On the Equal-height Elements of Fuzzy AG-subgroups

Aman Ullah¹, I. Ahmad¹ and M. Shah²

¹Department of Mathematics, University of Malakand, Kyber Pakhtunkhwa, Pakistan. ²Department of Mathematics, Government Post Graduate College Mardan, Kyber Pakhtunkhwa,

Pakistan.

<u>amanswt@hotmail.com</u> (Aman Ullah), <u>iahmad@uom.edu.pk</u> (I. Ahmad) and <u>shahmaths_problem@hotmail.com</u> (M. Shah)

Abstract: In this paper we introduce the left (right) equal-height elements of a fuzzy power set. We show that both left and right equal-height elements coincide in fuzzy AG-subgroups. We investigate that the collection of left (right) equal-height elements of AG-group G form an AG-subgroup of G. We also establish a relation between the left equal-height elements and left cosets as well as the right equal-height elements and right cosets of an AG-group G.

[Aman Ullah, I. Ahmad and M. Shah . On the Equal-height Elements of Fuzzy AG-subgroups. *Life Sci J* 2013; 10(4): 3143-3146]. (ISSN: 1097-8135). <u>http://www.lifesciencesite.com.</u> 419

Keywords: AG-groups, fuzzy AG-subgroups, Equal-height elements.

1. Introduction

A fuzzy subset μ of a set X is a function from X to the unit closed interval [0, 1]. For the first time this concept was introduced by Zadeh in 1965 [1]. In 1971, Rosenfeld introduced the concept of fuzzy subgroups which explore the study of the algebraic structures [2]. Wu [3, 4] and Kumar [5] studied normal fuzzy subgroups. Chenh-yi [6] introduced the concept on the equal height-elements in groups. On the other hand in 1993, Kamran extended the idea of AG-groupoid to AG-groups [7]. In 1996, he provided various important results on AG-groups [8]. In 2011, the 3rd author reconsidered the study of AG-groups and defined normality in AG-groups [9, 10]. In 2012, the authors of this paper introduced new concepts on fuzzy AG-subgroups [11]. The present work is a continuation of the concepts given in [11].

In this paper we introduce the concepts of the equal-height elements of a fuzzy AG-subgroup. An AG-groupoid is a groupoid satisfying the left invertive law: (ab)c = (cb)a. AG-groupoid satisfies the medial law: (ab)(cd) = (ac)(bd), and if $e \in G$ satisfies then it also paramedical law: (ab)(cd) = (db)(ca). AG-groupoid (G, \cdot) is called an AG-group or a left almost group (LA-group), if (i) There exists left identity $e \in G$ (that is, ea = afor all $a \in G$). (ii) For all $a \in G$ there exists a^{-1} in G, such that $a^{-1}a = e = aa^{-1}$.

2. Preliminaries

A fuzzy subset μ is a mapping $\mu: X \to [0,1]$. The set of all fuzzy subsets of X is

called the fuzzy power set of X and is denoted by FP(X). One of the most important concept of fuzzy set μ is the concept of α -cut and its variant, a strong α -cut. Given a fuzzy set μ defined on X and any number $\alpha \in [0,1]$, the α -cut, and the strong α -cut, are the crisp sets

and

$$\mu_{\alpha^+} = \{ x \colon x \in X, \ \mu(x) > \alpha \}$$

 $\mu_{\alpha} = \{ x \colon x \in X, \ \mu(x) \ge \alpha \}$

that is, the α -cut (or strong α -cut) of a fuzzy set μ_{α} (or the crisp set μ_{α^+}) that contains all the elements of the universal set X whose membership grades in μ are greater than or equal to (or only greater than) the specified value of α .

The support of a fuzzy set μ within a universal set *X* is the crisp set that contains all the elements of *X* that have non-zero membership grades in μ . Clearly, the support of μ is exactly the same as the strong α -cut for $\alpha = 0$. Although special symbols, such as μ^* or Supp(μ), are often used in the literature to denote the support of μ . We prefer to use the natural symbol μ_{0^+} .

The height $H_e(\mu)$, of a fuzzy set μ is the largest membership grade obtained by any element in that set. Symbolically it is represented by;

$$H_e(\mu) = \sup_{x \in X} \mu(x) \quad \text{or}$$
$$H_e(\mu) = \lor \{\lambda : \lambda \in \text{Im}(\mu)\}.$$

The height of μ may also be viewed as the supremum of α for $\mu_{\alpha} \neq \phi$. If $x \in X$, such that

 $H_e(\mu) = \mu(x)$, then x is called a top-element. If $x, y \in X$, $\mu(x) = \mu(y)$, then we call x and y are of equal-heights [6].

