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Abstract: Screening mammography is the best available radiological technique for early breast cancer detection. 
But due to the huge number of mammograms requiring analysis, radiologists can make false detections. Hence, new 
solutions regarding automatic detection pertaining to analysis problems should be explored. Microcalcification 
detection/segmentation helps computerized mammogram screening to classify clusters as either malign or benign. In 
this paper, Gabor filter with Walsh Hadamard Transform (WHT) is applied to extract microcalcification features 
from mammograms. This was tested through the use of Mammographic Image Analysis Society (MIAS) 
mammographic databases. The mammograms were classified using a genetic-based SVM (GA-SVM) model that 
can automatically determine the optimal parameters, C and Gamma, of SVM with the highest predictive accuracy 
and generalization ability simultaneously.  
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1. Introduction 

Breast cancer – which cannot be easily detected 
visually - is a major cause of death among women 
[1]. Thus, the quality of radiologist’ judgment as to 
whether the suspected region is normal, benign or 
malignant is crucial. Till date, screening 
mammography is the best radiological technique 
available for early breast cancer detection [2]. But as 
huge volumes of mammograms which require 
analysis, radiologists could make false detections. 
Breast region identification is important to improve 
analysis. Hence, micro-calcification and macro-
calcifications in mammograms appear with different 
shape characteristics and distribution. Thus, detecting 
the region gives an idea about the nature of diagnosis. 
There has however been tremendous evolution in 
mammography process [3-7] over the past few years. 

Mammography is characterized by low radiation 
dose and is the only imaging method accepted for 
breast cancer screening as it allows radiologists to 
perform both screening and diagnostic examinations. 
Screening mammography detects breast cancer in an 
asymptomatic population, whereas diagnostic 
mammography ensures an examination of a patient 
with abnormal clinical elements like breast mass or 
other disease signs/symptoms. Diagnostic 
mammography is usually a follow up examination to 
abnormal screening mammograms. Adoption of 
mammographic examinations, specially screening 
mammography, has proved to both increase cancer 
detection rate and to reduce morbidity/mortality rates. 

Mammograms are examined for malignant 
masses, skin thickening, and microcalcifications. 
Masses occur often in breast-tissue-dense areas with 
many shapes like circumscribed, spiculated, 
lobulated, or ill defined. Circumscribed masses have 
distinct boundaries and high radiopaque density; 
spiculated masses have rough, star- shaped 
boundaries while lobulated masses are irregular. 
Round, low-density masses with smooth, sharply 
defined margins are usually benign whereas high-
density, stellate, spiculated masses having poorly 
defined margins are malignant [8]. 

Tiny calcium deposits accumulated in breast 
tissue are microcalcifications. They usually appear in 
mammograms as small bright spots in an 
inhomogeneous background [9]. Size, shape, density, 
distribution pattern, and number of 
microcalcifications are analyzed in the benign and 
malignant classification phase [10]. Malignant micro- 
calcifications usually are less than 0.5 mm in 
diameter and are fine, linear-branching, stellate-
modeled, varying in size and shape. Generally, their 
distribution pattern is as clusters of more than 3 
microcalcifications [11]. Though micro-calcifications 
have high inherent attenuation, their small size makes 
detection difficult, especially when images are of 
poor quality. This difficulty increases when analysing 
young women’s mammograms, as they have high-
density breast tissue, for predominance of fibro 
glandular tissues. Breasts that are particularly dense, 
leads to mammography insensitivity as early 
malignancy detection is lowered due to the effort 
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required to locate the cancer within an opaque, 
uniform background [12]. In such cases, difficulty is 
mainly because of lowered contrast between micro-
calcifications and surrounding dense tissues. 
Radiologists miss around 10%–30% breast cancer 
cases. To overcome this, investigators developed 
computer-aided diagnosis (CAD) schemes [13, 14] to 
identify potential microcalcification cluster regions in 
mammograms.  

This paper used Gabor filter with Walsh 
Hadamard Transform to extract microcalcification 
features from mammograms. This was evaluated 
through the use of Mammographic Image Analysis 
Society (MIAS) mammographic databases. The 
mammograms were classified using a genetic-based 
SVM (GA-SVM) model that can automatically 
determine the optimal parameters, C and Gamma, of 
SVM with the highest predictive accuracy and 
generalization ability simultaneously. 

  
2. Related Works 

Wei et al [15] suggested a microcalcification 
classification scheme, assisted by content-based 
mammogram retrieval, for breast cancer diagnosis. A 
machine learning approach for mammogram retrieval 
was recently developed where similarity measure 
between two lesion mammograms was modelled after 
expert observers. The proposed method was based on 
adaptively incorporating local proximity information 
into a classifier which helped improve classification 
accuracy, resulting in an improved “second opinion” 
to radiologists. Experimental results on a 
mammogram database proved that the proposed 
retrieval-driven approach with an adaptive support 
vector machine (SVM) improved classification 
performance from 0.78 to 0.82 with regard to the area 
under the ROC curve. 

