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1.Introduction
Manning studied intrinsic formulation for elastic
line deformed external field on a surface by external
3
field ( Manning, 1988). Intrinsic equations for a
elastic line in Lorentz-Minkowski space was
researched (Gilirbiiz and Gorgiili, 2000), (Giirbiiz,
2000). In this paper we derive intrinsic formulation for
elastic line deformed external field on a surface by
external field in pseudo-Galilean space.
In this section we give preliminaries on pseudo-
G,

Galilean space The definitions relation to

3
G was taken (Divjak, 2008).
3
The pseudo-Galilean 3- space ! is the three
dimensional real affine space with the absolute figure
{w,£I} , where w is a fixed plane, f a line in w and [ a
hyperbolic involution of the points of f. The pseudo-
Galilean space length of the vector x(x,y,z) is defined
by

x#0
x=0

X,

2
—Z

b

v

A curve parametrized by the parameter of arc
length s=x is given in the coordinat form by

B (X)=(x,y(x),z(x)). The curvature x(x) and 7(x) of
an curve are given by (Divjak, 2008).

k() = () - 22 (x)
1

sz

(x)= ) det(r'(x),7"(x),7'"(x))

The associated moving trihedron is given by
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t=rx) =0y k),7z k&)

1 b b
n=——00,y"),z &)),
x(x)
1 b )
b=—00,¢67"(x),er" (x))
x(x)
where € = 1 or €= -1 and it is called a Frenet

trihedron associated to the curve. If ¥ is timelike, n is a
spacelike vector, b is spacelike,,  Frenet-Serret
formulas are given as following:

1'(x) = k(x)n(x)
n'(x)=7(x)b(x)

b'(x) =t(x)n(x).

For regular curve in
following

_ [y
13
1

3
Gl K

, is defined as

X .
where ~ ¢  denotes pseudo-Galilean cross

product. If € is unit spacelike vector, € s unit

. e, . o
spacelike vector , 2 is a unit timelike vector |,

X .. .
axpg b is given as following:

0 e -—e
axp.b=—a, a, a,
b, b, by
where ¢~ (ay,a,,a;),b=(b,,b,,b;) T
€

L . €, .
is unit spacelike vector, ~2 is unit timelike vector ,
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is a unit spacelike vector , axpg b is given as
following:
0 —e, -—e
ax,.b=la, a, a,
b b, b

3

Theorem 1.1. Let F be the timelike surface in ~! and

B denote an arc on F. The analogue of the Frenet-
3

Serret formulas in pseudo-Galilean 3-space ! is
T 0 «, «, |T
ol=(0 0 -7, |0
N' 0 7 0 |IN
g (1.1)
K, . . T, .
where ¢ is the geodesic curvature , € is the

geodesic torsion, Ko is the normal curvature.
(1.7)=-1, (N.N)=1, (0.0)=1

3

Theorem 1.2. Let F be the spacelike surface in G

and B denote an spacelike arc on F. The analogue of
the Frenet-Serret formulas in pseudo-Galilean 3-space

3
Gl is
T 0 x, -x«,||T
L - —

01=/0 0 7, | @
N' 0 -7 0 || N

g (1.2)

K, . . T, .
where ¢ is the geodesic curvature , £ is the

. . K .
geodesic torsion, 7 is the normal curvature. Also,

(r.1)=1, (0.0)=1, (N.N)=-1

2. Intrinsic Method
In this section, we study intrinsic formulation for

elastic line deformed on surface by an external field in
3
pseudo-Galilean space 1.
The arc p is called elastic line if it is extremal for
the variational problem of (2.1) within the family of all

arcs of length ! on non-null surface having the same

initial point and initial direction as B in the pseudo-
3

Galilean space 1.

If elastic line is exposed to a static force field, it

has a trajectory that minimizes the sum of its elastic

1349

energy and its energy of interaction with the field in
3
G . The problem is to to minimize the energy E ,

1

1
E= j (bez — Op)ds
0 (2.1)
1
E(t) = b1, (1)~ 01,1

among elastic lines  with

Pu(s),v(s)) of fixed length ! and arc length
0<s<l!

trajectories

contained pseudo-Galilean surface

3
¢(u,v) in pseudo-Galilean space ! .
—0 is constant measuring the strength of the

external field, ¢(u,v) gives its shape and K denotes
elastic bending energy in the pseudo-Galilean 3-space

The equilibrium trajectory are the extrema of the
3
sum of stress and potentiel energies in G . The path of
the elastic line have to satisfy a differential equation,
which is derived by variational methods on the pseudo-
Galilean 3-space.

Assume B lies in a coordinat patch ¢, v) of
F' Thus B is given as B(s)= ¢(u(s),v(s))' Also,

T(s)=Bs)

0(s) = p(5)4, +a()8, o2

for suitable scalar functions p(s) and q(s). Define

¥(o;0) = J(u(o) +tn(0),v(0) +15(0))

for 0S 0 <1 <50’50>m

Case L Intrinsic formulation for elastic line
deformed on a timelike surface by an external field

G3

in the pseudo-Galilean space ! .

do

1. If
T is timelike , Q and N are spacelike ,
L.
ool  0<o<l 2.3)
o’V \
P =T'=x,0+x,N
=0
(2.4)
oY
—_— = T':
o, M
(2.5)
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.Wlth second differentiation Equation (2.5) , we o < ol ow >
obtain e J' v v n
2 dt =0 0 do =0 Jo =0/ pG
oY C
=T'=p'Q-pr, N oy| oy
oo (v
1=0 (2.6) 00|y 000t|,y/ 1 /a,/, oy 4y
Tl(l;d differentiation Equation (2.5) gives !: <81// oy > 4/2\5120,5120 . =
¥ A
5 =(W'-ur)0-Qu't, +ur )N 000 000/ 1
otoo”| _, From (2.3) and (2.6), we obtain
@7 L
04l _ ot |,y
= ! (2.8)
Tli=o

Lemma 2.1. In pseudo-Galilean 3-space,
Proof.

