Stability Of The Generalized 2-Variable Quadratic Functional Equation

A. Nejadali Abolfazl, Ghoochani Rezvan And Kheirabadi Hamid

Nikshar Branch, Islamic Azad University, Nikshar, Iran
E-mails: nejadali.2000@yahoo.com; re_ghoochani@yahoo.com

Abstract: In this paper, we derive the stability of the 2-variable quadratic functional equation (0.01) \((x + y, z + t) + f(x + \sigma(y), z + \sigma(t)) = 2f(x, z) + 2f(y, t) \). and the stability of the 2-variable quadratic functional equation (0.02) \(f(x + y, z + t) + g(x + \sigma(y), z + \sigma(t)) = h(x, z) + k(y, t) \) for all \(x, y, z, t \in G \), where \(G \) is a semigroup and \(\sigma \) is a homomorphism of \(G \) such that \(\sigma \circ \sigma = I \).

1. INTRODUCTION AND PRELIMINARIES
Let \(X, Y \) be real vector spaces. For the mapping \(f : X \times X \rightarrow Y \), consider the 2-variable quadratic functional equation
\[
(1.0.3) \quad f(x + y, z + t) + f(x + \sigma(y), z + \sigma(t)) = 2f(x, z) + 2f(y, t).
\]
we define
\[
(1.0.4) \quad Df(x, y, z, t) := f(x + y, z + t) + f(x + \sigma(y), z + \sigma(t)) - 2f(x, z) - 2f(y, t).
\]
\[
D_{\mu_1,\mu_2}f(x, y, z, t) := f(\mu_1(x + y), \mu_3(z + t)) + f(\mu_4(x + \sigma(y)), \mu_5(z + \sigma(t))) - 2\mu_1\mu_2f(x, z) - 2\mu_3\mu_5f(y, t).
\]
for all \(\mu_1, \mu_2 \in T^1 := \{ \lambda \in C : |\lambda| = 1 \} \) and all \(x, y, z, t \in X \).

Let \(X \) be a set. A function \(d : X \times X \rightarrow [0, \infty) \) is called a generalized metric on \(X \) if and only if \(d \) satisfies
(\mu_1) \(d(x, y) = 0 \) if and only if \(x = y \)
(\mu_2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \)
(\mu_3) \(d(x, z) \leq d(x, y) + d(y, z) \)

Theorem 1.0.1 Let \((X,d)\) be a generalized complete metric space. Assume that \(A : X \rightarrow X \) is a strictly contracting operator with the lipstick constant < 1. If there exists a nonnegative integer \(n \) such that \(d(A^{k+1}f, A^k f) < \infty \) for some \(f \in X \), then the following are true.
(a) The sequence \(\{A^nf\} \) converges to a fixed point \(F \) of \(A \);
(b) \(F \) is the unique fixed point of \(A \) in
\[
(1.0.5) \quad X^* = \{ g \in X : d(A^k f, g) < \infty \};
\]
(c) If \(h \in X^* \), then
\[
(1.0.6) \quad d(h, F) \leq \frac{1}{1-\lambda} d(h, h).
\]

A. NEJADALI AND R. GHOOCANI

2. MAIN RESULT

Theorem 2.0.2 Let \(\sigma \) be an homomorphism of the semigroup \(G \) such that \(\sigma \circ \sigma = I \) and \(Y \) is a Banach space. Suppose that \(f : G \times G \rightarrow Y \) satisfies the inequality
\[
(2.0.7) \quad \|D_{\mu_1,\mu_2}f(x, y, z, t)\| \leq \delta
\]
for all \(\mu_1, \mu_2 \in T^1 \) and for all \(x, y, z, t \in G \) and for some \(\delta \in [0, \infty) \). Then there exists a unique 2-variable quadratic mapping \(F : G \times G \rightarrow Y \) such that
\[
(2.0.8) \quad \|f(x, z) - F(x, z)\| \leq \delta
\]
for all \(x, y, z, t \in G \).