In the rest of this paper G will denote an AG-group otherwise stated and e will denote the left identity of G.

3. Fuzzy AG-subgroup

Definition 1. Let *S* be a groupoid, i.e. a set which is closed under a binary operation of multiplication (let say). A mapping $\mu: S \rightarrow [0,1]$ is called fuzzy sub-groupoid if

 $\mu(xy) \ge \mu(x) \land \mu(y) \quad \forall x, y \in S.$

Remark 1. If $x_1, x_2, \dots, x_n \in S$, then for a fuzzy subgroupoid, it follows from the definition that

 $\mu(x_1 \cdot x_2 \cdot \cdots \cdot x_n) \ge \min\{ \mu(x_i) : 1 \le i \le n \}.$

Definition 2. Let $\mu \in FP(G)$, then μ is called a fuzzy AG-subgroup of *G* if for all $x, y \in G$;

(i). $\mu(xy) \ge \mu(x) \land \mu(y)$,

(ii).
$$\mu(x^{-1}) \ge \mu(x)$$
.

We will denote the set of all fuzzy AG-subgroups of G briefly by F(G).

Lemma 1. [11, Lemma 1.2.5] For an AG-group *G*. Let $\mu \in F(G)$. Then for all $x \in G$,

(i). $\mu(e) \ge \mu(x)$,

(ii).
$$\mu(x) = \mu(x^{-1})$$
.

Theorem 1. [11] Let $\mu \in F(G)$. Then the following assertions holds; for all $x, y \in G$,

(i).
$$\mu(xy) = \mu(yx)$$

(ii).
$$\mu(ye) = \mu(y)$$
,

- (iii). $\mu(ye) \ge \mu(y)$,
- (iv). $\mu(ye) \le \mu(y)$.

Definition 3. Let *G* be an AG-group and μ be a fuzzy subset of *G*. Then for $a, b \in G$, we define *a* to be left equivalent to *b*, written as $a \sim_L b$, if and only if

$$\mu(ax) = \mu(bx)$$
 for all $x \in G$.

Similarly *a* to be right equivalent to *b*, written as $a \sim_R b$, if and only if

 $\mu(xa) = \mu(xb)$ for all $x \in G$.

Remark 2. The left relation " \sim_L " as well as the right relation " \sim_R " are equivalence relations on *G*.

Corollary 1. Let *G* be an AG-group and μ be a fuzzy AG-subgroup of *G*. For $a, b \in G$; $a \sim_L b$, then $\mu(a) = \mu(b)$, that is *a* and *b* are equal-height elements.

Proof. Let for $a, b \in G$; $a \sim_L b$, then by definition we get;

$$\mu(ax) = \mu(bx)$$
 for all $x \in G$

Substitute instead of x the left identity e of G, we get

$$(ae) = \mu(be)$$

 $\Rightarrow \mu(ea) = \mu(eb);$ (by Theorem 1(i))
 $\Rightarrow \mu(a) = \mu(b).$

With the help of the following example we show that the converse is not true in general in AG-groups. Consider the AG-group of order 5:

	0	1	2	3	4
0	0	1	2	3	4
1	4	0	1	2	3
2	3	4	0	1	2
3	2	3	4	0	1
4	1	2	3	4	0

Define the fuzzy subset $\mu: G \rightarrow [0,1]$ as follows:

$$\mu(0) = 1$$
 and $\mu(1) = \mu(2) = \mu(3) = \mu(4) = \frac{1}{2}$

Now $\mu(1) = \mu(2)$, that is, the height of 1 and 2 are equal under μ , but $\mu(12) \neq \mu(22)$ SO $\mu(1x) \neq \mu(2x), \forall x \in G$. Therefore, $1 \neq_L 2$.

Theorem 2. Let μ be any fuzzy AG-subgroup of *G*. Then for $a, b \in G$; $a \sim_L b \Leftrightarrow a \sim_R b$.

Proof. Let $\mu \in F(G)$ and $a, b \in G$; then $a \sim_L b$ if and only if

$$\mu(ax) = \mu(bx) \quad \forall x \in G$$

$$\Leftrightarrow \mu(xa) = \mu(xb) \text{ (by Theorem 1(i))}$$

$$\Leftrightarrow a \sim_R b.$$

Hence both left and right equivalence relations coincide.

