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Abstract: In this paper a new algorithm to identify Auto-Regressive Exogenous Models (ARX) based on Twin 

Support Vector Machine Regression (TSVR) has been developed. The model is determined by minimizing two ε 

insensitive loss functions. One of them determines the ε1-insensitive down bound regressor while the other 

determines the ε2-insensitive up-bound regressor. The algorithm is compared to Support Vector Machine (SVM) and 

Least Square Support Vector Machine (LSSVM) based algorithms using simulation and experimental data. 
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1. Introduction 

The system identification problem is as follows: 

Given observations of the inputs u and outputs y from 

a dynamic system 

      ttt yuyuyu ,,, 221` 
 

Obtain a relationship between the past 

observations t
 and the current output(s) ty

: 

  ttt vgy  ,
                     (1) 

where θ is a vector of unknown parameters. The 

term vt represents additive "noise” in the output. This 

includes any information in the output sample ty
that 

cannot be predicted using only the past data. This 

noise may be the result of unmeasured inputs driving 

the system, or it could be measurement noise, or 

both. Let ŷ(t) be an estimate of the output. A 

reasonable objective is to make the error)
)(tt yy 

 

small” in some sense, so that the function 
   ,1tg

 

could be considered a good predictor of yt. 

Generally an identification experiment is started 

by exciting the system using some sort of input signal 

tu
 over a time interval.  This signal and its response 

yt are usually recorded and processed in a computer 

so the time t is assumed to be discrete.  Next, a set of 

candidate models M(θ) is determined and a suitable 

criterion, a function of the difference between the 

actual output yt and the predicted output ŷt, is chosen 

to assess the model fitness. A model is then selected 

from the candidate set, most often, by minimizing the 

chosen criterion.  Finally, the model obtained is 

tested to see whether it is a valid representation of the 

system. If this is not the case, the model structure 

must be revised and the identification procedure is 

repeated. The model could be either linear or 

nonlinear [Ljung, 1999]. 

A system is said to be linear if the net response 

caused by two or more combined excitations is the 

sum of the responses caused by each stimulus 

individually [Ljung, 1999]. In continuous time, linear 

systems are usually described using ordinary 

differential equations. In discrete-time, difference 

equations are used instead. In this paper, discussion 

will be restricted to discrete-time linear models. 

In a linear difference equation model, the 

relationship between the input sequence {ut} and the 

output sequence {yt} is described by 

 

 

 

 

which can be rewritten in more compact form 

    tt uZByZA 
                                        (3) 

 

where A(z) = 1+ a1z
-1

+….+anaz
-na

 and z
-1

 

backward shift operator.  In (3), the relation between 

inputs and outputs is assumed to be deterministic 

[Soderstrom and Stoica, 1989]. 

This assumption is not always practical because 

there are usually modeled dynamics, vt, which should 

be included the model 

    ttt vuZByZA 
           (4) 

 

The way of representing vt allows for many 

descriptions. If vt = et, where et is a white noise, then 

one obtains the following model 
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    ttt euZByZA 
           (5) 

Such model is known as the auto-regressive 

with exogenous input (ARX) model [Mujahed 

Aldhaifallah, 2009]. 

ARX model can be identified using least square 

algorithm which will give the maximum likelihood 

estimate if the residuals have Gaussian distribution 

with zero mean and σ2
 variance. However, it is not 

the case if the residuals distribution is different.  In 

[Lindgren,2005], author applied least square to 

identify ARX model to fit Hair Dryer data.  Support 

vector machine (SVM) [Vapnik, 1998] regression is 

another alternative. SVM outperform ordinary least 

square algorithm especially if the noise is non 

Gaussian. In [Rojo-Alvarez et al, 2004] an algorithm 

to identify ARMA model based on support vector 

machine has been developed. The SVM based 

algorithms are computationally heavy because they 

have at least two groups of constraints, each of which 

shows that more training samples locate in the given 

ε-insensitive regain. 

In this paper, a new algorithm to identify Auto-

Regressive Exogenous Models (ARX) based on Twin 

Support Vector Machine Regression (TSVR) was 

proposed. The outline of this paper is as follows: 

TSVM theory will be reviewed in Section 2. In 

Section 3, an algorithm for the identification of ARX 

models based on twin support vector machine is 

proposed. Section 4 presents illustrative examples to 

test the proposed algorithm. In Section 5, concluding 

remarks are given. 

