math.random() random function [5].  
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In the initial phase, an array was generated from 
N random elements. Elements of this array (keys) 
were added to the Bloom vector and the data 
structure implemented by the HashSet class. If 
overflow occurs in one of counters in the Bloom 
vector, the latter is converted into a bit one, and 
delete operations are prohibited. In the next phase, N 
queries to Bloom filter are executed, that had also 
been generated using the Math.random() function. 

In accordance with the Bloom filter 
organization principles, the following situations may 
occur during its execution: 

POSITIVE - The Bloom filter signaled the 
presence of a key, the key has been found in HashSet 
structure 

FALSEPOSITIVE - The Bloom filter signaled 
about the presence of a key, the key has not been 
found in HashSet structure 

NEGATIVE - The Bloom filter signaled about 
the absence of a key, there is no need to check 
HashSet 

The testing program has counters for all above 
results. Experimental value of false positives 
probability can be calculated using the following 
formula: 

IVEFALSEPOSIT+NEGATIVE+POSITIVE

IVEFALSEPOSIT
=RESULT

 (7) 
 

Implementation of the modified Bloom filter using 
the NVIDIA CUDA technology 

Tests were performed on a computing cluster of 
12 computers having the following configuration: 
Intel Core i7 - 2600, 4Gb DDR3, NVIDIA GeForce 
GTX 260. The above video card supports CUDA 
Compute capability 1.3. 

In order to speed up the Bloom filter, hash 
operations were executed on GPU. Coefficients from 
(5) were loaded into cached constant memory. Data 
for hashing were loaded into shared memory. After 
that, the necessary operations were performed to 
generate hash values, and results were loaded into 
global memory. Calculations were performed until all 
results were obtained. Ready values were passed in 
host memory, where they were interpreted as indices 
in Bloom vector. 

Since Bloom filter itself, as well as the testing 
shell were written in Java, and jCuda library [6] was 
used to link the main program and the CUDA 
coprocessor, library which is a set of functions for 
compilation, transmission of parameters, configuring 
and calling the cuda-kernel. 
 
Studying efficiency of the modified Bloom filter 

Execution time of the sequential part of the 
program was measured on CPU by using the 

System.nanoTime() function that returns the current 
time value of a working Java virtual machine with 
high resolution capability, in nanoseconds. 
Subtracting the value before calculation from the 
value returned by this function after calculation, we 
obtain the execution time. 

The execution time of the testing program was 
determined with the use of the graphical processor 
using API of CUDA events [7]. In CUDA, an event 
is a GPU timestamp recorded by a user at a certain 
moment. 

Below are diagrams of some results obtained 
during the testing. From formula 2 it is obvious that 
with increasing number of added elements with 
predetermined number of hash functions and with 
fixed vector length, the probability of false positives 
will increase. 

The diagram shown in Figure 5 fully 
corresponds to this formula (parameters: M=100, 
K=4, N=[1..1000].) 

 

 
 
Fig. 5. Probability of false positives on the number 
of added data dependency diagram 
 

False positives on vector length dependency 
diagram (Figure 6) show that for a fixed number of 
added elements, and for a fixed number of hash 
functions (on the diagram: N=1000, K=4, 
M=[1..100]), increasing the length of the Bloom 
vector reduces the number of false positives. 
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Fig. 6. False positives on Bloom vector length 
dependency diagram 
 

 
 
Fig. 7. Probability of false positives on counter's 
number of bits dependency diagram 

 
From the diagram in Figure 7 it is evident that 

as early as at L=3, the percentage of false positives 
increases from 0.1 to 0.6, thus it follows that the bit 
number of the counters should be chosen precisely. 

Use of the GPU co-processor makes it possible 
to achieve significant gain in performance. Figure 8 
shows that parallel implementation (black line) is 15 
times more productive than the serial one (red line). 
The achieved high efficiency is in general consistent 
with the results obtained by other researchers, for 
example, in [8, 9], but it should be noted that these 
works studied the Bloom bit vector. Fluctuations of 
the CPU diagram are associated with work of the 
Java "garbage collector" [10]. 

 

 
 
Fig. 8. Execution time on the hashed data volume 
dependency diagram 

 
However, if the volume of hashed data is small, 

successive implementation shows better results due 
to absence of the extra need for copying data into the 
memory of CUDA device (Figure 9). 

 

 
 
Fig. 9 Performance with small volumes of hashed 
data 

 
Conclusion 

Principles of Bloom filter operation have been 
studied, and its modification has been proposed. It 
makes it possible not only to add data, but to delete 
data as well. Main characteristics of the Bloom filter 
and their influence on quality of its operation have 
been described. Basic aspects of implementation of 
successive CPU and parallel GPU versions of the 
filter have been studied. Experimental diagrams have 
been analyzed, and growth of efficiency of a hybrid 
BF was detected in case of increasing the number of 
queries and data storage size, if compared to the CPU 
version. 
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The modified Bloom filter focused on hybrid 
computing systems can, according to the authors, be 
effectively used in modern supercomputers as a tool 
for cutting off many useless search queries in 
deployment of a variety of systems for storage and 
processing large volumes of data. 
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