Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-Galilean space G_1^3

Nevin Gürbüz

Eskişehir Osmangazi University, Mathematics and Computer Sciences Department
ngurbuz@ogu.edu.tr

Keywords: pseudo-Galilean space, elastic line

1. Introduction

Manning studied intrinsic formulation for elastic line deformed external field on a surface by external field E^3 (Manning, 1988). Intrinsic equations for a elastic line in Lorentz-Minkowski space was researched (Gürbüz and Gürbüz, 2000), (Gürbüz, 2000). In this paper we derive intrinsic formulation for elastic line deformed external field on a surface by external field in pseudo-Galilean space.

In this section we give preliminaries on pseudo-Galilean space G_1^3. The definitions relation to G_1^3 was taken (Divjak, 2008).

The pseudo-Galilean 3- space G_1^3 is the three dimensional real affine space with the absolute figure {w,f,I}, where w is a fixed plane, f a line in w and I a hyperbolic involution of the points of f. The pseudo-Galilean space length of the vector $x(x,y,z)$ is defined by

$$
\begin{cases}
x, & x \neq 0 \\
\sqrt{y^2 - z^2}, & x = 0
\end{cases}
$$

A curve parametrized by the parameter of arc length $s=x$ is given in the coordinat form by $\beta(x)=(x,y(x),z(x))$. The curvature $\kappa(x)$ and $\tau(x)$ of an curve are given by (Divjak, 2008).

$$
\kappa(x) = \sqrt{|y'^2(x) - z'^2(x)|}
$$

$$
\tau(x) = \frac{1}{\kappa^2(x)} \det(r''(x), r'''(x), r''''(x))
$$

The associated moving trihedron is given by

$$
t = r'(x) = (1, y'(x), z'(x))
$$

$$
n = \frac{1}{\kappa(x)} (0, y''(x), z''(x))
$$

$$
b = \frac{1}{\kappa(x)} (0, \varepsilon z'''(x), \varepsilon y'''(x))
$$

where $\varepsilon = 1$ or $\varepsilon = -1$ and it is called a Frenet trihedron associated to the curve. If f is timelike, n is a spacelike vector, b is spacelike.. Frenet-Serret formulas are given as following:

$$
t'(x) = \kappa(x)n(x)
$$

$$
n'(x) = \tau(x)b(x)
$$

$$
b'(x) = \tau(x)n(x).
$$

For regular curve in G_1^3, κ is defined as following

$$
\kappa = \left| \frac{\Psi' \times_{PG} \Psi''}{||\Psi||^5} \right|
$$

where \times_{PG} denotes pseudo-Galilean cross product. If e_1 is unit spacelike vector, e_2 is unit spacelike vector , e_3 is a unit timelike vector , $a \times_{PG} b$ is given as following:

$$
a \times_{PG} b = \begin{vmatrix}
0 & e_2 & -e_3 \\
-a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{vmatrix}
$$

where $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$. If e_1 is unit spacelike vector, e_2 is unit timelike vector , e_3
is a unit spacelike vector, \(a \times_{PG} b \) is given as following:
\[
a \times_{PG} b = \begin{bmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
0 & -e_2 & -e_3
\end{bmatrix}
\]

Theorem 1.1. Let F be the timelike surface in \(G_1^3 \) and \(\beta \) denote an arc on F. The analogue of the Frenet-Serret formulas in pseudo-Galilean 3-space \(G_1^3 \) is
\[
\begin{bmatrix}
T' \\
Q' \\
N'
\end{bmatrix} = \begin{bmatrix}
0 & \kappa_g & -\kappa_n \\
0 & 0 & -\tau_g \\
0 & -\tau_g & 0
\end{bmatrix} \begin{bmatrix}
T \\
Q \\
N
\end{bmatrix}
\]
where \(\kappa_g \) is the geodesic curvature, \(\kappa_n \) is the normal curvature, \(\tau_g \) is the geodesic torsion, and \(\kappa_n \) is the normal curvature.

\[
\langle T, T' \rangle = -1, \quad \langle N, N \rangle = 1, \quad \langle Q, Q \rangle = 1.
\]

Theorem 1.2. Let F be the spacelike surface in \(G_1^3 \) and \(\beta \) denote an spacelike arc on F. The analogue of the Frenet-Serret formulas in pseudo-Galilean 3-space \(G_1^3 \) is
\[
\begin{bmatrix}
T' \\
Q' \\
N'
\end{bmatrix} = \begin{bmatrix}
0 & \kappa_g & -\kappa_n \\
0 & 0 & -\tau_g \\
0 & -\tau_g & 0
\end{bmatrix} \begin{bmatrix}
T \\
Q \\
N
\end{bmatrix}
\]
where \(\kappa_g \) is the geodesic curvature, \(\tau_g \) is the geodesic torsion, \(\kappa_n \) is the normal curvature, and \(\kappa_n \) is the normal curvature.

\[
\langle T, T' \rangle = 1, \quad \langle Q, Q \rangle = 1, \quad \langle N, N \rangle = -1.
\]

2. Intrinsic Method

In this section, we study intrinsic formulation for elastic line deformed on surface by an external field in pseudo-Galilean space \(G_1^3 \).