Jona et al [16] proposed optimization of the 
feature set using hybrid of Particle Swarm 
Optimization (PSO) and Genetic Algorithm (GA) 
techniques called Genetical Swarm Optimization 
(GSO) in Digital Mammograms. Though PSO is a 
good optimization technique, it could be trapped in 
local minima leading to premature convergence. So, 
genetic operators are used in PSO to offset such 
difficulties. Feature selection is of great importance 
in mammogram diagnosis. Level Co-occurance 
Matrix (GLCM) texture features are extracted from 
mammogram. All extracted features do not help 
detect abnormality in mammograms, and hence 
feature sets have to be reduced to improve 
classification accuracy. In this work, experiments are 
conducted on MiniMIAS database with Support 
Vector Machine (SVM) classifying mammograms as 
normal and abnormal. GSO performance is compared 
with GA and PSO through the use of a Receiver 

Operating Characteristic (ROC) curve. Results show 
that GSO convergence is better than both PSO and 
GA; GSO based SVM (GSO-SVM) classifier showed 
superior performance with accuracy of 94% that was 
approximately 1% higher than GA based SVM (GA-
SVM) and PSO based SVM (PSO-SVM) 
classification. 

Uma Maheswari et al [17] proposed a hybrid 
approach for DICOM image classification consisting 
of feature extraction and classification. The 
classification includes Multi Linear Discriminant 
Analysis (MLDA) and Support Vector Machine 
(SVM). Classification is based on parameter 
extracted by Gray Level Co-occurrence Matrix 
(GLCM) and histogram texture feature extraction. 
Feature is selected through the use of fuzzy rough set 
and Genetic Algorithm (GA). The proposed approach 
showed the capability for high approximation and 
much faster convergence. 

Papadopoulos et al [18] suggested an automated 
method for microcalcification clusters 
characterization in digitized mammograms, 
implemented in three stages: (a) cluster detection 
stage for identification of microcalcifications 
clusters, (b) feature extraction stage to compare each 
clusters important features and (c) classification 
stage. In the classification stage, a rule-based system, 
a neural network and a SVM were implemented and 
evaluated the process using receiver operating 
characteristic analysis. The original feature set was 
enhanced by adding four rule-based features. In 
Nijmegen dataset, SVM performance was Az = 0.79 
and 0.77 for the original and enhanced feature sets 
respectively, while in MIAS datasets corresponding 
characterization scores were Az = 0.81and 0.80. 
Using neural network classification, Nijmegen 
dataset’s corresponding performance was Az = 0.70 
and 0.76 and that of the MIAS dataset, Az = 0.73 and 
0.78.  

Al Mutaz et al [19] based breast cancer 
detection on second order statistics. Extraction of 
textural features of segmented region of interest 
(ROI) is through gray level co-occurrence matrices 
(GLCM) extracted from four spatial orientations; 
horizontal, left diagonal, vertical and right diagonal 
corresponding to (0o, 45o, 90o and 135o) and two 
pixel distances for three different block size windows 
(8x8, 16x16 and 32x32). Results reveal that GLCM 
at 0o, 45o, 90o and 135o with a window size of 8X8 
produces informative features to classify between 
masses and non-masses. This method achieved 
accuracy of 91.67% sensitivity and 84.17% 
specificity comparable to what was reported using 
state-of-the-art Computer-Aided Detection system. 

Hajare et al [20] focused on identifying of 
relevant, representative and important, discriminate 
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image features for breast cancer analysis. Gabor 
wavelets extracted mammogram image features 
representing normal tissues or benign/malign 
tumours. These large dimensions (1024x1024) 
features are applied to Principal Component Analysis 
(PCA) to lower data dimensionality and then 
converted into 140x140 pixel size images. Finally, 
extracted features are classified by proximal support 
vector machines and features with orientations of 0, 
π/4, 3π/4, and π/2 and with Gabor filters orientations 
combine with low and high frequency filters to be 
compared for recognition rate.  Compared to others, 
Gabor filter obtained rate with low frequency and 
total orientation is the highest at 84.37%. 