2. Standard Twin Support Vector Machine 

regression (TSVR): 

 

Twin Support Vector Regression (TSVR) is 

obtained by solving the following pair of quadratic 

programming problems (QPPs) [Xinjun, 2010] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where C1, C2  > 0, ε1, ε2  ≥ 0 are parameters, and 

ξ, η are slack vectors. The TSVR algorithms find 

given the training data points (A, Y), the functions 

f1(x) = w
1
 x+b1 determines the ε1-insensitive down 

bound regressor, and f2(x) = w
2
 x + b2 determines the 

ε2-insensitive up-bound regressor. The end regressor 

is computed as the mean of these two functions. The 

geometric interpretation is given in Fig.1the objective 

function of (6) or (7) is the sum of the squared 

distances from the shifted functions y = w
 1

 x + b1 + 

ε1 or y = w
2
 x + b2 − ε2 to the training points.  

Therefore, minimizing it leads to the function f1(x) or 

f2(x). The constraints require the estimated function f 

1(x) or f2(x) to be at a distance of at least ε1or ε2 from 

the training points.  That is, the training points should 

be larger than the function f1(x) at least ε1, while they 

should be smaller than the function f2(x) at least ε2. 

The slack variables ξ and η are introduced to measure 

the error wherever the distance is closer than ε1 or 

ε2.The second term of the objective function 

minimizes the sum error variables, thus attempting to 

over fit the training points. 

To find the solution of (6) and (7), their dual 

problems are needed to be derived. The optimization 

of J (w, ξ) just described is the primal problem for 

regression. To formulate the corresponding dual 

problems, the Lagrangian functions L is defined. 

Then, L is minimized with respect to the weight w 

and slack variable ξ and maximized with respect to 

the Lagrange multipliers. By carrying out this 

optimization w can be written in terms of Lagrange 

multipliers.  Finally, substituting the value w and 

simplifying with the help of Karush-Kuhn-Tucker 

(KKT) [Boyd and Vandenberghe, 2004] the 

following dual problem is obtained. 
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where 

 

 

similarly, one can consider the problem (7) and 

obtain its dual as 

 

 

 

 

 

 

 

 

  22, eYfeAG  where 

 

then 
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Solving for u1 results in 

 

 

 

 

Note that G
T
G is always positive semi definite. 

It is possible that it may not be well conditioned in 

some situations. To overcome this case, there is a 

regularization term σI, where σ is a very small 

positive number, such as σ = 1e − 7. Therefore (11) 

is modified to 

 

 

similarly, 

 

 

 

 

Note that in the duals (8) and (9), the inversion 

of matrix G
T
G of size (n + 1) × (n + 1) should be 

computed [7].Once the vectors u1 and u2 are known 

from (12) and (13) the two up and down bound 

functions are obtained.  Then the estimated regressor 

is constructed as follows 

 

 

 

 

 

 
Figure 1: The geometric interpretation of TSVR. 

 

2.1. TSVM Identification of ARX Models 

Autoregressive with exogenous input model 

shown in Fig. 2 is used widely to represent linear 

systems. Assume that a system can be described as an 

ARX 

 

 

where ut, yt ∈  R are positive input and output 

respectively for t = r, ..., N,where r = max(m, n) + 1. 

The noise et is assumed to be white m and n denote 

the order of the numerator and denominator in the 

transfer function of the ARX model. 

 

 
Figure 2: Block diagram of ARX model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that (16) and (17) are identical to the 

standard TSVR objectives, (6) and (7). The 

constraints in (16) are derived by modifying (6) to 

include the dynamics of the ARX model. The 

Lagrangian of (16) is defined as 
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where α1 and β1 are Lagrange multiplier vectors 

with 
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Now, given training data, the TSVR algorithm 

identifies the function 

 

 

 

which determines the ε1-insensitive down bound 

regressor and 

 

 

 

 

which determines the ε2-insensitive down bound 

regressor 

)19(0

0

1111

1








 TTTT GeGYGGG

L

 

 

 

)23(0,0,0

)22(0

)21(0,0

)20(00

1111

1111

1111

111

1





















T

T
eGY

eGY

eC
L

 

Since β ≥ 0 

eC 210    (24) 

Substituting (19) - (24) in to (18) Lagrangian 

can be written as 

 

    
 

 

1111

111111

1

1112

111

1

11111

2

1

)25(,,,,











TT

TTTTT

TTTT

TTTT

eC

eGeGYG

GGGYeC

eGeGYGGGY

L















 

Let 

11 eYf 
         (26) 

Simplifying (25) results in the following dual 

QPP 
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Similarly problem (17) can be mapped to the dual 

space to get 
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Now, Θ2 can be computed as 
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Once the vectors Θ1 and Θ2 are known from (19) and 

(29), the two up and down bound functions are 

obtained. Then, the regressor is obtained as follows: 
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2.2. Algorithm 

The algorithm for ARX identification using 

TSVM can be summarized as follows 

(i) Obtain estimates for α1 and α2 by solving 

(27) and (28) . 

(ii) Use (19) and (29) to compute Θ1and Θ2.  

(iii) Use (30) to find the estimated regressor. 