The arc \(\beta \) is called elastic line if it is extremal for the variational problem of \((2.1) \) within the family of all arcs of length \(l \) on non-null surface \(F \) having the same initial point and initial direction as \(\beta \) in the pseudo-Galilean space \(G_1^3 \).

If elastic line is exposed to a static force field, it has a trajectory that minimizes the sum of its elastic energy and its energy of interaction with the field in \(G_1^3 \). The problem is to to minimize the energy \(E \),
\[
E = \int_0^l \left(\frac{1}{2} \kappa^2 - \theta \kappa \right) ds
\]
\[
E(t) = \frac{1}{2} b l_1(t) - \theta l_2(t)
\]

for suitable scalar functions \(p(s) \) and \(q(s) \). Define
\[
\Psi(\sigma, t) = (u(\sigma) + t\eta(\sigma), v(\sigma) + t\xi(\sigma))
\]
\[
l = \int_0^l \sqrt{\frac{\partial^2 \Psi}{\partial \sigma^2}} ds
\]
for \(0 \leq \sigma \leq l \).

Case I. Intrinsic formulation for elastic line deformed on a timeline surface by an external field in the pseudo-Galilean space \(G_1^3 \).

If \(T \) is timelike, \(Q \) and \(N \) are spacelike,
\[
\frac{\partial \Psi}{\partial \sigma} \bigg|_{\sigma=0} = T, \quad 0 \leq \sigma \leq l
\]
\[
\frac{\partial^2 \Psi}{\partial \sigma^2} \bigg|_{\sigma=0} = T' = \kappa_g Q + \kappa_n N
\]
\[
\frac{\partial \Psi}{\partial t} \bigg|_{\sigma=0} = T' = \mu Q
\]
With second differentiation Equation (2.5), we obtain

$$\frac{\partial^2 \Psi}{\partial t \partial \sigma} \bigg|_{t=0} = T' = \mu' Q - \mu \tau_g N$$

(2.6)

Third differentiation Equation (2.5) gives

$$\frac{\partial^3 \Psi}{\partial t \partial \sigma^2} \bigg|_{t=0} = (\mu'' - \mu \tau_g^2)Q - (2\mu' \tau_g + \mu \tau_g')N$$

(2.7)

$$\frac{\partial \lambda}{\partial t} \bigg|_{t=0} = 0$$

Lemma 2.1. In pseudo-Galilean 3-space,

Proof.

Let $I_1(t) = \int \kappa^2 ds$ denote the total square curvature of the arc $0 \leq \sigma \leq \lambda(t)$. For $t \neq 0$, the total square curvature is

$$I_1(t) = \int_0^{2(t)} \left| \frac{\partial^2 \Psi}{\partial \sigma^2} \right|_{PG} d\sigma \left| \frac{\partial^2 \Psi}{\partial \sigma^2} \right|_{PG} d\sigma$$

Therefore

$$I_1'(0) = \int_0^2 \left| \frac{\partial^3 \Psi}{\partial t \partial \sigma^2} \bigg|_{t=0} \right|_{PG} ^{3/2} \left| \frac{\partial^3 \Psi}{\partial t \partial \sigma^2} \bigg|_{t=0} \right|_{PG} ^{3/2} d\sigma$$

From (2.9), we obtain

$$I_1'(0) = \int_0^2 \left(\mu'' \kappa_g - \mu \kappa_g \tau_g^2 - 2\mu' \kappa_n \tau_g - \mu \kappa' \tau_g' \right) ds$$

(2.10)

Using integration by parts

$$\int_0^l \mu' \kappa_n \tau_g ds = 2\mu(l)\kappa_n(l)\tau_g(l) - 2\int_0^l \mu \kappa_n \tau_g ds - 2\int_0^l \mu \kappa' \tau_g' ds$$

(2.11)

$$\int_0^l \mu'' \kappa_g ds = \mu'(l)\kappa'_g(l) - \mu(l)\kappa'_g(l) + \int_0^l \mu \kappa'' ds$$

(2.12)

Using Equations (2.5), (2.6), (2.11), (2.12), we obtain

$$I_1'(0) = \int_0^l \mu(\kappa'' + 2\kappa_n \tau_g + \kappa' \tau_g' - \kappa_g \tau_g^2) ds +$$

$$\mu'(l)\kappa'_g(l) - \mu(l)\kappa'_g(l) - 2\mu(l)\kappa_n(l)\tau_g(l)$$

(2.13)

$$I_2(t) = \int_0^t \phi ds$$

Differentiating of Equation (2.14) at $t=0$,
From (2.13) and (2.15), for all choices of the function \(\mu(s), E'(0) = 0 \), the given timelike arc \(\beta \) must satisfy two boundary conditions and differential equation in pseudo–Galilean 3-space

\[
\begin{align*}
(BC1) & \quad \kappa_g'(l) = 0 \\
(BC2) & \quad \kappa_g'(l) = -2\kappa_n(l)\tau_g(l) \\
(DE) & \quad b[\kappa_g'' + 2\kappa_n\tau_g + \kappa_n\tau_g' + \kappa_g\tau_g^2] - \theta \left[p\left(\frac{\partial \varphi}{\partial u} \right) + q\left(\frac{\partial \varphi}{\partial v} \right) \right] = 0.
\end{align*}
\] (2.16)

Case II. Intrinsic formulation for elastic line deformed on a spacelike surface by an external field in the pseudo-Galilean space \(G^3_1 \).