Proof. Letting \(\mu_x, \mu_z = 1 \) and for all \(x, y, z, t \in G \), we have

\[
\| f(2x, 2z) + f(x + \sigma(x), z + \sigma(z)) - 4f(x, z) \| \leq \delta.
\]

for all \(x, y, z, t \in G \). Then we obtain

\[
\| \frac{f(2x, 2z) + f(x + \sigma(x), z + \sigma(z))}{4} - f(x, z) \| \leq \delta.
\]

for all \(x, y, z, t \in G \). Now we set \(X = \{ h \mid h : G \times G \to Y \text{ is a function} \} \) and introduce a generalized metric on \(X \) as follows:

\[
d(g, h) = \inf \{ \delta \in [0, \infty) \mid \| g(x, y) - h(x, y) \| \leq \delta \}.
\]

First, we will verify that \((X, d)\) is a complete space. Let \(\{ g_n \} \) be a Cauchy sequence in \((X, d)\). According to definition Cauchy sequence, for any \(\varepsilon > 0 \) there exists a positive integer \(N_\varepsilon \) such that \(d(g_m, g_n) \leq \varepsilon \) for all \(m, n \geq N_\varepsilon \). From the definition of the generalized metric \(d \), it follows that

\[
\forall \varepsilon > 0 \exists N_\varepsilon \in N \forall m, n \geq N_\varepsilon \| g_m(x, y) - g_n(x, y) \| \leq \varepsilon.
\]

This implies that \(\{ g_n(x, y) \} \) is a Cauchy sequence in \(Y \). Since \(Y \) is a complete space, \(\{ g_n(x, y) \} \) converges in \(Y \) for each \(x, y \in G \). Hence we can define a function \(g : G \times G \to Y \) by

\[
g(x, y) = \lim_{n \to \infty} g_n(x).
\]

If we let \(m \) increase to infinity, it follows from (2.0.13) that for any \(\varepsilon > 0 \), there exists a positive integer \(N_\varepsilon \) with \(\| g_n(x, y) - g(x, y) \| \leq \varepsilon \) for all \(n \geq N_\varepsilon \), that is, for any \(\varepsilon > 0 \), there exists a positive integer \(N_\varepsilon \) such that \(d(g_m, g_n) \leq \varepsilon \) for any \(m, n \geq N_\varepsilon \). This fact leads us to the conclusion that \(\{ g_n \} \) converges in \((X, d)\). Hence \((X, d)\) is a complete space. Now we define an operator \(A : X \to X \) such that

\[
(Af)(x, z) := \frac{f(2x, 2z) + f(x + \sigma(x), z + \sigma(z))}{4}.
\]

We assert that \(A \) is strictly contractive on \(X \). Given \(h \in X \), let \(\delta \in [0, \infty) \) be an arbitrary constant with \(d(g, h) \leq \delta \), that is,

\[
\| g(x, y) - h(x, y) \| \leq \delta.
\]

STABILITY OF THE GENERALIZED 2-VARIABLE QUADRATIC FUNCTIONAL EQUATION

It then follows from (2.0.15) that

\[
\| (Ag)(x, z) - (Ah)(x, z) \| = \| \frac{g(2x, 2z) + g(x + \sigma(x), z + \sigma(z))}{4} - \frac{h(2x, 2z) + h(x + \sigma(x), z + \sigma(z))}{4} \|
\]

\[
\leq \| \frac{g(2x, 2z)}{4} - \frac{h(2x, 2z)}{4} \| + \| \frac{g(x + \sigma(x), z + \sigma(z))}{4} - \frac{h(x + \sigma(x), z + \sigma(z))}{4} \|
\]

\[
\leq \frac{\delta}{4} + \frac{\delta}{4} = \frac{\delta}{2} + \frac{\delta}{2} = \frac{\delta}{2} + \frac{\delta}{2} \leq \frac{\delta}{2} \leq \| g(x, z) - h(x, z) \|
\]

That is, \(d(Ag, Ah) \leq \frac{\delta}{2} d(g, h) \), for any \(g, h \in X \). Hence \(A \) is a strictly contractive function. It easily follows that

\[
(A^2 f)(x, z) = \frac{f(2x, 2z) + 2f(x + \sigma(x), z + \sigma(z))}{2^{2x}}.
\]

