On Some Partial Differential Equations with Operator Coefficients and Non-local Conditions

Mahmoud M.EL-Borai, Wagdy G.El-Sayed, Eman HamdAllah, Alaa A.El-Shorbagy
Department of Mathematics and Computer science, Faculty of Science, Alexandria University, Alexandria, Egypt m melborai@yahoo.com

Abstract: In this paper we are going to study the partial differential equation $L \frac{\partial^{k} u}{\partial t^{k}}=\sum_{j=1}^{k} L_{i j} \frac{\partial^{k-j} u}{\partial t^{k-j}}$. With the non-local condition $D_{t}^{j} u(x, 0)=f_{j}(x) \quad ; j=0,1, \ldots, k-1$
Where;

- L is an elliptic partial differential operator,
- $L_{i j} ; j=1, \ldots, k$ is a family of partial differential operator with bounded operator coefficient in a suitable functional space, and

$$
\begin{array}{r}
f_{o}(x)=\phi_{o}(x)+\sum_{i=1}^{p} \alpha_{0 i} u\left(t_{i}\right) \\
f_{1}(x)=\phi_{1}(x)+\sum_{m=1}^{q} \alpha_{1 m} u\left(t_{m}\right) \\
\vdots \\
f_{k-1}(x)=\phi_{k-1}(x)+\sum_{l=1}^{s} \alpha_{k-1 l} u\left(t_{l}\right)
\end{array}
$$

[EL-Borai MM, El-Sayed WG, HamdAllah E, El-Shorbagy AA. On Some Partial Differential Equations with Operator Coefficients and Non-local Conditions. Life Sci J 2013;10(4): 3333-3337] (ISSN:1097-8135). http://www.lifesciencesite.com. 442

Keywords: Partial differential equations with operator coefficients, Non-local conditions

1. Introduction

Consider the equation
$\sum_{|q|=2 m} a_{q}(t) D^{q} D_{t}^{k} u=\sum_{j=1|q|=2 m}^{k} A_{q, j}(t) D^{q} D_{t}^{k-j} u$,
with the non-local conditions

$$
\begin{equation*}
\left.D_{t}^{j} u(x, t)\right|_{t=0}=f_{j}(x) \quad ; j=0,1, \ldots, k-1 \tag{2}
\end{equation*}
$$

where;

- $q=\left(q_{1}, \ldots, q_{n}\right)$ is an n-tuple of non negative integers,
- $|q|=q_{1}+\ldots+q_{n}$,
- $D^{q}=\frac{\partial^{|q|}}{\partial x_{1}^{q_{1}} \ldots \partial x_{n}^{q_{n}}}, \quad D_{t}=\frac{\partial}{\partial t}$,
- m, k are positive integers.

Let us suppose that:

- $a_{q}(t) ;|q|=2 m$; are continuous functions of $t \in[0,1]$,
- For every $t \in[0,1], \sum_{|q|=2 m} a_{q}(t) D^{q}$ is an elliptic operator.
- $A_{q, j} ;|q|=2 m, j=1, \ldots, k$; are linear bounded operators from $L_{2}\left(E_{n}\right)$ into itself, for every $t \in[0,1]$.
- $A_{q, j} ;|q|=2 m, j=1, \ldots, k ; \quad$ are strongly continuous in $t \in[0,1]$.

Assume that; $W^{2 m}\left(E_{n}\right)$ is the space of all functions $f \in L_{2}\left(E_{n}\right)$ such that the "Distributional derivatives" $D^{q} f$ with $|q|<2 m$ all belong to $L_{2}\left(E_{n}\right)$ [1].

In the present work we are going to find a solution u of (1)(2), that mean
$\cdot u \in W^{2 m}\left(E_{n}\right)$, for every $t \in(0,1)$,

- $D_{t}^{j} u ; j=0,1, \ldots, k$; exist for every $t \in(0,1)$ and belong to $W^{2 m}\left(E_{n}\right)$.
- u satisfies (1) and the initial condition (2).

Also, the uniqueness of the solution is proved.

2. Theorem

If $\quad \phi_{j} \in W^{2 m}\left(E_{n}\right) ; j=0,1, \ldots, k-1 ; 4 m>n ;$ there exist a unique solution u of the non-local Cauchy problem (1), (2) in the space $W^{2 m}\left(E_{n}\right)$.

