
Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

128

 Comparison and Improvement of Basic String Metrics for Surname Matching

Solmaz Khatami

Faculty of Engineering, Islamic Azad University of Sarvestan, Sarvestan, Iran

Abstract: For combining information from heterogeneous information sources, it’s necessary to identify data
records that refer to equivalent entities. Variations in representation across information sources can arise from
differences in formats that store data, typological errors, abbreviations, and so on. This paper proposes three new
techniques named token-based Jaro (TBJ), typological-error-based Jaro (TEBJ), and Jaro combining Soundex (JCS)
for matching surnames to improve the field matching quality, and then compares these three algorithms with Jaro
metric and Jaro-winkler metric –which are one of the basic descriptions of various field matching algorithms
developed to find similarity metrics on the task of matching entity strings. We use a large real world database in
Farsi which contains estate information. We utilize surname field of this database to examine and implement. There
are typological errors more than other types of errors in our database, so we survey the mentioned algorithms on this
kind of errors. According to conclusions; the precision of TEBJ is 0.95 and it is better in proportion Jaro that its
precision is 0.88 and Jaro-winkler that its precision is 0.91 and TBJ that its precision is 0.93 and JCS which its
precision is 0.92 in our dataset.
[Solmaz Khatami. Comparison and Improvement of Basic String Metrics for Surname Matching. Life Sci J
2013;10(5s):128-132] (ISSN:1097-8135). http://www.lifesciencesite.com. 23

Keywords:Jaro algorithm, Jaro-winkler algorithm, token-based Jaro (TBJ), typological error-based Jaro (TEBJ),
precision, true negative, false negative

I. INTRODUCTION
Large amounts of data are being created,

communicated and stored by many individuals,
organizations and business contains information
about people. Even most scientific and technical
documents contain details about their authors.
Finding and matching surnames is at the core of an
increasing number of applications: from text and web
mining, search engines, to information extraction,
deduplication and data linkage systems. Variation
and errors in surnames make exact string matching
problematic, and approximate matching techniques
have to be applied.

Matching of surname can be defined as the
process of determining whether two surname strings
are instances of the same surname [5]. As surname
variations and errors are quite common [6], exact
name string comparison will not result in good
matching quality. Rather, an approximate measure of
how similarity measure between 1.0 (two names are
identical) and 0.0 (two names are totally different) is
used.

The two main approaches for matching surnames
are phonetic encoding and pattern matching. Many
techniques have been developed for both approaches,
and several techniques combine the two with the aim
to improve the matching quality.

The contributions of this paper are an overview of
two most commonly used techniques for matching
surnames: Jaro and Jaro-winkler similarity metrics,
proposing three new techniques for matching

surnames, and a comparison of their performance
using a large real world data set containing surnames.

II. JARO DISTANCE METRIC
Jaro [1] introduced a string comparison algorithm

that was mainly used for comparison of last and first
names. The basic algorithm for computing the Jaro
metric for two strings s1 and s2 includes the following
steps:

1) Compute the string lengths |s1| and |s2|,
2) Find the “common characters” c in the two

strings; common are all the characters s1[i] and s2[j]
for which s1[i]= s2[j] and |i-j|≤½min{ |s1|, |s2|}.

3) Find the number of transpositions t; the
number of transpositions is computed as follows: we
compute the ith common character in s1 with the ith
common character in s2. Each non-matching
character is a transposition.

The Jaro comparison value is:

From the description of the Jaro algorithm, we can

see that the Jaro algorithm requires O (|s1|.|s2|) time
for two strings of length |s1| and |s2|, mainly due to the
step 2 that computes the “common characters” in the
two strings.

III. JARO-WINKLER DISTANCE METRIC

The Jaro-winkler distance is a measure of
similarity between two strings. It is a variant of the
Jaro distance metric and mainly used in the area of
record linkage (duplicate detection). Winkler and

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

129

Thibaudeau [2] modified the Jaro metric to give
higher weight to prefix matches, since prefix matches
are generally more important for surname matching.
The score is normalized such that 0 equates to no
similarity and 1 is an exact match. Jaro-winkler
distance uses a prefix scale p which gives more
favorable ratings to strings that match from the
beginning for a set prefix length l. given two strings
s1 and s2, their Jaro-winkler distance dw is:

Where:

 l is the length of common prefix at the start of
the string up to a maximum of 4 characters,

 p is a constant scaling factor for how much
the score is adjusted upwards for having
common prefixes. P should not exceed 0.25,
otherwise the distance can become larger than
1. The standard value for this constant in
Winkler’s work is p=0.1,

 dj is the Jaro distance for strings s1 and s2.

