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Abstract: For combining information from heterogeneous information sources, it’s necessary to identify data 
records that refer to equivalent entities. Variations in representation across information sources can arise from 
differences in formats that store data, typological errors, abbreviations, and so on. This paper proposes three new 
techniques named token-based Jaro (TBJ), typological-error-based Jaro (TEBJ), and Jaro combining Soundex (JCS) 
for matching surnames to improve the field matching quality, and then compares these three algorithms with Jaro 
metric and Jaro-winkler metric –which are one of the basic descriptions of various field matching algorithms 
developed to find similarity metrics on the task of matching entity strings. We use a large real world database in 
Farsi which contains estate information. We utilize surname field of this database to examine and implement. There 
are typological errors more than other types of errors in our database, so we survey the mentioned algorithms on this 
kind of errors. According to conclusions; the precision of TEBJ is 0.95 and it is better in proportion Jaro that its 
precision is 0.88 and Jaro-winkler that its precision is 0.91 and TBJ that its precision is 0.93 and JCS which its 
precision is 0.92 in our dataset.  
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I. INTRODUCTION 
Large amounts of data are being created, 

communicated and stored by many individuals, 
organizations and business contains information 
about people. Even most scientific and technical 
documents contain details about their authors.  
Finding and matching surnames is at the core of an 
increasing number of applications: from text and web 
mining, search engines, to information extraction, 
deduplication and data linkage systems. Variation 
and errors in surnames make exact string matching 
problematic, and approximate matching techniques 
have to be applied.   

Matching of surname can be defined as the 
process of determining whether two surname strings 
are instances of the same surname [5]. As surname 
variations and errors are quite common [6], exact 
name string comparison will not result in good 
matching quality. Rather, an approximate measure of 
how similarity measure between 1.0 (two names are 
identical) and 0.0 (two names are totally different) is 
used.    

The two main approaches for matching surnames 
are phonetic encoding and pattern matching. Many 
techniques have been developed for both approaches, 
and several techniques combine the two with the aim 
to improve the matching quality.  

The contributions of this paper are an overview of 
two most commonly used techniques for matching 
surnames: Jaro and Jaro-winkler similarity metrics, 
proposing three new techniques for matching 

surnames, and a comparison of their performance 
using a large real world data set containing surnames.  

II. JARO DISTANCE METRIC  
Jaro [1] introduced a string comparison algorithm 

that was mainly used for comparison of last and first 
names. The basic algorithm for computing the Jaro 
metric for two strings s1 and s2 includes the following 
steps: 

 
1) Compute the string lengths |s1| and |s2|, 
2) Find the “common characters” c in the two 

strings; common are all the characters s1[i] and s2[j] 
for which s1[i]= s2[j] and |i-j|≤½min{ |s1|, |s2|}. 

3) Find the number of transpositions t; the 
number of transpositions is computed as follows: we 
compute the ith common character in s1 with the ith 
common character in s2. Each non-matching 
character is a transposition. 

The Jaro comparison value is: 

 
From the description of the Jaro algorithm, we can 

see that the Jaro algorithm requires O (|s1|.|s2|) time 
for two strings of length |s1| and |s2|, mainly due to the 
step 2 that computes the “common characters” in the 
two strings. 

 
III. JARO-WINKLER DISTANCE METRIC  

The Jaro-winkler distance is a measure of 
similarity between two strings. It is a variant of the 
Jaro distance metric and mainly used in the area of 
record linkage (duplicate detection). Winkler and 
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Thibaudeau [2] modified the Jaro metric to give 
higher weight to prefix matches, since prefix matches 
are generally more important for surname matching. 
The score is normalized such that 0 equates to no 
similarity and 1 is an exact match. Jaro-winkler 
distance uses a prefix scale p which gives more 
favorable ratings to strings that match from the 
beginning for a set prefix length l. given two strings 
s1 and s2, their Jaro-winkler distance dw is: 

 
Where: 

 l is the length of common prefix at the start of 
the string up to a maximum of 4 characters, 

 p is a constant scaling factor for how much 
the score is adjusted upwards for having 
common prefixes. P should not exceed 0.25, 
otherwise the distance can become larger than 
1. The standard value for this constant in 
Winkler’s work is p=0.1, 

 dj  is the Jaro distance for strings s1 and s2. 
 