And by direct computation, we obtain

\[
(A^n f)(x, z) = \frac{f(2^n x, 2^n z) + (2^n - 1)f(2^{n-1} x + 2^{n-1} z + 2^{n-1} \sigma(x), 2^{n-1} z + 2^{n-1} \sigma(z))}{2^{2^n}}.
\]

Now we obtain
\[
\| (A^{n+1}f)(x, z) - (A^n f)(x, z) \| \leq \frac{1}{2^{2(n+1)}} \| f(2^{n+1}x, 2^{n+1}z) \|
+ \frac{1}{2^{2(n+1)}} \| 2(2^n - 1) f(2^n x + 2^n \sigma(x), 2^n z + 2^n \sigma(z)) \| \\
\leq \frac{\delta}{2^{2(n+1)}} + \frac{(2^n - 1)\delta}{2^{2(n+1)}} = \frac{2^n \delta}{2^{2(n+1)}} = \frac{\delta}{2^{n+2}} < \infty.
\]

Hence, if set \(n = 0 \) then \(d(Af, f) \leq \frac{\delta}{4} < \infty \). Thus Theorem (1.0.1)(a) implies that there exists a function \(F \in X \), which is a fixed point of \(A \), such that \(F(x, z) : = \lim_{n \to \infty} (A^n f)(x, z) \) for any \(x, z \in G \). One can verify \(F \) satisfies of (1.0.3). Indeed,

\[
\| (A^n f)(x + y, z + t) + (A^n f)(x + \sigma(y), z + \sigma(t)) - 2(A^n f)(x, z) - 2(A^n f)(y, t) \|
= \frac{1}{2^n} \| f(2^n (x + y), 2^n (z + t)) + (2^n - 1) f(2^{n-1} (x + y) + 2^{n-1} \sigma(x + y), 2^{n-1}(z + t) + 2^{n-1} \sigma(z + t)) \\
+ f(2^{n-1}(x + \sigma(y)), 2^{n-1}(z + \sigma(t))) \|
\leq \frac{\delta}{2^n} + \frac{(2^n - 1)\delta}{2^{2n}} = \frac{2^n \delta}{2^{2n}} = \frac{\delta}{2^n}
\]

A NEJADALI AND R.GHOOCHANI

Letting \(n \to \infty \), we see that \(F \) satisfies (1.0.3).

In Theorem (1.0.1) let \(k = 0 \). Since \(f \in X^* = \{ f \in X | d(f, g) < \infty \} \) in Theorem (1.0.1), by Theorem (1.0.1)(c) and (3.0.31), we have

(2.0.19) \[d(f, F) \leq \frac{1}{1-k} d(Af, f) \leq \frac{2 \delta}{4} = \frac{\delta}{2} \leq \delta. \]

Therefor (2.0.8) is true. One can verify \(F \) satisfies of (2.0.10). Indeed,

\[
\| D_{\mu_1, \mu_2} f(x, y, z, t) \|
= \lim_{n \to \infty} \left\| \frac{D_{\mu_1, \mu_2} f(2^n x, 2^n y)}{2^{2n}} \right\| \\
+ \lim_{n \to \infty} \left\| \frac{D_{\mu_1, \mu_2} f(2^n x + 2^n \sigma(x), 2^n z + 2^n \sigma(z))}{2^{2n}} \right\| \leq \lim_{n \to \infty} \frac{2^n \delta}{2^{2n}} = \lim_{n \to \infty} \frac{\delta}{2^n} = 0
\]

for all \(x, y, z, t \in G \). So \(D_{\mu_1, \mu_2} f(x, y, z, t) = 0 \) for all \(\mu_1, \mu_2 \in T^1 \) and for all \(x, y, z, t \in G \). Assume that there exists another mapping \(H : G \times G \to Y \) which satisfies (1.0.3) and (2.0.8). we obtain

\[
\| (A^n f)(x, z) - H(x, z) \| \leq \| (A^n f)(x, z) - F(x, z) \| + \| F(x, z) - f(x, z) \| + \| f(x, z) - H(x, z) \|
\]

\[\infty + \delta + \delta < \infty \]

Thus \(d(A^n f, H) < \infty \), and so \(H \in X^* \). On the other hand \(\Delta H(x, z) = H(x, z) \) for all \(x, z \in G \). Hence by Theorem(1.0.1)(b), we get \(F = H \). This completes the proof of the theorem. □

3. STABILITY OF EQUATION (0.0.2) IN ABELIAN SEMIGROUPS

In this section we investigate the stability of the 2-variable quadratic functional equation

(3.0.20) \[f(x + y, z + t) + g(x + \sigma(y), z + \sigma(t)) = h(x, z) + k(y, t) \]

for all \(x, y, z, t \in G \), where \(G \) is an abelian semigroup and \(\sigma \) is a homomorphism of \(G \) such that \(\sigma \circ \sigma = I \).