IV. TOKEN-BASED JARO

Since we use a real world database for
comparisons and this database has special data, we
decided to do improvement base on these data.

Names in Farsi are similar when prefix of them or
suffix of them is similar. Even in some situations that
name created from many portions such as “George
William John Smith” if the middle of names in two
strings are alike it causes to increment similarity
measure. In such data, being equal of characters does
not guaranty the similarity. For example “William”
and “Winkler” are two completely different surnames
although they have three same characters: “w”, “i”,
and “l”. Jaro distance metric gives high similarity
measure to these different strings that is 0.71, but it is
not logical answer. Because of such examples exist in
our database; we decide to do some changes in Jaro
and Jaro-winkler distances to give improve precision
on our data.

Data in surname field in our database created
from many portions. So In this algorithm we uses
token instead of character. We consider each word as
a token. Then compute the number of similar tokens
and put it in c. m1 is the number of tokens in first
string and m2 is the number of token in second string.
Transposition (t) in this algorithm is for some
surnames like “George William” and “William
George” that creates from two tokens: “George” and
“William”. First token in first string is second token
in second string and second token in first string is
first token in second string.

In above example c=2, t=1, m1=2, m2=2; So,
 sim (s1, s2) =0.83

Whereas;

 Jaro (s1, s2) = 0.58, Jaro-wink (s1, s2) =0.58.

V. TIPOLOGICAL-ERROR-BASED JARO

When we’re typing a letter or a document, we
may type wrong words. There are a lot of reasons to
type wrong words. One of these reasons is that we
maybe on a hurry and because some of letters is next
to each other on keyboard, it increments the percent
of these mistakes. For example “M” and “N” are next
to each other on keyboard. Also “o” and “p” are one
another example. It is possible that we change angle
of our fingers when we’re typing and this change is
unconscious. Also we may substitute one letter for
another such as “to” and “ot”. We may do not write a
letter such as “word” and “wod”.

A lot of these kinds of errors are seen in our
dataset. With considering this probability; we display
equal the letters which are next to each other. Also
we consider the probability of mistakes. It means that
because Farsi is the right to left language, the
probability of typing letters that are the right of
correct letter is more than other directions. We use
the letter that has highest probability for displaying
equal with correct letter. We do this because each
word on keyboard has eight directions and we could
not consider nine letters equal. t is the number of
transpositions .

 is the number of common characters, is the
number of characters which are different in two
strings. w is the weight of characters that we have
placed them in . To compare two strings if there is
just one different character w is 0.9. Increasing
different characters makes the w lower. It means that
if there are two different characters w is 0.8. if there
are three different characters it gets 0.7 and so on.
Consider s1=Appolonia college, s2=Appolonia
colege:
 =16, =1.

c= 16+1*0.9=16.9, sim (s1, s2) = 0.997.
whereas;
Jaro (s1, s2) = 0.98, Jaro-wink (s1, s2) = 1.006.
We draw your attention to another example:
s1=Appolonia college, s2=Apoloni colege:
c=14+3*0.7=0.97
Whereas;
Jaro (s1, s2) = 0.94, Jaro-wink (s1, s2) = 0.952.
It is clear that the result of Jaro-winkler algorithm is
Irrational. The conclusion is typological-error-based
algorithm works better than jaro and jaro-winkler
algorithms in these kinds of errors.

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

130

VI. JARO COMBINING SOUNDEX
A. Soundex

Strings may be phonetically similar even if they
are not similar in a character or token level. For
example the word “Kageonne” is phonetically similar
to “Cajun” despite the fact that the string
representations are very different. The phonetic
similarity metrics are trying to address such issues
and match such strings.

