Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-Galilean space

 G_{1}^{3}Nevin Gürbüz
Eskişehir Osmangazi University, Mathematics and Computer Sciences Department ngurbuz@,ogu.edu.tr

Abstract

In this paper, we derive intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-Galilean space G_{1}^{3} [Nevin Gürbüz. Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudoGalilean space G_{1}^{3}. Life Sci J 2013;10(4):1348-1352]. (ISSN:1097-8135). http://www.lifesciencesite.com. 178

Keywords: pseudo-Galilean space, elastic line

1.Introduction

Manning studied intrinsic formulation for elastic line deformed external field on a surface by external field E^{3} (Manning, 1988). Intrinsic equations for a elastic line in Lorentz-Minkowski space was researched (Gürbüz and Görgülü, 2000), (Gürbüz, 2000). In this paper we derive intrinsic formulation for elastic line deformed external field on a surface by external field in pseudo-Galilean space.

In this section we give preliminaries on pseudoGalilean space G_{1}^{3}. The definitions relation to G_{1}^{3} was taken (Divjak, 2008).

The pseudo-Galilean 3 - space G_{1}^{3} is the three dimensional real affine space with the absolute figure $\{\mathrm{w}, \mathrm{f}, \mathrm{I}\}$, where w is a fixed plane, f a line in w and I a hyperbolic involution of the points of f. The pseudoGalilean space length of the vector $x(x, y, z)$ is defined by

$$
\left\{\begin{array}{cl}
x, & x \neq 0 \\
\sqrt{\left|y^{2}-z^{2}\right|}, & x=0
\end{array}\right.
$$

A curve parametrized by the parameter of arc length $\mathrm{s}=\mathrm{x}$ is given in the coordinat form by $\beta_{(\mathrm{x})=(\mathrm{x}, \mathrm{y}(\mathrm{x}), \mathrm{z}(\mathrm{x})) \text {. The curvature }} \kappa(x)$ and $\tau(x)$ of an curve are given by (Divjak, 2008).

$$
\kappa(x)=\sqrt{\left|y^{\prime 2}(x)-z^{\prime 2}(x)\right|}
$$

$\tau(x)=\frac{1}{\kappa^{2}(x)} \operatorname{det}\left(r^{\prime}(x), r^{\prime \prime}(x), r^{\prime \prime \prime}(x)\right)$
The associated moving trihedron is given by

$$
\begin{aligned}
& t=r^{\prime}(x)=\left(1, y^{\prime}(x), z^{\prime}(x)\right) \\
& n=\frac{1}{\kappa(x)}\left(0, y^{\prime}(x), z^{\prime}(x)\right) \\
& b=\frac{1}{\kappa(x)}\left(0, \varepsilon z^{\prime}(x), \varepsilon y^{\prime}(x)\right)
\end{aligned}
$$

where $\varepsilon=1$ or $\varepsilon=-1$ and it is called a Frenet trihedron associated to the curve. If t is timelike, n is a spacelike vector, b is spacelike, Frenet-Serret formulas are given as following:

$$
\begin{aligned}
& t^{\prime}(x)=\kappa(x) n(x) \\
& n^{\prime}(x)=\tau(x) b(x) \\
& b^{\prime}(x)=\tau(x) n(x)
\end{aligned}
$$

For regular curve in G_{1}^{3}, κ is defined as following

$$
\kappa=\frac{\left\|\Psi^{\prime} \times_{P G} \Psi^{\prime}\right\|}{\left\|\Psi^{\prime}\right\|^{3}}
$$

where ${ }^{\times}$denotes pseudo-Galilean cross product. If e_{1} is unit spacelike vector, e_{2} is unit spacelike vector, e_{3} is a unit timelike vector, $a \times_{P G} b$ is given as following:

$$
\begin{aligned}
& a \times_{P G} b=-\left|\begin{array}{ccc}
0 & e_{2} & -e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& \text { where } a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right) . \text { If } e_{1}
\end{aligned}
$$

is unit spacelike vector, e_{2} is unit timelike vector, e_{3}
is a unit spacelike vector, ${ }^{a} \times_{P G} b$ is given as following:

$$
a \times_{P G} b=\left|\begin{array}{ccc}
0 & -e_{2} & -e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Theorem 1.1. Let F be the timelike surface in G_{1}^{3} and $\beta_{\text {denote an arc on F. The analogue of the Frenet- }}$ Serret formulas in pseudo-Galilean 3-space G_{1}^{3} is

$$
\left[\begin{array}{c}
T^{\prime} \tag{1.1}\\
Q^{\prime} \\
N^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa_{g} & \kappa_{n} \\
0 & 0 & -\tau_{g} \\
0 & \tau_{g} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
Q \\
N
\end{array}\right]
$$

where \mathcal{K}_{g} is the geodesic curvature, ${ }^{\tau_{g}}$ is the geodesic torsion, ${ }^{\prime}{ }_{n}$ is the normal curvature.

