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Abstract: In this paper we are going to study the partial differential equation 
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Where;   

    •  L  is an elliptic partial differential operator,  

    • kjLij 1,...,=;  is a family of partial differential operator with bounded operator coefficient in a suitable 

functional space, and 
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1. Introduction 
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with the non-local conditions 
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where;  

    • ),...,(= 1 nqqq  is an n-tuple of non 

negative integers, 
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    • km,  are positive integers.  

Let us suppose that:  

 ;2|=|);( mqtaq
 are continuous functions of 

[0,1]t , 

 For every
q

qmq
Dtat )([0,1],

2|=| is an 

elliptic operator.  

 ;1,...,=,2|=|;, kjmqA jq
are linear bounded 

operators from  )(2 nEL  into itself, for every 

[0,1]t  . 

 ;1,...,=,2|=|;, kjmqA jq
are strongly 

continuous in [0,1]t . 

 

Assume that; )(2

n

m EW is the space of all 

functions )(2 nELf  such that the "Distributional 

derivatives" fD
q with mq 2|<| all belong to )(2 nEL   

[1]. 

In the present work we are going to find a 

solution u of (1)(2),that mean   

    • )(2

n

m EWu , for every (0,1)t ,  

    • ;0,1,...,=; kjuD j

t
 exist for every (0,1)t  and 

belong to )(2

n

m EW .  

• u satisfies (1) and the initial condition (2).  

 Also, the uniqueness of the solution is proved. 
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2. Theorem 

If ;>1;40,1,...,=);(2 nmkjEW n

m

j        

there exist a unique solution u of the non-local 

Cauchy problem (1), (2) in the space )(2

n

m EW  . 

 

Proof. The differential operator ;2|=|; mqD
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can  be written as [2] 
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      is the gamma function and 22

1 ...|=| nxxx  .   

from (4) at (1)  
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But, q

qmq
Dta )( 

2|=|  is an elliptic operator  

that  is )(tHo
 has a unique bounded  inverse )(1 tHo

  

from )(2 nEL to itself for every [0,1]t .  Applying  

)(1 tHo

  to both  sides of (5) 
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Also, since jR are bounded in )(2 nEL then 

;1,...,=);( kjtH j
 are bounded operator in )(2 nEL for 

each [0,1]t . 

Now, consider the square matrix  
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where;    kjtHHtH joj ,1,2,=;)(=)( 1*  , 

               I   is the identity operator. 

Let  
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where;   uvvDV mjk

tj

2=;=  . 

Thus, equation (6) can be written as follows 
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)(
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and the initial conditions 
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Assume that B is the space of column 

vectors V with norm 

1/22
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So, it will be easy to prove that B is a 

banach space and )(tA  is a linear bounded operator 

B from B  into itself for each [0,1]t .  

Also, from the conditions on )(taq
and

)(, tA jq  we can show that )(tA is strictly continuous 

on [0,1]. Notice that )(2 nj ELg   which implies

BG  . 
 

As in [3], the cauchy problem (8) and (9) 

has the solution 

(0,1);)(=)( tGtQtV         (10) 

Where;  
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     )(tQ  is a unique bounded operator in the Banach 

space B  
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    krtQrs ,1,= );(  ,  ;,1,= ks  are bounded 

operators in the space )(2 nEL for every [0,1]t .  

       

Since GGQV =(0)=(0) .Then, we can say 

that 
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Now, let us re-write the initial condition as follow 
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Where; 

    • .=, ,= ,= 0,= 1121 snnqnnpnn kko         
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From ( 7 ) we have  
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Now, we are going to prove that the formula 

(20) which we have obtained in a formal way is in 

fact the required solution of the problem (1)and (2) in 
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