_ 2
. I,(t) = [« ds

curvature is

denote the total square curvature of the arc .

0200 por 10 e ol square

A1) 2 2 -2
oY oY o¥ oY\|/o¥Y oY
()= I 90 " 552" 20 7 5o <——> do
o [\0o o~ oo oo 0o 00/ pg
Therefore
O’Y| Y o*y| oY
A0\ ot o I_O’Eiaz o oo’ tzo’ﬁaz o
1(0) = o ol 6 o
0 <a\y o > <82\P o*y >
~ s~ 2 > 2
oo =0 oo =0/ pg oo t=0 Jo =0/ pG (29)
From (2.9), we obtain
l
I',(0) =j(y”/<g —uK, T, =24 K, T, — uK, T )ds
0 (2.10)
Using integration by parts
) / /
_[u'lcnrgds =2u(Dx, (D, (l)—ZJuK;rgds—2J,uKnr;ds
0 0 0 , (2.11)
1 l
j " x s = (D, (1) — u(Dx (1) + j k! ds
20 0 (2.12)
Using Equations (2.5) ,(2.6), (2.11),(2.12) ,we obtain
)
I',(0) =j,u(1<;,' +2KT, +K,T, —K,T.)ds +
0
H1 (D, (D) — uDyic, () =2 Dk, (D7, (1) 2.13)
)
L(t)= [ pds
0 (2.14)

Differentiating of Equation (2.14) at t=0,
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1=

(2.15)

0\ —
From (2.13) and (2.15), for all choices of the function H(s) , £'(0)=0 , the given timelike arc B
must satisfy two boundary conditions and differential equation in pseudo —Galilean 3-space

sy K D=0
BC2) e () =-2x,(Dr (1) (2.16)
op 09
(DE) b[Kg + 2K:1Tg +KnT; _Kgré] —(9[p( ou )+q( ov 1=o0.

Case II. Intrinsic formulation for elastic line deformed on a spacelike surface by an external field in the
3
pseudo-Galilean space ! .
N is imelikee , T and Q are spacelike:
2 2 2 2

K, —K, |=K, — K,

For , we have

!
1'0)= [ u(K +2,7, +K,7, +K,7,)ds +
0
1 (Dx, (D)= pDx, (D) +2u)x, (DT, (1) 2.17)

(00) =
For all choices of the function # (S), £'(0)= 0, the given spacelike B arc must satisfy two boundary
conditions and differential equation in pseudo —Galilean 3-space .

(BCI) kK, ()=0
(BC) kK, ()=-2x,(D)z, () 2.18)
op 09
(DE) blx, + 2K,7, +K,T, +KgT;] _e[p( ou )+q( v

Given spacelike B arc must satisfy two boundary conditions and differential equation in pseudo —Galilean 3-
space .

BCI) kK, ()=0
(BC) K, ()=2x,D)r, (1) 2.19)
dp  Op
(DE) blxy + 2K,7, +K,T, +Kg2';] +9[P ou )+Q( & 10

3. Results

Theorem 3.1. On the timelike surface in in pseudo-Galilean space for the case 0=0 , an timelike geodesic arc is
elastic line if and only if it satisfies

2 —
K7 =0 (2.20)

xk,=0
Since ¢ , from the third equation of (2.16),

-2x't — k1 =0
nfg Tnte 2.21)

From (2.21), first integral is obtained

1351



Life Science Journal 2013;10(4) http://www.lifesciencesite.com

2

K,T, =constant . .
ng .The constant must vanish, from the second equation of (2.16).

Theorem 3.2. An timelike geodesic arc on the timelike surface in pseudo-Galilean space for the case O O, is

elastic line if and only if it satisfies

0 0
bt — O p( ) +q(Z)]=0
ou ov (2.22)
Proof. From (2.16), we get (2.22).

Theorem 3.3. . An spacelike geodesic arc on the spacelike surface in pseudo-Galilean space for the case Oks 0, is
elastic line if and only if it satisfies

0 0
bt — O p()+q(Z)]=0
ou ov (2.23)

Proof. From (2.18), we have (2.23).
3
Example 3.1. An timelike arc on timelike plane for ©=0 i, G , is elastic line if and only if it lies on a geodesic.

7, =(k,—k)coshfsinh@ = . «, =k cosh’6&—sinh’ =0

Proof. On timelike plane , and . From the
third equation of (2.16),
" o_
Kk, =0
. . K. =const.
The first integral is ¢
k(=0 K,=0
The boundary coinditions of (2.16), £ @) . Thus ¢ .
3

Example 3.2. An arc on first kind helicoid for ©=0 i G , 1s elastic line .

= 7,=0

Proof. On first kind helicoid, x, =0 and ¢ . Thus (2.16) is satisfied..
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