First we will establish some results which will be instrumental in proving our main results.

In the following lemma, we will present a stability result for Jensen’s functional equation :

\[
\text{Life Science Journal 2013;10(4s) http://www.lifesciencesite.com}
\]
Lemma 3.0.3. Let \(\sigma \) be an homomorphism of the abelian semigroup \(G \) such that \(\sigma \circ \sigma = I \). Let \(Y \) be a Banach space. Suppose that \(f : G \times G \to Y \) satisfies the inequality
\[
\| f(\mu_1(x+y), \mu_2(z+t)) + f(\mu_1(x+\sigma(y)), \mu_2(z+\sigma(t))) - 2\mu_1\mu_2 f(x,z) \| \leq \delta.
\]
for all \(\mu_1, \mu_2 \in T^1 \), for all \(x, y, z, t \in G \) and for some \(\delta \geq 0 \). Then there exists a 2-variable quadratic mapping \(F : G \times G \to Y \) such that
\[
\| f(x,z) - F(x,z) \| \leq \delta.
\]

STABILITY OF THE GENERALIZED 2-VARIABLE QUADRATIC FUNCTIONAL EQUATION

and
\[
F(\mu_1(x+y), \mu_2(z+t)) + F(\mu_1(x+\sigma(y)), \mu_2(z+\sigma(t))) - 2\mu_1\mu_2 F(x,z) = 0.
\]
for all \(\mu_1, \mu_2 \in T^1 \) and for all \(x, y, z, t \in G \).