IV. TOKEN-BASED JARO   

Since we use a real world database for 
comparisons and this database has special data, we 
decided to do improvement base on these data. 

Names in Farsi are similar when prefix of them or 
suffix of them is similar. Even in some situations that 
name created from many portions such as “George 
William John Smith” if the middle of names in two 
strings are alike it causes to increment similarity 
measure.  In such data, being equal of characters does 
not guaranty the similarity. For example “William” 
and “Winkler” are two completely different surnames 
although they have three same characters: “w”, “i”, 
and “l”. Jaro distance metric gives high similarity 
measure to these different strings that is 0.71, but it is 
not logical answer. Because of such examples exist in 
our database; we decide to do some changes in Jaro 
and Jaro-winkler distances to give improve precision 
on our data.   

Data in surname field in our database created 
from many portions. So In this algorithm we uses 
token instead of character. We consider each word as 
a token. Then compute the number of similar tokens 
and put it in c. m1 is the number of tokens in first 
string and m2 is the number of token in second string. 
Transposition (t) in this algorithm is for some 
surnames like “George William” and “William 
George” that creates from two tokens: “George” and 
“William”. First token in first string is second token 
in second string and second token in first string is 
first token in second string.  

 
In above example c=2, t=1, m1=2, m2=2; So,    
                sim (s1, s2) =0.83 

Whereas; 
 
 Jaro (s1, s2) = 0.58, Jaro-wink (s1, s2) =0.58. 

 
V. TIPOLOGICAL-ERROR-BASED JARO 

When we’re typing a letter or a document, we 
may type wrong words. There are a lot of reasons to 
type wrong words. One of these reasons is that we 
maybe on a hurry and because some of letters is next 
to each other on keyboard, it increments the percent 
of these mistakes. For example “M” and “N” are next 
to each other on keyboard.  Also “o” and “p” are one 
another example. It is possible that we change angle 
of our fingers when we’re typing and this change is 
unconscious. Also we may substitute one letter for 
another such as “to” and “ot”. We may do not write a 
letter such as “word” and “wod”.  

A lot of these kinds of errors are seen in our 
dataset. With considering this probability; we display 
equal the letters which are next to each other. Also 
we consider the probability of mistakes. It means that 
because Farsi is the right to left language, the 
probability of typing letters that are the right of 
correct letter is more than other directions. We use 
the letter that has highest probability for displaying 
equal with correct letter. We do this because each 
word on keyboard has eight directions and we could 
not consider nine letters equal.  t is the number of 
transpositions .  

 
  

 is the number of common characters,  is the 
number of characters which are different in two 
strings. w is the weight of characters that we have 
placed them in . To compare two strings if there is 
just one different character w is 0.9. Increasing 
different characters makes the w lower. It means that 
if there are two different characters w is 0.8. if there 
are three different characters it gets 0.7 and so on. 
Consider s1=Appolonia college, s2=Appolonia 
colege: 
 =16, =1. 

c= 16+1*0.9=16.9,   sim (s1, s2) = 0.997. 
whereas; 
Jaro (s1, s2) = 0.98, Jaro-wink (s1, s2) = 1.006. 
We draw your attention to another example: 
s1=Appolonia college, s2=Apoloni colege: 
c=14+3*0.7=0.97 
Whereas; 
Jaro (s1, s2) = 0.94, Jaro-wink (s1, s2) = 0.952. 
It is clear that the result of Jaro-winkler algorithm is 
Irrational. The conclusion is typological-error-based 
algorithm works better than jaro and jaro-winkler 
algorithms in these kinds of errors.  
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VI. JARO COMBINING SOUNDEX  
A. Soundex 

Strings may be phonetically similar even if they 
are not similar in a character or token level. For 
example the word “Kageonne” is phonetically similar 
to “Cajun” despite the fact that the string 
representations are very different. The phonetic 
similarity metrics are trying to address such issues 
and match such strings. 