Proof. The differential operator $D^{q} ;|q|=2 m$; can be written as [2]

$$
\begin{equation*}
D^{q} f=R^{q} \nabla^{2 m} f \quad ; f \in W^{2 m}\left(E_{n}\right) \tag{3}
\end{equation*}
$$

where;

$$
\begin{aligned}
& \nabla^{2}=D_{1}^{2}+\ldots+D_{n}^{2} \\
& R^{q}=R_{1}^{q_{1}} \ldots R_{n}^{q_{n}} ; R_{j} \text { are the Riesz transform }
\end{aligned}
$$

defined by

$$
R_{j} f=-i \pi^{\frac{-(n+1)}{2}} \Gamma\left(\frac{n+1}{2}\right) \int_{E_{n}} \frac{x_{j}-y_{j}}{|x-y|^{n+1}} f(y) d y
$$

Γ is the gamma function and $|x|=x_{1}^{2}+\ldots+x_{n}^{2}$. from (4) at (1)

$$
\begin{equation*}
\sum_{|q|=2 m} a_{q}(t) R^{q} \nabla^{2 m} D_{t}^{k} u=\sum_{j=1|q|=2 m}^{k} A_{q, j}(t) R^{q} \nabla^{2 m} D_{t}^{k-j} u \tag{4}
\end{equation*}
$$

Let
$\begin{array}{ll}\nabla^{2 m} u=v, & \nabla^{2 m} f_{j}=g_{j} \\ \sum_{|q|=2 m} a_{q}(t) R^{q}=H_{o}(t), & \sum_{|q|=2 m} A_{q, j}(t) R^{q}=H_{j}(t) .\end{array}$
Thus, formally we have
$H_{o}(t) D_{t}^{k} v=\sum_{j=1}^{k} H_{j}(t) D_{t}^{k-j} v$
But, $\sum_{|q|=2 m} a_{q}(t) D^{q}$ is an elliptic operator that is $H_{o}(t)$ has a unique bounded inverse $H_{o}^{-1}(t)$ from $L_{2}\left(E_{n}\right)$ to itself for every $t \in[0,1]$. Applying $H_{o}^{-1}(t)$ to both sides of (5)

$$
\begin{equation*}
D_{t}^{k} v=\sum_{j=1}^{k} H_{o}^{-1}(t) H_{j}(t) D_{t}^{k-j} v \tag{6}
\end{equation*}
$$

Also, since R_{j} are bounded in $L_{2}\left(E_{n}\right)$ then $H_{j}(t) ; j=1, \ldots, k$; are bounded operator in $L_{2}\left(E_{n}\right)$ for each $t \in[0,1]$.

Now, consider the square matrix

$$
A(t)=\left[\begin{array}{ccccc}
H_{1}^{*}(t) & H_{2}^{*}(t) & \cdots & H_{k-1}^{*}(t) & H_{k}^{*}(t) \\
I & 0 & \cdots & 0 & 0 \\
0 & I & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & I & 0
\end{array}\right]
$$

where; $\quad H_{j}^{*}(t)=H_{o}^{-1} H_{j}(t) \quad ; j=1,2, \cdots, k$,
I is the identity operator.
Let

$$
V=\left[\begin{array}{c}
V_{1} \tag{7}\\
V_{2} \\
\vdots \\
V_{k}
\end{array}\right]
$$

where; $\quad V_{j}=D_{t}^{k-j} v \quad ; v=\nabla^{2 m} u$.
Thus, equation (6) can be written as follows

$$
\begin{equation*}
\frac{d V(t)}{d t}=A(t) V(t) \tag{8}
\end{equation*}
$$

and the initial conditions

$$
\left.D_{t}^{j} v\right|_{t=0}=g_{j}(x)
$$

i.e,

$$
V_{k-j}(0)=g_{j}
$$

thus

$$
V(0)=\left[\begin{array}{c}
g_{k-1} \tag{9}\\
g_{k-2} \\
\vdots \\
g_{0}
\end{array}\right]=G
$$

where;

$$
\begin{gathered}
g_{o}=\nabla^{2 m} f_{o}=\nabla^{2 m}\left[\phi_{o}(x)+\sum_{i=1}^{p} \alpha_{0 i} u\left(t_{i}\right)\right] \\
\vdots \\
g_{k-1}=\nabla^{2 m} f_{k-1}=\nabla^{2 m}\left[\phi_{k-1}(x)+\sum_{l=1}^{s} \alpha_{k-1 l} u\left(t_{l}\right)\right]
\end{gathered}
$$