Definition 4. Let μ be any fuzzy subset of *G*. Then the collection

$$H_L = \{ a \in G : \mu(ax) = \mu(x), \forall x \in G \}$$

is called the set of left equal height elements of *G*. Similarly the collection

 $H_R = \{ a \in G : \mu(xa) = \mu(x), \forall x \in G \}$

is called the set of right equal height elements of G. **Theorem 3.** Let μ be a fuzzy AG-subgroup of G. Then H_L is an AG-subgroup of G.

Proof. Clearly H_L is non-empty; as for all $x \in G$;

 $\mu(ex) = \mu(x)$, this implies that $e \in H_L$.

Now for any $a, b \in H_L$, let

 $\mu((ab)x) = \mu((xb)a) \text{ (using left invertive law)}$ $= \mu(a \cdot xb) \text{ (using Theorem 1(i))}$

$=\mu(xb)$	$(a \in H_L)$
$=\mu(bx)$	(using Theorem 1(i))
$=\mu(x)$	$(b \in H_L)$

Thus $ab \in H_L$.

Next for any $a \in H_L$, let

$$\mu(a^{-1}x) = \mu(ax^{-1})^{-1} \text{ (in } G; (ab)^{-1} = a^{-1}b^{-1})$$
$$= \mu(ax^{-1}) \quad \text{(by Lemma 1(ii))}$$
$$= \mu(x^{-1}) \quad (a \in H_L)$$
$$= \mu(x) \quad \text{(by Lemma 1(ii))}$$

Thus $a^{-1} \in H_L$. Hence H_L is an AG-subgroup G. **Remarks 3.** Let μ be a fuzzy AG-subgroup of G. Then H_R is also an AG-subgroup of G; as

$$\mu(ax) = \mu(xa) = \mu(x) \quad \forall \ x \in G.$$

Theorem 4. Let μ be a fuzzy AG-subgroup of *G*, and $H = \{a \in G : \mu(a) = \mu(e) = H_e(\mu)\}$. Then $H = H_L$.

Proof. Let μ be a fuzzy AG-subgroup of *G*, we show that $H = H_L$.

Let $a \in H_L$ then $\mu(ax) = \mu(x)$,

by putting x = e, we get

$$\mu(ae) = \mu(ea) = \mu(e) \Longrightarrow \mu(a) = \mu(e)$$
$$\Longrightarrow a \in H \Longrightarrow H_{I} \subset H.$$

Conversely, let $a \in H$. Then according to the condition of H; for all x in G, we have $\mu(a) = \mu(e) \ge \mu(x)$. Consider

$$\mu(ax) \ge \mu(a) \land \mu(x)$$

= $\mu(x)$
= $\mu(ex) = \mu(a^{-1}a \cdot x)$
= $\mu(xa \cdot a^{-1})$ (by left invertive law)
 $\ge \mu(xa) \land \mu(a^{-1})$
= $\mu(ax) \land \mu(a) \ (\mu \in F(G))$
= $\mu(ax) \land \mu(e)$
= $\mu(ax)$.

Consequently for all $x \in G$;

$$\mu(ax) \ge \mu(x) \ge \mu(ax) \Longrightarrow \mu(ax) = \mu(x) \Longrightarrow a \in H_L.$$

Hence $H = H_L.$

In the following theorems we establish a relation between the left (right) equal-height elements and the left (right) cosets respectively. Like a group cosets in AG-group are defined as follows; let *H* be an AGsubgroup of an AG-group *G*, and let $a \in G$. Then $aH = \{ah : h \in H\}$ and $Ha = \{ha : h \in H\}$ are the corresponding left and right cosets of *H* in *G*, in which the following property contrary to the group concept holds;

