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Abstract: In this paper we are going to study the partial differential equation |_ ZL" — With the
ot = ij atkfj

non-local condition p/u(x,0) = f,(x) ;j=01,...,k-1

Where;
« L isanelliptic partial differential operator,
. Lij; j=1,..,k is a family of partial differential operator with bounded operator coefficient in a suitable

functional space, and
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1. Introduction _ - A, ;lql=2m, j=1,.,k;are linear bounded
Consider thekequatlon operators from L,(E,) into itself, for every
> a (t)DDiu=> > A, (t)DD 'y, € te[01] -
\ll?/lgtzﬁthe non-local cc;r_llc;[;‘t_izomns © AplglE2m =1k are strongly
DUt o= F,(0 ;i=01....k-1 (2 continuous in t e[0,1]
where;

Assume that; W*™(E, ) is the space of all

* q=(q,..,q,) is an n-tuple of non
functions f e L,(E,) such that the "Distributional

negative integers,

“|ql=q,+...+q, . derivatives" D with|q|< 2mall belong to L, (E,)
. DCI = alq‘ _ 6 [1] . .
m v D= a In the present work we are going to find a
Xy OXy solution U of (1)(2),that mean
» m, K are positive integers. *ueW?"(g,), foreveryt € (0,1) ,
Let us suppose that: _ - . * D/u; j=01,.., k; exist for everyt e (0,1) and
+ a,(t);|q|=2m; are continuous functions o belong tow " (E. )
te[01], - U satisfies (1) and the initial condition (2).
. For every te[01], z|q|:2maq (t)D" is an Also, the uniqueness of the solution is proved.

elliptic operator.
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2. Theorem
If g, eW®™(E,);j=01,.,k-1,4m>n;

there exist a unique solution u of the non-local
Cauchy problem (1), (2) in the space w?"(E,) -

Proof. The differential operator D%;|q|= 2m;
can be written as [2]
Df =RIV?" f
where;
V?=D?+..+D?,
RY=R™.RM; R are the Riesz transform
defined by

—(n+1)

R,f=-iz 2 I

; feW?(E,) )

n+1 Xj_yj
f(y)dy:
, )IEnlx—yl”*l (v)dy

I is the gamma function and | x|= X7 +...+ x?.
from (4) at (1)

k .
D a,(ORWVTDU=D D A (ORVD U

lgl=2m j=1lgl=2m
(4).
Let
Viy=zvy yaf =
* i=9;

z\q|=2maq (t)Rq =H o (t)7 Zlq\:ZmAqvj (t)Rq =H j (t)

Thus, formally we have

k .
H,(t)Dfv=>YH, (t)D v

=

®)

q -

But, 3, ,(t)D" isan elliptic operator
that is H_(t) has a unique bounded inverse H *(t)
from L, (g, ) to itself for everyt <[0,1]. Applying
H,*(t) to both sides of (5)

Dfv= Ek:H SOH, (D (6)

j=1
Also, since R are bounded in L, (E,) then
H;t):;j=1..k; are bounded operator inL, (E, ) for
eacht €[0,1].

Now, consider the square matrix

THI®) H® Hi () Hi®]
| 0 0 0
A(t) = 0 | 0 0
0 0 .. 0 0

0 0o - I 0 |

where;  Hi(t)=H,'H;(t) =12k,
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| s the identity operator.

Let
A
.\ )
Vk
where; V, =D/ v ;v=V*u.
Thus, equation (6) can be written as follows
VO - ey ®
and the initial conditions
Dtjvltzoz gj (X)
ie,
Vk—j(o) =0,
thus
Oy
9
V(0) = gk;z =G ©
'}
where;

g, = V2", = VG0 + Y 6]

91 =V = VT[4, (0) +Zs:ak—ll u(t)]

1=1

Assume that B is the space of column
vectors V' with norm

K

IV II= 20V e, il F il = (L (FO0)2d0Y?
i=1 n

i.e,

IV I1= ([, V7 0dx*

n

So, it will be easy to prove that B is a
banach space and A(t) is a linear bounded operator

B from B into itself for eacht [0,1] .

Also, from the conditions on a,(t) and
A, ;(t) we can show that A(t) is strictly continuous
on [0,1]. Notice that g, eL,(E,) which implies
GeB.

As in [3], the cauchy problem (8) and (9)
has the solution

V() =Qt)G
Where;

Vvt e (0,1) (10)
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Q(t) is a unique bounded operator in the Banach
space B

Qu(t) Qp,(t) Qu
o) = Qz?(t) QZf(t) ka (11)
Qu) Q. () Qu
Q.();r=1,---.,k , s=1,.-.k; are bounded

operators in the space L, (E, ) for everyt €[0,1] .

SinceV (0) = Q(0)G =G .Then, we can say
that

Q“(O)z{cl) ‘r#S

Now, let us re-write the initial condition as follow

&, (X) + i c;u;

r=s
(12)

f,(x) =
j:n0+l
)
L) = 40+ D o (13)
j=n1+l
N
fia(X) P 1 (X) + Z C;u;
j=nk_l+l
Where;
*n,=0,n, =p,n,=n,+q,---,N, =N, , +S.
a;  n+1l<j<n i=j-
. o = a,, n+1<j<n, m=j-n
| =
Ay N+l j<ng l=j-n
t ;n,+1l<j<n ji=j-n,
* - t, ;n+1<j<n, ym=j-n
j_ .
t sn,+1<j<n. ;l=j-n

From (7 ) we have
V. (x,t) = D'V u(x,t) .