Assume that B is the space of column vectors V with norm
$\|V\|=\sum_{i=1}^{k}\left\|V_{j}\right\|_{L_{2}\left(E_{n}\right)} ;\|f\|_{L_{2}\left(E_{n}\right)}=\left(\int_{E_{n}}(f(x))^{2} d x\right)^{1 / 2}$ i.e,

$$
\|V\|=\sum_{j=1}^{k}\left(\int_{E_{n}} V_{j}^{2}(x) d x\right)^{1 / 2}
$$

So, it will be easy to prove that B is a banach space and $A(t)$ is a linear bounded operator B from B into itself for each $t \in[0,1]$.

Also, from the conditions on $a_{q}(t)$ and $A_{q, j}(t)$ we can show that $A(t)$ is strictly continuous on $[0,1]$. Notice that $g_{j} \in L_{2}\left(E_{n}\right)$ which implies $G \in B$.

As in [3], the cauchy problem (8) and (9) has the solution
$V(t)=Q(t) G \quad ; \forall t \in(0,1)$
Where;
$Q(t)$ is a unique bounded operator in the Banach space B

$$
Q(t)=\left[\begin{array}{cccc}
Q_{11}(t) & Q_{12}(t) & \cdots & Q_{1 k} \\
Q_{21}(t) & Q_{22}(t) & \cdots & Q_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{k 1}(t) & Q_{k 2}(t) & \cdots & Q_{k k}
\end{array}\right]
$$

$Q_{r s}(t) ; r=1, \cdots, k \quad, \quad s=1, \cdots, k ;$ are bounded operators in the space $L_{2}\left(E_{n}\right)$ for every $t \in[0,1]$.

Since $V(0)=Q(0) G=G$. Then, we can say that

$$
Q_{r s}(0)= \begin{cases}I & ; r=s \tag{12}\\ 0 & ; r \neq s\end{cases}
$$

Now, let us re-write the initial condition as follow

$$
\begin{align*}
f_{o}(x) & =\phi_{o}(x)+\sum_{j=n_{o}+1}^{n_{1}} c_{j} u_{j} \\
f_{1}(x) & =\phi_{1}(x)+\sum_{j=n_{1}+1}^{n_{2}} c_{j} u_{j} \tag{13}\\
& \vdots \\
f_{k-1}(x) & =\phi_{k-1}(x)+\sum_{j=n_{k-1}^{+1}}^{n_{k}} c_{j} u_{j}
\end{align*}
$$

Where;

$$
\begin{aligned}
& \bullet n_{o}=0, n_{1}=p, n_{2}=n_{1}+q, \cdots, n_{k}=n_{k-1}+s . \\
& c_{j}=\left\{\begin{array}{lll}
\alpha_{1 i} & ; n_{o}+1 \leq j \leq n_{1} & ; i=j-n_{o} \\
\alpha_{2 m} & ; n_{1}+1 \leq j \leq n_{2} & ; m=j-n_{1} \\
\vdots & & ; l=j-n_{k-1} \\
\alpha_{k-1 l} & ; n_{k-1}+1 \leq j \leq n_{k} & ; l=j-n_{o} \\
t_{j}=\left\{\begin{array}{lll}
t_{i} & ; n_{o}+1 \leq j \leq n_{1} & ; i=j-n_{2} \\
t_{m} & ; n_{1}+1 \leq j \leq n_{2} & ; m=j-n_{1} \\
\vdots & & ; n_{k-1}+1 \leq j \leq n_{k} \\
t_{l} & ; l=j-n_{k-1}
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

From (7) we have

$$
V_{r}(x, t)=D_{t}^{k-r} \nabla^{2 m} u(x, t)
$$

From (10) and (11)

$$
\begin{aligned}
V_{r}(x, t) & =\sum_{s=1}^{k} Q_{r s}(t) g_{k-s} \\
& =\sum_{s=1}^{k} Q_{r s}(t) \nabla^{2 m} f_{k-s}
\end{aligned}
$$

Thus;

$$
\begin{align*}
D_{t}^{k-r} \nabla^{2 m} u(x, t) & =\sum_{s=1}^{k} Q_{r s}(t) \nabla^{2 m} f_{k-s} \tag{14}\\
\nabla^{2 m} u(x, t) & =\sum_{s=1}^{k} Q_{k s}(t) \nabla^{2 m} f_{k-s}
\end{align*}
$$