Proof. Letting \(\mu_1, \mu_2 = 1 \), \(y = x \) and \(z = t \) in (3.0.33), we have
\[
\| f(2x,2z) + f(x+\sigma(x),z+\sigma(z)) - 2f(x,z) \| \leq \delta.
\]
for all \(x, z \in G \). Then we obtain
\[
\| f(2x,2z) + f(\mu_1(x+\sigma(y)), \mu_2(z+\sigma(t))) - 2\mu_1\mu_2 f(x,z) \| \leq \delta.
\]
for all \(x, z \in G \). Now we set \(X = \{ h : h : G \times G \to Y \text{ is a linear function} \} \) and introduce a generalized metric on \(X \) as follows :
\[
d(g,h) = \inf_{\delta \in [0,\infty)} \| g(x,y) - h(x,y) \| \leq \delta.
\]
By Theorem (2.0.2), follows that \((X,d) \) is a complete space. Now we define an operator \(J_{\frac{1}{2}} A : X \to X \) such that
\[
J_{\frac{1}{2}} A f(\frac{1}{2}) = \frac{1}{2} \left[\frac{f(2x,2z) + f(x+\sigma(x),z+\sigma(z))}{2} \right]
\]
We assert that \(J_{\frac{1}{2}} A \) is strictly contractive on \(X \). Given \(g, h \in X \), let \(\delta \in (0,\infty) \) be an arbitrary constant with
\[
d(g,h) \leq \delta,
\]
that is,
\[
\| g(x,y) - h(x,y) \| \leq \delta
\]
It then follows from (3.0.28) that
\[
\| J_{\frac{1}{2}} A g(x,z) - J_{\frac{1}{2}} A h(x,z) \| = \frac{1}{2} \left[\| g(2x,2z) + g(x+\sigma(x),z+\sigma(z)) - h(2x,2z) + h(x+\sigma(x),z+\sigma(z)) \| \right]
\]
\[
\leq \frac{1}{2} \left[\| g(2x,2z) - h(2x,2z) \| + \| g(x+\sigma(x),z+\sigma(z)) - h(x+\sigma(x),z+\sigma(z)) \| \right]
\]
\[
\leq \frac{1}{2} \left[\frac{\delta + \delta}{2} \right] = \frac{1}{2} \| g(x,y) - h(x,y) \|
\]
That is, \(d(J_{\frac{1}{2}} A g, J_{\frac{1}{2}} A h) \leq \frac{1}{2} d(g,h) \), for any \(g, h \in X \). Hence \(J_{\frac{1}{2}} A \) is a strictly contractive function. It easily follows that
\[
J_{\frac{1}{2}} A f(\frac{1}{2}) = \frac{1}{2} \left[\frac{f(2x,2z) + f(x+\sigma(x),z+\sigma(z))}{2} \right]
\]
And by direct computation, we obtain
\[
J_{\frac{1}{2}} A f(x,z) = \frac{1}{2} \left[\frac{f(2x,2z) + f(x+\sigma(x),z+\sigma(z))}{2} \right]
\]
A.NEJADALI AND R.GHOOCHANI
\[
\| \left(J^{n+1} \frac{1}{n} A f \right) (x, z) - \left(J^{n} \frac{1}{n} A f \right) (x, z) \| \leq \frac{1}{2^{n+1}} \frac{1}{2} \| f(2^{n+1} x, 2^{n+1} z) + f(2^n x + 2^n \sigma(x), 2^n z + 2^n \sigma(z)) - 4f(2^n x, 2^n z) \|
+ \frac{1}{2^{n+1}} \| 2(2^n - 1) f(2^n x + 2^n \sigma(x), 2^n z + 2^n \sigma(z)) - 4(2^n - 1) f(2^{n-1} x + 2^{n-1} \sigma(x), 2^{n-1} z + 2^{n-1} \sigma(z)) \| \|
\leq \frac{1}{2^{n+1}} \left[\frac{\delta}{2^{n+1}} + \frac{(2^n - 1)\delta}{2^{n+1}} \right] = \frac{1}{2^{n+1}} \frac{2^n \delta}{2^n+1} = \frac{\delta}{2^{n+1}}.
\]

Hence, \(\left(J^{n} \frac{1}{n} A f \right) (x, z) \) is a Cauchy sequence. Since \(Y \) is a complete space, implies that there exists a linear function \(F \), such that \(F(x, z) := \lim_{n \to \infty} \left(J^{n} \frac{1}{n} A f \right) (x, z) \) for any \(x, z \in G \). one can see by Theorem (2.0.2) that \(F \) satisfies of (3.0.21), (3.0.23) and (3.0.24).

By using the proof of preceding lemma, we get the stability of the Jensen’s function equation

\[(3.0.32) \quad f(y + x, t + z) + f(\sigma(y) + x, \sigma(t) + z) = 2f(x, z).\]

Corollary 3.0.4. Let \(\sigma \) be an homomorphism of the abelian semigroup \(G \) such that \(\sigma 0 = I \). Let \(Y \) be a Banach space. Suppose that \(f : G \times G \to Y \) satisfies the inequality

\[(3.0.33) \quad \| f(\mu_1(y + x), \mu_2(t + z)) + f(\mu_1(\sigma(y) + x), \mu_2(\sigma(t) + z)) - 2\mu_1\mu_2 f(x, z) \| \leq \delta.\]

for all \(\mu_1, \mu_2 \in T^1 \), for all \(x, y, z, t \in G \) and for some \(\delta \geq 0 \). Then there exists a 2-variable quadratic mapping \(F : G \times G \to Y \) such that

\[(3.0.34) \quad \| f(x, z) - F(x, z) \| \leq \delta.\]

and

\[(3.0.35) \quad F(\mu_1(y + x), \mu_2(t + z)) + F(\mu_1(\sigma(y) + x), \mu_2(\sigma(t) + z)) = 2\mu_1\mu_2 F(x, z) = 0.\]

for all \(\mu_1, \mu_2 \in T^1 \) and for all \(x, y, z, t \in G \).

In the following lemma, we obtain a partial stability theorem for the 2-variable quadratic functional equation

\[(3.0.36) \quad f(x + y, z + t) + g(x + \sigma(y), z + \sigma(t)) = h(x, z) + k(y, t).\]

for all \(x, y, z, t \in G \).