3. Illustrative examples: 
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3.1. Example 1 

Consider the example presented in [Rojo-

Alvarez, et al., 2004] which used the following ARX 

model 

tt

ttttt

ex

xxyyy









2

121

02

5.0301.003.0
 

 

The input xt  is white, Gaussian noise sequence 

with unit variance.  Four types of equation noise {e t} 

=0 were used; namely Gaussian noise with zero mean 

and 0.1 variance, Gaussian noise with zero mean and 

0.2 variance, uniformly distributed noise in [0,0.1], 

and uniformly distributed noise in [0,0.2] . The 

number of data points generated is 400.  However 

identification was performed using the first 300 

points of data while the remaining were used for 

testing and validation.  The TSVM algorithm 

presented in Section 4, the SVM approach in [Rojo-

Alvarez, et al., 2004], and LSSVM were employed to 

the training data.  All regression methods are 

implemented in MATLAB 7.7.0 on windows 7 

professional running on a PC with system 

configuration Intel (R) Core (TM)2 Duo. To compare 

the CPU time and the accuracy of the three 

algorithms MATLAB ”qp.m” function was used to 

solve the proposed TSVR and SVR quadratic 

problems, and the ”inv.m” function was used to solve 

the LSSVR problem. The accuracy criteria which are 

used to evaluate the algorithms performances are sum 

squared error (SSE) of testing samples, sum squared 

deviation (SST) of testing samples, sum squared 

deviation that can be explained by the estimator 

(SSR) ratio between sum squared error and sum 

squared deviation of testing samples (SSE/SST). 

The hyper parameters governing the three 

algorithms were selected based on cross validation 

test, where the values that produced the best 

performance on the validation set data were chosen, 

by computing the sum of square error between the 

true system and the models outputs. 

Table.1 presents the average results of 

TSVR,SVR, and LSSVR with 100 independent runs, 

in which four different types of noises are used. It’s 

clear that our TSVR algorithm outperforms the other 

algorithm in terms of SSE, SSE/SST, and SSR/SST 

values when uniform distributed noise is present.  

This indicates that TSVR can fit the real system with 

fairly small regression errors .By comparing the 

training CPU time of these three methods, its clear 

that LSSVR is the fastest learning method among 

them with almost equal speed of TSVR in some 

cases. Moreover, TSVR and LSSVR is almost 20 

times faster than the SVR. This is because TSVR is 

obtained by solving two smaller sized QPPs without 

any equality constraints compared with SVR. 

 

3.2. Example 2: 

To test performance of the proposed algorithm 

on experimental data, the Hair dryer system 

presented in [4] is considered. The data were 

downloaded from the DAISY data base for system 

identification, see [9]. The data were created as 

follows:  air is fanned through a tube and heated at 

the inlet. A random binary sequence of voltage were 

generated and fed to the heating device (a mesh of 

resistor wires). The output is the outlet air 

temperature. Sample of 1000 data of input and output 

were generated at the rate of 1 Hz for 1000 s. The 

first 200 samples were reserved for validation and the 

rest for estimation. 

The hyper parameters governing the three 

algorithms were selected based on cross validation 

test. An ARX model of order n = 1, m=6 were fitted 

for the data using the three algorithms; namely 

TSVR, SVR, and LSSVR. Fig. 3 shows the first 200 

points of the real data together with the TSVR 

estimate, SVR estimate, and LSSVR estimate.  It’s 

clear from Table .2 that the TSVR gave the best 

results in terms of all accuracy indices in addition to 

the best fit criterion. Also, the computation time of 

TSVR is reasonable compared to the SVR algorithm  

which was almost 8 times slower than the LSSVR 

and TSVR algorithms for the same reason mentioned 

in the previous example. 

 

 

Table 1: Comparisons of TSVR , SVR and LSSVR 

on the regression of simulation example with 

different types of noises. 

 
 

Table 2: Comparisons of TSVR , SVR and LSSVR 

on the regression of Hair Dryer example. 
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Figure 3: Predictions of TSVR, SVR, and LSSVR on 

the hair dryer dataset 

 

 

4. Conclusion 

In this paper a new algorithm to identify Auto- 

Regressive Exogenous Models (ARX) based on Twin 

Support Vector Machine Regression (TSVR) has 

been developed. The algorithm was compared to 

Support Vector Machine (SVM) and Least Square 

Support Vector Machine (LSSVM) based algorithms 

using simulation and experimental data. It is clear 

from examples that the proposed algorithm 

outperforms SVR and LSSVR in terms of accuracy. 

Moreover, the CPU time spent by the TSVR 

algorithm is much less than the time spent by SVR 

algorithm. That difference is due to the simplicity of 

TSVR formulation where it consists of solving two 

simple QPP without equality constraints compared 

with SVR. In conclusion, fast and accurate solution 

has been gained in this algorithm. 
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