From (14)

$$
\begin{aligned}
& \nabla^{2 m} u(x, t)=\sum_{s=1}^{k} Q_{k s}(t) \nabla^{2 m}\left[\phi_{k-s}+Q_{s k}(0) \sum_{j=n_{o}+1}^{n_{1}} c_{j} u_{j}\right. \\
& \left.\quad+Q_{s k-1}(0) \sum_{j=n_{1}+1}^{n_{2}} c_{j} u_{j}+\cdots+Q_{s 1}(0) \sum_{j=n_{k-1}+1}^{n_{k}} c_{j} u_{j}\right]
\end{aligned}
$$

This can be written as

$$
\begin{align*}
& \nabla^{2 m} u(x, t)=\sum_{s=1}^{k} Q_{k s}(t) \nabla^{2 m}\left[\phi_{k-s}\right. \\
& \left.\quad+\sum_{i=0}^{k-1} Q_{s k-i}(0) \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}\right] \tag{15}\\
& \nabla^{2 m} u\left(t_{l}\right)=\sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m}\left[\phi_{k-s}+\sum_{i=0}^{k-1} Q_{s k-i}(0) \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}\right] \\
& \nabla^{2 m} c_{l} u_{l}=c_{l} \sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m}\left[\phi_{k-s}+\sum_{i=0}^{k-1} Q_{s k-i}(0) \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}\right] \\
& \sum_{l=n_{i}+1}^{n_{i+1}} \nabla^{2 m} c_{l} u_{l}=\sum_{l=n_{i}+1}^{n_{i+1}} c_{l} \sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s} \\
& \quad+\sum_{l=n_{i}+1}^{n_{i+1}} c_{l} \sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \sum_{i=0}^{k-1} Q_{s k-i}(0) \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j} .
\end{align*}
$$

$$
\begin{aligned}
& \text { Now, since } \nabla^{2 m} \text { is linear operator } \\
& \nabla^{2 m}\left(\sum_{l=n_{i}+1}^{n_{i+1}} c_{l} u_{l}\right)=\sum_{l=n_{i}+1}^{n_{i+1}} c_{l} \sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s} \\
& +\sum_{l=n_{i}+1}^{n_{l}} c_{l} \sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \sum_{i=0}^{k-1} Q_{s k-i}(0) \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}
\end{aligned}
$$

Since, $Q_{s k-i}$ is either the identity or the zero operator. i.e,

$$
\nabla^{2 m} Q_{s k-i}(0)=Q_{s k-i}(0) \nabla^{2 m}
$$

Then,

$$
\begin{aligned}
& \nabla^{2 m}\left(\sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}\right)=\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s} \\
&+\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \sum_{i=0}^{k-1} Q_{s k-i}(0) \nabla^{2 m} \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[I-\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \sum_{i=0}^{k-1} Q_{s k-i}(0)\right] \nabla^{2 m}\left(\sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}\right) } \\
&=\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}
\end{aligned}
$$

Set

$$
\begin{gather*}
\Lambda=I-\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \sum_{i=0}^{k-1} Q_{s k-i}(0) \\
\Lambda \nabla^{2 m} \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}=\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s} \tag{16}
\end{gather*}
$$

We can easily prove that
$\sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) \sum_{i=0}^{k-1} Q_{s k-i}(0)$ is bounded operator (see [4]). i.e,

$$
\begin{equation*}
\exists M>0 \quad \text { s.t. } \quad\left\|\sum_{s=1}^{k} Q_{k s}\left(t_{l}\right) Q_{s k}(0)\right\|<M \tag{17}
\end{equation*}
$$

Assume that

$$
C M<1
$$

where;

$$
\begin{equation*}
C=\sum_{l=n_{i}+1}^{n_{i+1}}\left|c_{l}\right| \tag{18}
\end{equation*}
$$

By using (17) and (18) we find that the inverse operator Λ^{-1} exist. Applying Λ^{-1} on (17)

$$
\begin{align*}
& \nabla^{2 m} \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}=\Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right] \\
& \sum_{j=n_{i}+1}^{n_{i+1}} c_{j} u_{j}=\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right] \tag{19}
\end{align*}
$$