Lemma 3.0.5. Let \(\sigma \) be an homomorphism of the abelian semigroup \(G \) such that \(\sigma 0 = I \). Let \(Y \) be a Banach space. Suppose that \(f, g, h, k : G \times G \to Y \) satisfies the inequality

\[(3.0.37) \quad \| f(\mu_1(x + y), \mu_2(x + t)) + g(\mu_1(x + \sigma(y)), \mu_2(z + \sigma(t))) - \mu_1 h(x, z) - \mu_2 k(y, t) \| \leq \delta.\]

for all \(\mu_1, \mu_2 \in T^1 \), for all \(x, y, z, t \in G \) and for some \(\delta \geq 0 \). Then there exists a unique 2-variable quadratic mapping \(Q : G \times G \to Y \) a solution of (1.0.3). Also there exists a solution \(J_1, J_2 \) of Jensen’s functional equation (3.0.21) and (3.0.32) such that

\[(3.0.38) \quad \| h(x, z) - J_2(x, z) - Q(x, z) - h(e, e) \| \leq 16\delta.
\]

\[(3.0.39) \quad \| k(x, z) - J_1(x, z) - Q(x, z) - k(e, e) \| \leq 16\delta.\]

STABILITY OF THE GENERALIZED 2-VARIABLE QUADRATIC FUNCTIONAL EQUATION

\[(3.0.40) \quad \| f^e(x, z) + g^e(x, z) - Q(x, z) - \frac{1}{2} f(e, e) - \frac{1}{2} g(e, e) \| \leq 12\delta.\]

\[(3.0.41) \quad \| f^e - g^e(x + y, z + t) - (f^e - g^e)(x + \sigma(y), z + \sigma(t)) \| \leq 12\delta.
\]

and

\[(3.0.42) \quad \| f^e(x, z) - \frac{1}{2} J_1(x, z) - \frac{1}{2} J_2(x, z) \| \leq 10\delta.\]

and

\[(3.0.43) \quad \| g^e(x, z) - \frac{1}{2} J_2(x, z) + \frac{1}{2} J_1(x, z) \| \leq 10\delta.\]

and

\[(3.0.44) \quad D_{\mu_1, \mu_2} Q(x, y, z, t) = 0.\]
\[(3.0.45) f_1(x+y, z+t) + f_1(x+\sigma(y), z+\sigma(t)) - 2\mu_1\mu_2 f_1(x, z) = 0.\]

\[(3.0.46) f_2(x+y, z+t) + f_2(\sigma(x)+y, \sigma(z)+t) - 2\mu_1\mu_2 f_2(x, z) = 0.\]

for all \(\mu_1, \mu_2 \in T^1\) and for all \(x, y, z, t \in G\).

Proof. Letting \(\mu_1, \mu_2 = 1\), Let us denote by \(f_0(x, y, z, t) = f(x+y, z+t) + f(\sigma(x)+y, \sigma(z)+t) - 2 f_1(x, z) - f_2(x, z)\). By putting \(x = y = z = t = e\) in (3.0.37), we get

\[(3.0.47) \|f_0(x, y, z, t)\| \leq \delta.\]

Consequently, if we subtract the inequality (3.0.37) from the new inequality (3.0.47), we obtain

\[(3.0.48) \|f_1(x+y, z+t) - f_2(x+y, z+t) - f_1(\sigma(x)+y, \sigma(z)+t) + f_2(\sigma(x)+y, \sigma(z)+t)\| \leq 2\delta.\]

Now by replacing \(x\) by \(\sigma(x)\) and \(y\) by \(\sigma(y)\) and \(z\) by \(\sigma(z)\) and \(t\) by \(\sigma(t)\) in (3.0.48) and we add the inequality obtained in (3.0.48), we deducethat

\[(3.0.49) \|F_1(x+y, z+t) + F_2(x+y, z+t) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(\sigma(x)+y, \sigma(z)+t)\| \leq 2\delta.\]

and

\[(3.0.50) \|F_1(x+y, z+t) + F_2(x+y, z+t) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(\sigma(x)+y, \sigma(z)+t)\| \leq 2\delta.\]

for all. Hence, if we replace \(y, t\) by \(e\) and \(x, z\) by \(e\) respectively in (3.0.49), we get

\[(3.0.51) \|F_1(x, z) + F_2(x, z) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(\sigma(x)+y, \sigma(z)+t)\| \leq 2\delta.\]

and

\[(3.0.52) \|F_1(x, y) + F_2(x, y) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(\sigma(x)+y, \sigma(z)+t)\| \leq 2\delta.\]