N is imelike, T and Q are spacelike:

For \(\left| \kappa_g^2 - \kappa_n^2 \right| = \kappa_g^2 - \kappa_n^2 \), we have

\[
I_1'(0) = \int_0^l \mu(\kappa_g'' + 2\kappa_n\tau_g + \kappa_n\tau_g' + \kappa_g\tau_g^2) ds + \\
\mu'(l)\kappa_g(l) - \mu(l)\kappa_n'(l) + 2\mu(l)\kappa_n(l)\tau_g(l)
\] (2.17)

For all choices of the function \(\mu(s), E'(0) = 0 \), the given spacelike arc \(\beta \) must satisfy two boundary conditions and differential equation in pseudo–Galilean 3-space

\[
\begin{align*}
(BC1) & \quad \kappa_g(l) = 0 \\
(BC2) & \quad \kappa_g'(l) = -2\kappa_n(l)\tau_g(l) \\
(DE) & \quad b[\kappa_g'' + 2\kappa_n\tau_g + \kappa_n\tau_g' + \kappa_g\tau_g^2] - \theta \left[p\left(\frac{\partial \varphi}{\partial u} \right) + q\left(\frac{\partial \varphi}{\partial v} \right) \right] = 0
\end{align*}
\] (2.18)

Given spacelike arc \(\beta \) must satisfy two boundary conditions and differential equation in pseudo–Galilean 3-space

\[
\begin{align*}
(BC1) & \quad \kappa_g(l) = 0 \\
(BC2) & \quad \kappa_g'(l) = 2\kappa_n(l)\tau_g(l) \\
(DE) & \quad b[\kappa_g'' + 2\kappa_n\tau_g + \kappa_n\tau_g' + \kappa_g\tau_g^2] + \theta \left[p\left(\frac{\partial \varphi}{\partial u} \right) + q\left(\frac{\partial \varphi}{\partial v} \right) \right] = 0
\end{align*}
\] (2.19)

3. Results

Theorem 3.1. On the timelike surface in in pseudo-Galilean space for the case \(\Theta = 0 \), an timelike geodesic arc is elastic line if and only if it satisfies

\[
\kappa_n^2\tau_g = 0.
\] (2.20)

Since \(\kappa_g = 0 \), from the third equation of (2.16),

\[-2\kappa_n\tau_g - \kappa_n\tau_g' = 0\] (2.21)

From (2.21), first integral is obtained
\(\kappa_n^2 \tau_g = \text{const} \tan t \) . The constant must vanish, from the second equation of (2.16).

Theorem 3.2. An timelike geodesic arc on the timelike surface in pseudo-Galilean space for the case \(\Theta \neq 0 \), is elastic line if and only if it satisfies

\[
b \kappa_n^2 \tau_g - \Theta [p \left(\frac{\partial \varphi}{\partial u} \right) + q \left(\frac{\partial \varphi}{\partial v} \right)] = 0
\]

(2.22)

Proof. From (2.16), we get (2.22).

Theorem 3.3. An spacelike geodesic arc on the spacelike surface in pseudo-Galilean space for the case \(\Theta \neq 0 \), is elastic line if and only if it satisfies

\[
b \kappa_n^2 \tau_g - \Theta [p \left(\frac{\partial \varphi}{\partial u} \right) + q \left(\frac{\partial \varphi}{\partial v} \right)] = 0
\]

(2.23)

Proof. From (2.18), we have (2.23).

Example 3.1. An timelike arc on timelike plane for \(\Theta = 0 \) in \(G^3_i \), is elastic line if and only if it lies on a geodesic.

Proof. On timelike plane, \(\tau_g = (k_2 - k_1) \cos \theta \sinh \theta \) and \(\kappa_n = k_1 \cosh^2 \theta - \sinh^2 \theta = 0 \). From the third equation of (2.16),

\[
\kappa_n'' = 0
\]

The first integral is \(\kappa_n' = \text{const} \).

The boundary conditions of (2.16), \(\kappa_n' (l) = 0 \). Thus \(\kappa_n = 0 \).

Example 3.2. An arc on first kind helicoid for \(\Theta = 0 \) in \(G^3_i \), is elastic line.

Proof. On first kind helicoid, \(\kappa_n = 0 \) and \(\tau_g = 0 \). Thus (2.16) is satisfied.

References

10/21/2013