$$
\langle T, T\rangle=-1, \quad\langle N, N\rangle=1, \quad\langle Q, Q\rangle=1
$$

Theorem 1.2. Let F be the spacelike surface in G_{1}^{3} and $\beta_{\text {denote an spacelike }}$ arc on F . The analogue of the Frenet-Serret formulas in pseudo-Galilean 3 -space G_{1}^{3} is

$$
\left[\begin{array}{l}
T^{\prime} \tag{1.2}\\
Q^{\prime} \\
N^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa_{g} & -\kappa_{n} \\
0 & 0 & -\tau_{g} \\
0 & -\tau_{g} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
Q \\
N
\end{array}\right]
$$

where κ_{g} is the geodesic curvature, ${ }^{\tau_{g}}$ is the geodesic torsion, ${ }^{\kappa_{n}}$ is the normal curvature. Also, $\langle T, T\rangle=1, \quad\langle Q, Q\rangle=1, \quad\langle N, N\rangle=-1$

2. Intrinsic Method

In this section, we study intrinsic formulation for elastic line deformed on surface by an external field in pseudo-Galilean space G_{1}^{3}.

The arc $\beta_{\text {is called elastic line if it is extremal for }}$ the variational problem of (2.1) within the family of all arcs of length $l_{\text {on non-null surface }} F$ having the same initial point and initial direction as β in the pseudoGalilean space G_{1}^{3}.

If elastic line is exposed to a static force field, it has a trajectory that minimizes the sum of its elastic
energy and its energy of interaction with the field in G_{1}^{3}. The problem is to to minimize the energy E,

$$
\begin{align*}
& E=\int_{0}^{l}\left(\frac{1}{2} b \kappa^{2}-\theta \varphi\right) d s \tag{2.1}\\
& E(t)=\frac{1}{2} b I_{1}(t)-\theta I_{2}(t)
\end{align*}
$$

among elastic lines with trajectories $\phi(u(s), v(s))$ of fixed length l and arc length , $0 \leq s \leq l$, contained pseudo-Galilean surface $\phi(u, v)_{\text {in pseudo-Galilean space }} G_{1}^{3}$.
$-\theta$ is constant measuring the strength of the external field, $\phi(u, v)$ gives its shape and $\kappa_{\text {denotes }}$ elastic bending energy in the pseudo-Galilean 3 -space

The equilibrium trajectory are the extrema of the sum of stress and potentiel energies in G_{1}^{3}. The path of the elastic line have to satisfy a differential equation, which is derived by variational methods on the pseudoGalilean 3-space.

Assume β lies in a coordinat patch $\phi(u, v)$ of F. Thus $\beta_{\text {is given as }} \beta(s)=\phi(u(s), v(s))$. Also,

$$
\begin{align*}
& T(s)=\beta^{\prime}(s) \\
& Q(s)=p(s) \phi_{u}+q(s) \phi_{v} \tag{2.2}
\end{align*}
$$

for suitable scalar functions $\mathrm{p}(\mathrm{s})$ and $\mathrm{q}(\mathrm{s})$. Define

$$
\begin{aligned}
& \Psi(\sigma ; t)=\phi(u(\sigma)+t \eta(\sigma), v(\sigma)+t \xi(\sigma)) \\
& \text { for } 0 \leq \sigma \leq l .
\end{aligned} \quad l=\int_{0}^{\lambda(t)} \sqrt{\left.\|\left\langle\frac{\partial \psi}{\partial \sigma}, \frac{\partial \psi}{\partial \sigma}\right\rangle_{P G} \right\rvert\,} d \sigma
$$

Case I. Intrinsic formulation for elastic line deformed on a timelike surface by an external field in the pseudo-Galilean space G_{1}^{3}.
i.