Where;
$\left(\nabla^{2 m}\right)^{-1}$ is a closed operator defined on $L_{2}\left(E_{n}\right)$ and representing the inverse of $\nabla^{2 m}$.
From (20) at (16)

$$
\begin{aligned}
& \nabla^{2 m} u(x, t)=\sum_{s=1}^{k} Q_{k s}(t) \nabla^{2 m}\left[\phi_{k-s}\right. \\
& \left.\quad+\sum_{i=0}^{k-1} Q_{s k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right]\right]
\end{aligned}
$$

Thus;

$$
\begin{align*}
& u(x, t)=\left(\nabla^{2 m}\right)^{-1} \sum_{s=1}^{k} Q_{k s}(t) \nabla^{2 m}\left[\phi_{k-s}\right. \\
& \left.\quad+\sum_{i=0}^{k-1} Q_{s k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right]\right] \tag{20}
\end{align*}
$$

Now, we are going to prove that the formula (20) which we have obtained in a formal way is in fact the required solution of the problem (1)and (2) in the space $W^{2 m}\left(E_{n}\right)$.

Since $\left(\nabla^{2 m}\right)^{-1}$ is a closed operator from $L_{2}\left(E_{n}\right)$ onto $W^{2 m}\left(E_{n}\right)$, it follows immediately from (20) that $u \in W^{2 m}\left(E_{n}\right) \quad \forall t \in[0,1]$. Notice that, the differential operator $\frac{d}{d t}$ in (8) is the abstract derivative with respect to t in the space $L_{2}\left(E_{n}\right)$.

$$
\text { Also, since } \frac{d}{d t}\left(\nabla^{2 m}\right)^{-1} \frac{d}{d t} f_{t} \quad ; f_{t} \in L_{2}\left(E_{n}\right)
$$

then from (20) we have

$$
\begin{aligned}
& \frac{d^{k-r}}{d t^{k-r}} u=\left(\nabla^{2 m}\right)^{-1} \sum_{s=1}^{k} \frac{d^{k-r}}{d t^{k-r}} Q_{k s}(t) \nabla^{2 m}\left[\phi_{k-s}\right. \\
& \left.+\sum_{i=0}^{k-1} Q_{s k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right]\right]
\end{aligned}
$$

From (14)

$$
\begin{align*}
& \frac{d^{k-r}}{d t^{k-r}} u=\left(\nabla^{2 m}\right)^{-1} \sum_{s=1}^{k} Q_{r s}(t) \nabla^{2 m}\left[\phi_{k-s}\right. \\
& \left.\quad+\sum_{i=0}^{k-1} Q_{s k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right]\right] \tag{21}
\end{align*}
$$

Which prove that

$$
\frac{d^{k}-r}{d t^{k-r}} u \in W^{2 m}\left(E_{n}\right) \quad ; r=1, \cdots, k \quad \text { forall } \quad t \in(0,1)
$$

In [5], it is proved that if $u, \frac{d u}{d t} \in W^{2 m}\left(E_{n}\right)$
and $\frac{d}{d t} D^{q} u \in L_{2}\left(E_{n}\right),|q|=2 m, 4 m>n$. Then, the partial derivatives $D_{t} u$ exists in the usual sense and that it is identical to the corresponding abstract derivative.

Although, since these conditions are valid by u in (10). By the same way we can find that the partial derivatives $D_{t}^{j} u ; j=1,2, \cdots, k$; exist in the usual sense for all $t \in[0,1], x \in E_{n}$ and that they are identical to the corresponding abstract derivatives.

From (20) we can see that
$\nabla^{2 m} u(x, 0)=\sum_{s=1}^{k} Q_{k s}(0) \nabla^{2 m}\left[\phi_{k-s}\right.$
$\left.+\sum_{i=0}^{k-1} Q_{s k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1}\left[\sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right]\right]$
By using of (12)

$$
\begin{align*}
& \nabla^{2 m} u(x, 0)=\nabla^{2 m}\left[\phi_{o}\right. \\
& \left.+\sum_{i=0}^{k-1} Q_{k k-i}(0)\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1} \sum_{l=n_{i}+1}^{n_{i+1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right] \\
& \text { Thus; } \\
& \nabla^{2 m} u(x, 0)=\nabla^{2 m}\left[\phi_{o}\right. \\
& \left.\quad+\left(\nabla^{2 m}\right)^{-1} \Lambda^{-1} \sum_{l=n_{o}+1}^{n_{1}} \sum_{s=1}^{k} c_{l} Q_{k s}\left(t_{l}\right) \nabla^{2 m} \phi_{k-s}\right] \tag{22}
\end{align*}
$$