Boujelben et al [21] proposed a CADe based on 
a three-step work flow; detection, analysis and 
classification. This paper deals with the problem of 
automatic detection of Region of Interest (ROI) based 
on Level Set approach depending on edge and region 
criteria. This approach provides good visual 
information for radiologists. Then feature extraction 
through the use of textures characteristics and vector 
classification using Multilayer Perception (MLP) and 
k-Nearest Neighbours (KNN) are adopted to 
distinguish different ACR (American College of 
Radiology) classifications. Also Digital Database for 
Screening Mammography (DDSM) is used for 
experiments and accuracy results varied between 60 
% and 70% which were acceptable to radiologists. 

  
3. Methodology 
Mini MIAS database 

This procedure was evaluated using Mini MIAS 
database [22] subset, consisting of 161 pairs of 
medio-lateral-oblique view mammograms. The 
database images originated from a film-screen 
mammographic imaging process in the United 
Kingdom National Breast Screening Program. The 
films were digitized and corresponding images 
annotated by radiologists according to breast density, 
using three classes: Fatty (F) (106 images), Fatty-
Glandular (G) (104 images) and Dense-Glandular (D) 
(112images). Abnormalities were detected and 
calcifications which were well-defined, speculated or 
ill-defined masses, architectural distortion or 
asymmetry were also revealed. Each database image 
pair is annotated as Symmetric (146 pairs) or 
Asymmetric (15 pairs) with provisions for each 
abnormality (benign or malignant) severity. 

 
Walsh Hadamard Transform 

Walsh Hadamard Transform (WHT) is an image 
processing tool. Unser [23] used Hadamard matrices 
with local transforms like DCT and KLT for texture 
measurements. Different small size filters and a filter 

sliding scheme were applied to the spatial domain to 
evaluate filter effectiveness in texture analysis. 
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where I is the image, N is the image size, and ψ 
determines the transform’s parametric kernel function 
[24]. The kernel function is selected from a diverse 
set of possibilities.  

WHT has many computational advantages. It is 
a real (not complex) transform, needing addition and 
subtraction operations alone. When input signal is a 
set of integer-valued data, it requires only integer 
operations. There is also a fast algorithm for Walsh 
transforms through substituting exponential kernel of 

Fast Fourier transform with the 
 .1


 kernel of 

Walsh. The transform matrix, called Hadamard 
matrix, is saved in binary format leading to lowered 
memory requirements.  WHT is simpler to implement 
in hardware than other transforms. 
 
Gabor filter  

2-D Gabor functions are non-orthogonal 
wavelets and are a Gaussian modulated by a sinusoid 
[25]. Gabor filters give optimal resolution in space as 
well as frequency, thereby simultaneously analysing 
both domains. A 2-D Gabor filter is defined as 
follows: 
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where z = x,y and k is characteristic wave 
vector. 

 
Support Vector Machine (SVM)  

SVM classifier is based on structural risk 
minimization principle searching for a hyperplane 
maximizing distance from it to the nearest, each class 
examples [26]. SVM’s can map linearly inseparable 
data into higher dimensional space when linear 
separation is possible. SVM tries to locate a decision 
hyperplane written as 

 

 . 0iw x b  
 

where w and b are classification model 
parameters and  is mapping a certain higher 
dimensional space in which xi  undergoes linear 
separation. Training task for the model as an 
optimization task is formalized as 



Life Science Journal 2013;10(7s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  463

    2
min / 2  subject to . 1w i iw y w x b  

 
As the task is a convex optimization problem it 

is rewritten as an optimization formula to a 
Lagrangian function. 
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subject to the Karush–Kuhn–Tucker conditions 
 

   0,  . 1 0i i i iy w x b     
 

where i Lagrangian multipliers are calculated 

by exploiting quadratic programming techniques or 
faster heuristic algorithms. After calculation, the 
model parameters w and b are determined using the 
fact that 

 

     . ,i j i jx x K x x  
 

K(.,.) is a kernel function. After multipliers and 
model parameters determination, a new input test 
example xnew is classified by investigating the hyper 
plane’s side it resides in. In summary, this non-linear 
SVM classifier’s overall decision function h can be 
written as for a predefined kernel function K where 
sign (.) is the sign function. This paper considers 
linear and Gaussian radial basis function (RBF) 
kernels. 

To design an effective SVM model, SVM 
parameters values have to be selected carefully in 
advance [27, 28]. These parameters include: (1) 
regularization parameter C, which determines the 
tradeoff cost between minimizing training error and 
minimizing model complexity; (2) Kernel function’s 
Gamma parameter that defines non-linear mapping 
from input space to a high-dimensional feature space. 
 