Soundex, invented by Russell [3], [4] is the most 
common phonetic coding scheme. Soundex is based 
on the assignment of identical code digits to 
phonetically similar groups of consonants and is used 
mainly to match surnames.  
In Farsi the rules of Soundex coding are as follows: 

1) Assign the following codes to the alphabetic 
letters of Farsi: 

a) 1 = ء ,ع ,ا (as a in English) 
b) 2 = ف ,و ,پ ,ب ,د(as d, b, p, f in English) 
c) 3 = ط ,ت (as t in English) 
d) 4 = ص ,س ,ث (as s in English) 
e) 5 = ژ ,ش (as sh, zh in English) 
f) 6 = چ ,ج (as j, ch in English) 
g) 7 = ه ,ح (as h in English) 
h) 8 = خ (as kh in English) 
i) 9 = ظ ,ض ,ز ,ذ (as z in English) 
j) 10= ی ,ر (as r, y, i in English) 
k) 11= گ ,غ ,ق (as g, gh in English) 
l) 12 = ک (as k in English) 
m) 13 = ن ,م (as m, n in english) 
n) 14= ل (as l in English) 

2) Vowels are not coded but serve as separators; 
3) Drop the separators; 
4) In comparison of two strings if one of their 

letters are fewer than another pad with zeroes. 
B. Jaro combinig Soundex 

In Jaro algorithm instead of putting matched 
characters in c; we put the number of matching codes 
in c and drop the third division of formula, because of 
that the sentence that is inside of parentheses has 
divide 2. m1 is the number of codes in first string and 
m2 is the number of codes in second string. 

 
For example matching codes for “علی” (as Ali in 
English) are 1, 14, and 10. 
VII. IMPLEMENTATION & EVALUATION  

We have implemented these four algorithms in 
c#.net programming language. We have used real 
database for examinations and implementations. 
Database includes estate information.  

We utilize surname field of database. This field 
contains 106 strings. We have 105 comparisons for 
each string and totally 11130 comparisons for whole 
of database which is computed in this way: 

106*105=11130. We gain 11130 similarity measures 
with these comparisons for each algorithm.  

Then we have to compute precision, false 
negative, and true negative of each algorithm to 
identify that which algorithm work well for surname 
in Farsi on our database.  

For computing precision of algorithm we have to 
use human intelligent to identify real similarity. It 
means that when I look at this paper I know that 
“William” and “William” are similar strings. But 
“William” and “Wilam” are not equal. However, 
system could do mistakes. We count the number of 
1’s that algorithm has gained. Then count the number 
of 1’s that we ourselves have gained them. The 1’s 
that system and us have gained together plus 0’s that 
system and us have gained divided to the number of 
comparisons (11130) is precision of algorithm. 

True negative means that the result of algorithm is 
correct whereas real result is incorrect. False negative 
means that the result of algorithm is incorrect 
whereas real result is correct. 

For identifying these three metrics we define a 
threshold that begins from 0.4 up to 0.95. For 
example if threshold is 0.6, we consider the numbers 
which are greater than 0.6, correct; and the numbers 
which are less than 0.6 are incorrect. 

In consequence we try to select the threshold for 
algorithms that its precision is highest and its false 
negative is lowest. 

We gained the results for Jaro distance as in (1), 
Jaro-winkler distance as in (2), TBJ as in (3), TEBJ 
as in (4), and JCS as in (5). 
For Jaro distance: 
Precision is 0.88, 
True negative is 0.12, 
False negative is 0. 
For Jaro-winkler distance: 
Precision is 0.91, 
True negative is 0.09, 
False negative is 0. 
For Jaro based on token: 
Precision is 0.93 
True negative is 0.07, 
False negative is 0. 
For Jaro based on typological error: 
Precision is 0.95, 
True negative is 0.05, 
False negative is 0. 
For Jaro combining Soundex: 
Precision is 0.92 
True negative is 0.08, 
False negative is 0. 
 