From (16)

$$
u(x, 0)=\phi_{o}+\sum_{j=n_{0}+1}^{n_{1}} c_{j} u_{j}
$$

Similarly, we can prove that

$$
\begin{aligned}
& D_{t} u(x, 0)=\phi_{1}+\sum_{j=n_{1}+1}^{n_{2}} c_{j} u_{j} \\
& D_{t}^{k-1} u(x, 0)=\phi_{k-1}+\sum_{j=n_{k-1}+1}^{n_{k}} c_{j} u_{j}
\end{aligned}
$$

Which complete the proof, (see [6] [7] [8] [9] [10] [11] [12] [13]).

Acknowledgement:

The authors are very grateful to
The anonymous referees for their careful reading of the paper and their valuable comments.

Corresponding Author:

Prof. Mahmoud M.EL-Borai
Department of Mathematics and Computer Science
Faculty of Science, Alexandria University
Alexandria, Egypt
E-mail: m m elborai@yahoo.com

References

[1] Yosida K. Functional Analysis, Spreinger-Verlag, (1974).
[2] El-Borai M.M. Singular Integral Operators and Cauchy's Problem for some Partial Differential Equation With Operator Coefficients, Transaction of the Science Center, Alexandria University Vol. 2, 1976.
[3] Krein, C.G. Linear Differential Equation in Banach Space, Moscow (1967).
[4] Mahmoud M. El-Borai, Khairia El-Said El-Nadi, Hoda A. Fouad, On some fractional stochastic delay differential equations, Computers and Mathematics with Applications, Volume 59, Issue 3, February 2010, Pages 1165-1170.
[5] El-Borai M.M. On the Initial Value Problem for linear Partial Differential Equation With Variable Coefficients, Journal of Natural Science
and Mathematics, Vol.XIV, No. 1 (1976).
[6] Mahmoud M. El-Borai, On the solvability of an inverse fractional abstract Cauchy problem, International J. of Research and Reviews in Applied Science, Vol.4,No. 4 September (2010),411-416.
[7] Mahmoud M. El-Borai, Inverse Cauchy problems for some nonlinear fractional parabolic equations in Hilbert space. Special Issue Science and Mathematics with Applications,Int. J. of Research and reviews in Applied Sciences,63,February (2011),242-246.
[8] M.M. El-Borai, The fundamental solution for fractional evolution equations of parabolic type, J.of Appl. Math. and Stoch. Analysis, 2004:3(2004) 197-211.
[9] Mahmoud M. El-Borai, On some fractional evolution equations with nonlocal conditions, Int. J. of Pure and Applied Math., Vol.24,No.3,2005,405-413.
[10]Mahmoud M. El-Borai, Khairia El-Said El-Nadi and Iman G. El-Akabawy, Fractional evolution equations with nonlocal conditions, J. of Applied Math. and Mechanics, 4(6), (2008),1-12.
[11]Mahmoud M. El-Borai, Khairia El-Said El-Nadi and Iman G. El-Akabawy, On some fractional evolution equations,Computers and Math. with Applications,59(2010), 1352-1355.
[12]Mahmoud M. El-Borai, Khairia El-Said El-Nadi and Hanan S. Mahdi, On some abstract stochastic differential equations, International Journal of Engineering and Technology IJET-IJENS,Vol:12,No.4,August(2012),103-107.
[13] Mahmoud M. El-Borai, Khairia El-said El-Nadi and Hanan S. Mahdi, Inverse Cauchy problem for stochastic fractional integro-differential equations, International Journal of Basic and Applied Sciences IJBAS-IJENS, Vol:12, No. 4 August(2012),96-101.
[14]El-Borai M.M. On the Initial Value Problem for a Partial Differential Equation with operator Coefficients, Internat.J. Math. and Math. sci., 3, 1980.
[15]Ehrenpreis L., Cauchy's Problem for Linear Differential Equation With Constant Coefficients 11, Proc. Nat. Acad. Sci. USA, 42, No. 9 (1956), 462-646.
[16] Calderon A.P., Zygmund A. Singular Integral Operators and Differential Equations 11, Amer, J. math., 79, No. 3 (1957).

[^0]
[^0]: 26/11/2013