So, in view of (3.0.49), (3.0.51) and (3.0.52), we obtain

\[(3.0.53) \|F_1(x+y, z+t) + F_2(x+y, z+t) - (F_1(\sigma(x)+y, \sigma(z)+t) + F_2(\sigma(x)+y, \sigma(z)+t))\| \leq 6\delta.\]

If we add the inequality above to (3.0.53), we get

\[(3.0.54) \|F_1(x+y, z+t) + F_2(x+y, z+t) - (F_1(\sigma(x)+y, \sigma(z)+t) + F_2(\sigma(x)+y, \sigma(z)+t))\| \leq 12\delta,\]

for all \(x, y, z, t \in G\). Hence, in view of Theorem (2.0.2), there exists a unique function \(Q\), a solution of equation (1.0.3) such that

\[(3.0.55) \|F_1(x+y, z+t) - Q(x+y, z+t)\| \leq 12\delta,\]

Consequently, from (3.0.54) and (3.0.55), we deduce that

\[(3.0.56) \|F_1(x+y, z+t) - Q(x+y, z+t)\| \leq 16\delta,\]

and

\[(3.0.57) \|F_1(x+y, z+t) - Q(x+y, z+t)\| \leq 16\delta,\]

for all \(x, y, z, t \in G\). On the other hand, from (3.0.50) we get

\[(3.0.58) \|F_1(x+y, z+t) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(x+y, z+t)\| \leq 2\delta,\]

and

\[(3.0.59) \|F_1(x+y, z+t) - F_1(\sigma(x)+y, \sigma(z)+t) - F_2(x+y, z+t)\| \leq 2\delta,\]

for all \(x, y, z, t \in G\). Hence, we obtain
\text{(3.0.60)} \quad \|2F_{1}^{q}(x,z) - F_{1}^{q}(x,z) - F_{1}^{q}(x,z)\| \leq 4\delta.
\text{and}\n\text{(3.0.61)} \quad \|2F_{2}^{q}(x,z) - F_{2}^{q}(x,z) + F_{2}^{q}(x,z)\| \leq 4\delta.

for all \(x,z \in G\) and Consequently, we have

\[\|F_{2}^{q}(x + y, z + t) + F_{2}^{q}(x + \sigma(y), z + \sigma(t)) - 2F_{2}^{q}(x, z)\| \leq \|F_{2}^{q}(x + y, z + t)\| - \|F_{2}^{q}(x + \sigma(y), z + \sigma(t)) - 2F_{2}^{q}(x, z)\|\]

and

\[\|F_{2}^{q}(y + x, t + z) + F_{2}^{q}(\sigma(y) + x, \sigma(t) + z) - 2F_{2}^{q}(x, z)\| \leq \|F_{2}^{q}(y + x, t + z)\| - \|F_{2}^{q}(\sigma(y) + x, \sigma(t) + z) - 2F_{2}^{q}(x, z)\|\]

\text{STABILITY OF THE GENERALIZED 2-VARIABLE QUADRATIC FUNCTIONAL EQUATION}

for all \(x, y, z, t \in G\). Now from lemma (3.0.3) and corollary (3.0.4) there exists two solution of Jensen’s functional equation \(J_{1}, J_{2} : G \times G \rightarrow Y\) such that

\text{(3.0.62)} \quad \|F_{1}^{q}(x,z) - J_{1}^{q}(x,z)\| \leq 8\delta.
\text{and}\n\text{(3.0.63)} \quad \|F_{2}^{q}(x,z) - J_{2}^{q}(x,z)\| \leq 8\delta.

for all \(x, z \in G\). Now, by small computations, we obtain the rest of the proof. □

REFERENCES