From (10) and (11)

Vr (X!t) = ZQrs (t)gk—s

k
= Qrs (t)VZm fk—s '
s=1

Thus;
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k
Dtkirvzmu(xit) ZQrs(t)Vzm fk—s
s=1 (14)

V2"u(x,t)

Kk
Zka (t)v o fk—s
s=1

From (14)

VEu(x,t) = Zkaa)vzm 4. +Qu© Y o,

Jn+1

+st—1(o) ZZ‘,Cjuj"'"""Qsl(o) Z Cjuj]

j:n1+l j:nk_l+l
This can be written as

Vsz(X,t) = Zka (t)vzm [& .

M1

+Zst |(0) Z c;u

jn+1

(15)

Ni+1

VZmu(t ) = Zka(t )Vzm [¢k +Zst |(0) z C;u

Jn+1

N1

v, = CIZka(t WV [ +Zst :(0) Z c;u

j= n; +1
M4l om M4l om
Z \% Clul - Z CIZka(t )V ¢k s
I:ni+1 1= n; +1 s=1
Nt Myl
Z CI Zka (t )vszst |(O) Z C; U
I= n+l s=1 j= n+1
Now, since V™ is linear operator
Ni+1
v z qu) = Z G Zka(t WV,
I=n;+1 I=n;+1 s=1
N1 N1
+ ZCIZka(t )Vszst |(O) z Cjuj
I= n +1 s=1 j= =n; +1

Since, Q,,_; is either the identity or the zero operator.
i.e,
V"Q,(0) = Q,, (O)V*"

Then,
Ni4l i1
V2m( z Cj )— Z Zc ka(t )V2m¢k .
j=n;+1 I=n; +1s=1
N1
1 IITNC )ZQSK v e,
I=n; +1s=1 jen 1
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N1

[I - z ZC ka(t )Zst |(0)]v2m( z cu

1=n; +1s=1 j=n;+1
i1
= 3 3 0Qu )V
1= nj+1s=1

Set
A=1-) Y60 )Zst 0)
I=n;+1s=1
AV i CiY; i ZC Qi (t )V2m¢k -s (16)

j=ni+1 I= n; +1s=1

We can easily prove that

> Qut)Y°Q,, . (0) is bounded operator (see [4]).

i.e,
M>0 st [30.0)QO) <M. A7)

Assume that

CM <1
where;

c=3 el (18)

I=ni +1

By using (17) and (18) we find that the
inverse operator A exist. Applying At on (17)

M1

y2m Zcu = A ZZCka(t WV ]

j= n+1 1= n+1s=1
M1
Docju; = (VA TAT Z Zc Qet)V"4 . 1-
j= n+l I= n+1s=1
(19)
Where;

(V™™™ is a closed operator defined on
L, (E,) and representing the inverse of van
From (20) at (16)
k

VZmu(xlt) = szs (t)vzm [¢k—s
+Zst OV AT Z ZC Qu )V 4 11

Thus;
u(x,t) = (V”“)*lZka OV [,

+Zst OV AT Z ZC Qut)V*"g 11

In+lsl

(20)
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Now, we are going to prove that the formula
(20) which we have obtained in a formal way is in
fact the required solution of the problem (1)and (2) in
the space W 2" (E,) -

Since (V?")™* is a closed operator from
L,(E,) onto w2"(g,) , it follows immediately from
(20) that ueW?"(E,) Vte[0,1] . Notice that, the

differential operator 9 in (8) is the abstract
dt
derivative with respect to t in the space L,(E,).

Also, since = (Vzm)fld  feL(E)
then from (20) we have
dk r

W =V *12 g7 Qe OV L4

+Zst |(0)(V2m _1A_1[ z ZCIka(t )V2m¢k -s ]]

1= n+1s=1
From (14)
dk r . o
dt U - (Vz 1z(grs(t)VZ [¢k s
+Zst (O) (VM) AT ZZCka(t WV 1]
I= n;+1s=1
(21)
Which prove that
k
ddt ueW®™(E,) ;r=1,---,k forall te(0,)

In[5], itis proved that if cW2"(E,)
d

and %un e L,(E,),|q|= 2mam > n- Then, the partial

derivatives D,u exists in the usual sense and that it is
identical to the corresponding abstract derivative.

Although, since these conditions are valid
by u in (10). By the same way we can find that the
partial derivatives DJu; j =1,2, ---,k; exist in the
usual sense for all t <[0,1], x E, and that they are
identical to the corresponding abstract derivatives.

From (20) we can see that
k
v u(x0) = ZQKS OV [4

Nit1

+Zst JO)(VE) AT Y] Zc Qu t)V?" 11

I=n; +1s=1

By using of (12)
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V2 u(x,0) = V>" [ 4,

N1 k

Z ZCI ka (tl )V2m¢k—s]

I:ni+ls:1

+ 3 Qs OV A

Thus;
vau(x0) = V2" [,

+ (Vzm)71A71 i Zk:CI ka (tl )V2m¢k—s] (22)

I=no+1s=1
From (16)
M
u(x0) =¢,+ > cu;
j:n0+1

Similarly, we can prove that

M2
Du(x0) =¢+ > cu;

j=nl+1

D Mu(x,0) = @, + Zk: c,u,
j=n g+
Which complete the proof, (seek [6] [7] [8] [9] [10]
[11] [12] [13)).
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