Soundex, invented by Russell [3], [4] is the most
common phonetic coding scheme. Soundex is based
on the assignment of identical code digits to
phonetically similar groups of consonants and is used
mainly to match surnames.
In Farsi the rules of Soundex coding are as follows:

1) Assign the following codes to the alphabetic
letters of Farsi:

a) 1 = ء ,ع ,ا (as a in English)
b) 2 = ف ,و ,پ ,ب ,د(as d, b, p, f in English)
c) 3 = ط ,ت (as t in English)
d) 4 = ص ,س ,ث (as s in English)
e) 5 = ژ ,ش (as sh, zh in English)
f) 6 = چ ,ج (as j, ch in English)
g) 7 = ه ,ح (as h in English)
h) 8 = خ (as kh in English)
i) 9 = ظ ,ض ,ز ,ذ (as z in English)
j) 10= ی ,ر (as r, y, i in English)
k) 11= گ ,غ ,ق (as g, gh in English)
l) 12 = ک (as k in English)
m) 13 = ن ,م (as m, n in english)
n) 14= ل (as l in English)

2) Vowels are not coded but serve as separators;
3) Drop the separators;
4) In comparison of two strings if one of their

letters are fewer than another pad with zeroes.
B. Jaro combinig Soundex

In Jaro algorithm instead of putting matched
characters in c; we put the number of matching codes
in c and drop the third division of formula, because of
that the sentence that is inside of parentheses has
divide 2. m1 is the number of codes in first string and
m2 is the number of codes in second string.

For example matching codes for “علی” (as Ali in
English) are 1, 14, and 10.
VII. IMPLEMENTATION & EVALUATION

We have implemented these four algorithms in
c#.net programming language. We have used real
database for examinations and implementations.
Database includes estate information.

We utilize surname field of database. This field
contains 106 strings. We have 105 comparisons for
each string and totally 11130 comparisons for whole
of database which is computed in this way:

106*105=11130. We gain 11130 similarity measures
with these comparisons for each algorithm.

Then we have to compute precision, false
negative, and true negative of each algorithm to
identify that which algorithm work well for surname
in Farsi on our database.

For computing precision of algorithm we have to
use human intelligent to identify real similarity. It
means that when I look at this paper I know that
“William” and “William” are similar strings. But
“William” and “Wilam” are not equal. However,
system could do mistakes. We count the number of
1’s that algorithm has gained. Then count the number
of 1’s that we ourselves have gained them. The 1’s
that system and us have gained together plus 0’s that
system and us have gained divided to the number of
comparisons (11130) is precision of algorithm.

True negative means that the result of algorithm is
correct whereas real result is incorrect. False negative
means that the result of algorithm is incorrect
whereas real result is correct.

For identifying these three metrics we define a
threshold that begins from 0.4 up to 0.95. For
example if threshold is 0.6, we consider the numbers
which are greater than 0.6, correct; and the numbers
which are less than 0.6 are incorrect.

In consequence we try to select the threshold for
algorithms that its precision is highest and its false
negative is lowest.

We gained the results for Jaro distance as in (1),
Jaro-winkler distance as in (2), TBJ as in (3), TEBJ
as in (4), and JCS as in (5).
For Jaro distance:
Precision is 0.88,
True negative is 0.12,
False negative is 0.
For Jaro-winkler distance:
Precision is 0.91,
True negative is 0.09,
False negative is 0.
For Jaro based on token:
Precision is 0.93
True negative is 0.07,
False negative is 0.
For Jaro based on typological error:
Precision is 0.95,
True negative is 0.05,
False negative is 0.
For Jaro combining Soundex:
Precision is 0.92
True negative is 0.08,
False negative is 0.

CONCLUSIONS

Improving previous algorithms on special dataset
is a fundamental task which we tried to reach it in

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

131

this paper. We use real dataset based on estate
information and utilize the surname field of this
database to do examinations. Some strings of this
field has made from many portions so we try to use
tokens instead of characters in our algorithm. Some
strings contain typological error so we tried to
improve Jaro algorithm based on these kinds of
errors. And some of them contain phonetic similarity.
Then we compare the gained results of four
algorithms: Jaro distance metric, Jaro-winkler
distance metric, and the improved algorithms named
token-based Jaro, typological-error-based Jaro, and
Jaro combining Soundex. The result of comparison is
three final numbers to each algorithm. These
numbers refer to precision, false negative, and true
negative. The best result is the result that the
precision is highest and false negative is lowest.

TEBJ gives the best result with precision: 0.95
and false negative: 0. For Jaro, Jaro-winkler, TBJ,
and JCS; precisions in sequence are 0.88, 0.91, 0.93,
and 0.92.