CONCLUSIONS 

Improving previous algorithms on special dataset 
is a fundamental task which we tried to reach it in 
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this paper. We use real dataset based on estate 
information and utilize the surname field of this 
database to do examinations. Some strings of this 
field has made from many portions so we try to use 
tokens instead of characters in our algorithm. Some 
strings contain typological error so we tried to 
improve Jaro algorithm based on these kinds of 
errors. And some of them contain phonetic similarity. 
Then we compare the gained results of four 
algorithms: Jaro distance metric, Jaro-winkler 
distance metric, and the improved algorithms named 
token-based Jaro, typological-error-based Jaro, and 
Jaro combining Soundex. The result of comparison is 
three final numbers to each algorithm. These 
numbers refer to precision, false negative, and true 
negative. The best result is the result that the 
precision is highest and false negative is lowest. 

TEBJ gives the best result with precision: 0.95 
and false negative: 0. For Jaro, Jaro-winkler, TBJ, 
and JCS; precisions in sequence are 0.88, 0.91, 0.93, 
and 0.92. 

 
TABLE I.  THE RESULT OF COMPARISON FOR JARO 
False 
negative 

True 
negative 

Precision Threshold 

0 0.13 0.77 0.4 
0 0.2 0.8 0.45 
0 0.18 0.82 0.5 
0 0.15 0.85 0.55 
0 0.13 0.87 0.6 
0 0.12 0.88 0.65 
0.03 0.09 0.88 0.7 
0.09 0.06 0.85 0.75 
0.18 0.03 0.79 0.8 
0.24 0.02 0.74 0.85 
0.26 0.0009 0.73 0.9 
0.34 0.0006 0.65 0.95 

 
TABLE II.  THE RESULT OF COMPARISON FOR JARO-
WINK 
False 
negative 

True 
negative 

Precision Threshold 

0 0.17 0.83 0.4 
0 0.16 0.84 0.45 
0 0.15 0.85 0.5 
0 0.12 0.88 0.55 
0 0.1 0.9 0.6 
0 0.09 0.91 0.65 
0.03 0.03 0.94 0.7 
0.07 0.02 0.91 0.75 
0.12 0.01 0.87 0.8 
0.16 0.0008 0.83 0.85 
0.20 0.0007 0.79 0.9 
0.28 0.0005 0.71 0.95 

 

TABLE III.  THE RESULT OF COMPARISON FOR TBJ 
False 
negative 

True 
negative 

Precision Threshold 

0 0.17 0.83 0.4 
0 0.16 0.84 0.45 
0 0.14 0.86 0.5 
0 0.11 0.89 0.55 
0 0.09 0.91 0.6 
0 0.08 0.92 0.65 
0 0.07 0.93 0.7 
0.06 0.04 0.9 0.75 
0.16 0.01 0.83 0.8 
0.25 0.009 0.74 0.85 
0.3 0.004 0.69 0.9 
0.33 0.0001 0.66 0.95 

 
TABLE IV.  THE RESULT OF COMPARISON FOR TEBJ 
False 
negative 

True 
negative 

Precision Threshold 

0 0.17 0.83 0.4 
0 0.16 0.84 0.45 
0 0.13 0.87 0.5 
0 0.09 0.91 0.55 
0 0.08 0.92 0.6 
0 0.07 0.93 0.65 
0 0.05 0.95 0.7 
0.1 0.02 0.88 0.75 
0.14 0.008 0.85 0.8 
0.20 0.001 0.79 0.85 
0.27 0.0006 0.72 0.9 
0.31 0.00009 0.68 0.95 

 

TABLE V.  THE RESULT OF COMPARISON FOR JCS 

False 
negative 

True 
negative 

Precision Threshold 

0 0.2 0.8 0.4 
0 0.16 0.84 0.45 
0 0.14 0.86 0.5 
0 0.09 0.91 0.55 
0 0.08 0.92 0.6 
0.03 0.07 0.9 0.65 
0.1 0.05 0.85 0.7 
0.15 0.02 0.83 0.75 
0.24 0.002 0.75 0.8 
0.26 0.001 0.73 0.85 
0.29 0.0006 0.7 0.9 
0.35 0.00009 0.64 0.95 
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