Proposed SVM-GA 

Genetic algorithms (GAs) are successfully 
applied to varied optimization problems [29, 30]. 
GA’s are appropriate for concurrent manipulation of 
models with varying resolutions, and structures as 
they search non-linear solution spaces without 
needing gradient information or a priori knowledge 
on model characteristics. The problem of binary 
coding is in the fact that a long string occupies 
computer memory though only a few bits are actually 

involved in crossover/mutation operations. This is 
particularly so when many parameters are to be 
adjusted in the same problem and the final result need 
a higher precision. To overcome inefficient 
occupation of computer memory, underlying real-
valued crossover and mutation algorithms are 
employed. In contrast to the binary genetic algorithm 
(BGA), the real-valued genetic algorithm (RGA) uses 
real value as a chromosome parameter in populations 
without coding or encoding before the fitness values 
of individuals is calculated.  

In the proposed GA-SVM model, SVM 
parameters are dynamically optimized by 
implementing a RGA evolutionary process. The 
SVM model then performs prediction using optimal 
values. The RGA attempts to search optimal values to 
ensure that SVM fits the dataset. SVM’s parameter’s 
optimal values are sought by GAs with a randomly 
generated initial population of chromosomes. The 
values of C and Gamma parameters are directly 
coded in chromosomes with real-valued data. The 
proposed model implements a tournament selection 
method to select chromosomes. Crossover method 
and boundary mutation modified the chromosome. 
Each generation’s single best chromosome survives 
to the next generation. 

Selection, crossover, and mutation operators are 
used to generate the existing population’s offspring. 
Tournament selection is adopted to decide whether a 
chromosome survives to the next generation. The 
chromosomes that do are placed in a matting pool for 
crossover and mutation. Random points are selected 
in the chromosomes to be crossed over to form an 
offspring. The mutation operation follows crossover 
to determine whether a chromosome should be 
mutated in the next generation. A uniform mutation 
method is applied in this study. Newly crossed 
chromosomes are then combined with the remaining 
chromosomes to create a new population. The 
mutation operation follows the crossover operation 
and determines whether a chromosome should be 
mutated in the next generation. In this study, uniform 
mutation method is applied. 
 
4. Results  

The mammograms from the Mini MIAS 
database were classified as microcalcified and non-
microcalcified. Features are extracted from the 
mammograms using Gabor filter with WHT. A 
subset of Mini MIAS containing 84 mammograms 
was used for evaluation. The following Table 1 
shows the summary of the experimental results for 
the generalized neural network classifier. Figure 1 
shows the classification accuracy obtained by various 
techniques. 
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Table 1: Summary of the Experimental Results for 
Various Techniques 

Technique Used Classificatio
n Accuracy 

RMSE 

SVM-RBF C=0.001, 
Gamma=0.5 

0.928571 0.2673 

SVM-RBF C=0.001, 
Gamma=0.4 

0.916667 0.287 

SVM-RBF C=0.001, 
Gamma=0.3 

0.904762 0.3086 

GA-SVM-Polynomial 
kernel 

0.916667 0.2942 

GA-SVM-RBF 0.940476 0.2176 

 

 
Figure 1: Classification Accuracy and RMSE 

obtained by various techniques 
 
It is observed from Figure 2 the proposed 

genetic optimized SVM for RBF achieves the best 
classification accuracy of 94.05%. The optimizing of 
the kernel parameters C and Gamma improves the 
classification. 

Table 2 tabulates the precision, recall and f-
measure of various techniques. Figure 3 shows the 
graph of precision and recall. 

 
Table 2: Precision, Recall of Various Kernels 

Technique Used Precision Recall 

SVM-RBF C=0.001, 
Gamma=0.5 

0.944444 0.916667 

SVM-RBF C=0.001, 
Gamma=0.4 

0.936364 0.902778 

SVM-RBF C=0.001, 
Gamma=0.3 

0.928571 0.888889 

GA-SVM-Polynomial kernel 0.927267 0.90625 

GA-SVM-RBF 0.95283 0.930556 

 

 
Figure 2: Precision and Recall of Various 

Techniques 
 

The best precision and recall was achieved for 
the proposed GA-SVM RBF kernel.  

 
5. Conclusion 

A link between the presence of clustered 
microcalcifications and occurrence of breast cancer 
was discovered implying that early micro-
calcifications detection in mammograms can increase 
survival chances for those with breast cancer. An 
automatic tumour detection system is developed to 
help radiologists provide an accurate diagnosis. 
Microcalcification presence is crucial to diagnose 
breast cancer in clinical practice. Detection and 
diagnosis of breast cancer in its early stage rapidly 
increase chances for successful treatment and 
complete patient recovery. This paper investigates the 
efficiency of genetic optimized SVM for classifying 
mammograms. In this paper, Gabor filter with Walsh 
Hadamard Transform is used to extract 
microcalcification features from mammograms. A 
subset of Mini MIAS mammograms was used for 
evaluation. The best precision and recall was 
achieved for the proposed GA-SVM RBF kernel.  
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