 $Ha = Hb \iff b^{-1}a \in H$ [10]. **Theorem 5.** Let μ be a fuzzy AG-subgroup of G and $H = \{ a \in G : \mu(a) = \mu(e) = H_{\rho}(\mu) \}.$ Then $a \sim_{I} b$ if and only if Ha = Hb. **Proof.** Let $a \sim_L b$. Then for any $x \in G$, $\mu(ax) = \mu(bx)$ $\Rightarrow \mu(ab^{-1}) = \mu(bb^{-1})$ (replacing x by b^{-1}) $\Rightarrow \mu(b^{-1}a) = \mu(e)$ (by Theorem 1(i)) $\Rightarrow b^{-1}a \in H$ \Rightarrow Ha = Hb. Conversely, let Ha = Hb then $b^{-1}a \in H$. Now $\mu(ax) = \mu(xa)$ (by Theorem 1(i)) $=\mu(e \cdot xa)$ $= \mu(bb^{-1} \cdot xa)$ $= \mu(ab^{-1} \cdot xb)$ (by paramedial law) $\geq \mu(ab^{-1}) \wedge \mu(xb)$ $= \mu(b^{-1}a) \wedge \mu(bx) \qquad (\mu \in F(G))$ $= \mu(e) \wedge \mu(bx)$ $(b^{-1}a \in H)$ $= \mu(bx)$ $= \mu(e \cdot bx)$ $= \mu(a^{-1}a \cdot bx)$ $= \mu(a^{-1}b \cdot ax)$ (by medial law) $\geq \mu(a^{-1}b) \wedge \mu(ax)$ $= \mu((ab^{-1})^{-1}) \wedge \mu(ax)$ $= \mu(ab^{-1}) \wedge \mu(ax)$ $= \mu(b^{-1}a) \wedge \mu(ax)$ $= \mu(e) \wedge \mu(ax) \quad (b^{-1}a \in H)$ $= \mu(ax).$ Consequently $\forall x \in G$; $\mu(ax) \ge \mu(bx) \ge \mu(ax) \Longrightarrow \mu(ax) = \mu(bx).$ Hence $a \sim_L b$.

Similarly, we can establish a relation between right equivalent elements and right cosets as follows:

Theorem 6. Let μ be a fuzzy AG-subgroup of G and

$$H = \{ a \in G : \mu(a) = \mu(e) = H_e(\mu) \}.$$

Then $a \sim_R b$ if and only if aH = bH. **Definition 5.** Let *G* be an AG-group and μ be a fuzzy subset of *G*. Then for any $a, b \in G$ we define

fuzzy subset of *G*. Then for any $a, b \in G$, we define *a* is equivalent to *b*, written as $a \sim b$ if and only if $\mu(x(ay)) = \mu(x(by)) \quad \forall x, y \in G.$ **Proposition 1.** Let $\mu \in FP(G)$. If $a \sim b$ then $a \sim_L b$.

Proof. Let $a \sim b$ then for any $\mu \in FP(G)$ we have to show that *a* is left equivalent to *b*, that is, $a \sim_L b$. Let for any $x, y \in G$;

 $\mu(x(ay)) = \mu(x(by))$

 $\Rightarrow \mu(a(xy)) = \mu(b(xy)) \text{ (in } G; a(bc) = b(ac) \text{ [12]})$ $\Rightarrow a \sim_I b.$

Proposition 2. Let $\mu \in F(G)$. If $a \sim b$ then $a \sim_L b$

and $a \sim_R b$.

Proof. The proof follows by Theorem 2.

References

- 1. Zadeh, L. A. Fuzzy sets. Information and Control, 1965; 8(3): 338-353.
- Rosenfeld, A. Fuzzy group. J. Math. Anal. Appl. 1971; 35: 512-517.
- 3. Wu, W. Normal Fuzzy subgroups. Fuzzy Math. 1981; 1(1): 21-30.
- 4. Wu, W. Fuzzy Congruences and normal fuzzy subgroups. Fuzzy Math. 1988; 3: 9-20.

- 5. Kumar, I. J. Saxena, P. K. and Yadava, P. Fuzzy normal subgroups and fuzzy quotients. Fuzzy sets and systems. 1992; 46: 121-132.
- 6. Chenh-yi, Z. Li-ping, H. Ping-an, D. On the equal-height elements of the fuzzy groups. Chinese Quarterly Journal of Mathematics, 2001.
- Kamran, M. Conditions for LA-semigroups to resemble associative structures. PhD Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1993.
- Mushtaq, Q. and Kamran, M. S. On Left almost groups. Proc. Pak. Acad. Of Sciences. 1996; 33: 1-2.
- 9. Shah, M. Ali, A. Some Structural Properties of AG-groups. IMF, 1667; 6(34): 1661-1667.
- Shah, M. A Theoretical and Computational Investigation of AG-groups. PhD Thesis, Quaidi-Azam University, Islamabad, Pakistan 2012.
- Ahmad, I. Amanullah, Shah, M. Fuzzy AGsubgroups. Life Sciences Journal, 2012; 9(4): 3931-3936.
- Yousaf, S. M. Mushtaq, Q. On locally associative LA-semigroups. J. Nat. Sci. Math., 1979; XIX (1): 57-62.