TABLE I. THE RESULT OF COMPARISON FOR JARO
False
negative

True
negative

Precision Threshold

0 0.13 0.77 0.4
0 0.2 0.8 0.45
0 0.18 0.82 0.5
0 0.15 0.85 0.55
0 0.13 0.87 0.6
0 0.12 0.88 0.65
0.03 0.09 0.88 0.7
0.09 0.06 0.85 0.75
0.18 0.03 0.79 0.8
0.24 0.02 0.74 0.85
0.26 0.0009 0.73 0.9
0.34 0.0006 0.65 0.95

TABLE II. THE RESULT OF COMPARISON FOR JARO-
WINK
False
negative

True
negative

Precision Threshold

0 0.17 0.83 0.4
0 0.16 0.84 0.45
0 0.15 0.85 0.5
0 0.12 0.88 0.55
0 0.1 0.9 0.6
0 0.09 0.91 0.65
0.03 0.03 0.94 0.7
0.07 0.02 0.91 0.75
0.12 0.01 0.87 0.8
0.16 0.0008 0.83 0.85
0.20 0.0007 0.79 0.9
0.28 0.0005 0.71 0.95

TABLE III. THE RESULT OF COMPARISON FOR TBJ
False
negative

True
negative

Precision Threshold

0 0.17 0.83 0.4
0 0.16 0.84 0.45
0 0.14 0.86 0.5
0 0.11 0.89 0.55
0 0.09 0.91 0.6
0 0.08 0.92 0.65
0 0.07 0.93 0.7
0.06 0.04 0.9 0.75
0.16 0.01 0.83 0.8
0.25 0.009 0.74 0.85
0.3 0.004 0.69 0.9
0.33 0.0001 0.66 0.95

TABLE IV. THE RESULT OF COMPARISON FOR TEBJ
False
negative

True
negative

Precision Threshold

0 0.17 0.83 0.4
0 0.16 0.84 0.45
0 0.13 0.87 0.5
0 0.09 0.91 0.55
0 0.08 0.92 0.6
0 0.07 0.93 0.65
0 0.05 0.95 0.7
0.1 0.02 0.88 0.75
0.14 0.008 0.85 0.8
0.20 0.001 0.79 0.85
0.27 0.0006 0.72 0.9
0.31 0.00009 0.68 0.95

TABLE V. THE RESULT OF COMPARISON FOR JCS

False
negative

True
negative

Precision Threshold

0 0.2 0.8 0.4
0 0.16 0.84 0.45
0 0.14 0.86 0.5
0 0.09 0.91 0.55
0 0.08 0.92 0.6
0.03 0.07 0.9 0.65
0.1 0.05 0.85 0.7
0.15 0.02 0.83 0.75
0.24 0.002 0.75 0.8
0.26 0.001 0.73 0.85
0.29 0.0006 0.7 0.9
0.35 0.00009 0.64 0.95

Life Science Journal 2013;10(5s) http://www.lifesciencesite.com

132

REFERENCES
[1] Gonzalo Navarro. “A guided tour to

approximate string matching.” ACM Computing
Surveys, 33(1):31-88, 2001.

[2] Solmaz Khatami and Mohamad-Reza Feizi-
Derakhshi. “Comparison and Improvement of
Basic String Metrics for Surname Matching.”
Submitted to IASBS 2011.

[3] Pinheiro and Sun. “A program for extracting
probable matches from a large file for record
linkage.” Technical Report Statistical Research
Report Series RRC2002/01, U.S. Bureau of
Censes, Washington, D.C., March 2002.

[4] William E. Winkler. Methods for record linkage
and baysian networks. Technical Report
Statistical Research Report Series RRS2008/05,

US. Bureau of the Cencus, Washington, D.C.
2008.

[5] Sudipto Guha, Nick Koudas, Amit Marathe, and
Divesh Srivastava. Merging the results of
approximate match operations. In proceedings of
the 30th International Conference on Very Large
Databases (VLDB 2004), pages 636-647,2004.

[6] Eugene Agichtein and Venkatesh Ganti. Mining
reference tables for automatic text segmentation.
In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining (KDD-2006), pages
20-29, 2006.

[7] Howard B. Newcombe, James M.Kennedy, S.J.
Axford, and A.P. James. Automatic linkage of
vital records. Science, 130(3381):954.959,
October 2009.

2/24/2013