T is timelike, Q and N are spacelike,

$$
\begin{align*}
& \left.\frac{\partial \Psi}{\partial \sigma}\right|_{t=0}=T \quad, \quad 0 \leq \sigma \leq l \tag{2.3}\\
& \left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0}=T^{\prime}=\kappa_{g} Q+\kappa_{g} N
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{\partial \Psi}{\partial t}\right|_{t=0}=T^{\prime}=\mu Q \tag{2.4}
\end{equation*}
$$

With second differentiation Equation (2.5), we obtain

$$
\left.\frac{\partial^{2} \Psi}{\partial t \partial \sigma}\right|_{t=0}=T^{\prime}=\mu^{\prime} Q-\mu \tau_{g} N
$$

Third differentiation Equation (2.5) gives

$$
\left.\frac{\partial^{3} \Psi}{\partial t \partial \sigma^{2}}\right|_{t=0}=\left(\mu^{\prime \prime}-\mu \tau_{g}^{2}\right) Q-\left(2 \mu^{\prime} \tau_{g}+\mu \tau_{g}^{\prime}\right) N
$$

$$
\begin{align*}
& \left.\frac{d \lambda}{d t}\right|_{t=0} ^{\lambda(t)} \sqrt{\left|\left\langle\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0}\right\rangle_{P G}\right|_{0}+} \\
& \int_{0}^{1} \frac{\left\langle\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \psi}{\partial \sigma \partial t}\right|_{t=0}\right\rangle_{P G}\left\langle\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0}\right\rangle_{P G}^{-1 / 2}\left\langle\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \psi}{\partial \sigma}\right|_{t=0}\right\rangle_{P G}^{-1}=0}{} \tag{2.6}
\end{align*}
$$

From (2.3) and (2.6), we obtain

$$
\begin{equation*}
\left.\frac{\partial \lambda}{\partial t}\right|_{t=0}=0 \tag{2.7}
\end{equation*}
$$

Lemma 2.1. In pseudo-Galilean 3-space, $\left.\partial t\right|_{t=0}=0$

$$
\begin{equation*}
\left.\frac{\partial \lambda}{\partial t}\right|_{t=0}=0 \tag{2.8}
\end{equation*}
$$

Proof.

Let $I_{1}(t)=\int \kappa^{2} d s$ denote the total square curvature of the arc . $0 \leq \sigma \leq \lambda(t)$. For $t \neq 0$, the total square curvature is

$$
I_{1}(t)=\int_{0}^{\lambda(t)}\left|\left\langle\frac{\partial \Psi}{\partial \sigma} x_{P G} \frac{\partial^{2} \Psi}{\partial \sigma^{2}}, \frac{\partial \Psi}{\partial \sigma} x_{P G} \frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right\rangle \|\left\langle\frac{\partial \Psi}{\partial \sigma}, \frac{\partial \Psi}{\partial \sigma}\right\rangle_{P G}\right|^{-5 / 2} d \sigma
$$

Therefore

$$
\begin{equation*}
I_{1}^{\prime}(0)=\int_{0}^{\lambda(0)} \frac{\left\langle\left.\frac{\partial^{3} \Psi}{\partial t \partial \sigma}\right|_{t=0},\left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0}\right\rangle_{P G}}{\left|\left\langle\left.\frac{\partial \Psi}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \Psi}{\partial \sigma}\right|_{t=0}\right\rangle_{P G}\right|^{3 / 2}} \frac{\left|\left\langle\left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0},\left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0}\right\rangle\right|_{P G}}{\left\langle\left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0},\left.\frac{\partial^{2} \Psi}{\partial \sigma^{2}}\right|_{t=0}\right\rangle_{P G}} d \sigma \tag{2.9}
\end{equation*}
$$

From (2.9), we obtain

$$
\begin{equation*}
I_{1}^{\prime}(0)=\int_{0}^{l}\left(\mu^{\prime \prime} \kappa_{g}-\mu \kappa_{g} \tau_{g}^{2}-2 \mu^{\prime} \kappa_{n} \tau_{g}-\mu \kappa_{n} \tau_{g}^{\prime}\right) d s \tag{2.10}
\end{equation*}
$$

Using integration by parts

$$
\begin{align*}
& \int_{0}^{l} \mu^{\prime} \kappa_{n} \tau_{g} d s=2 \mu(l) \kappa_{n}(l) \tau_{g}(l)-2 \int_{0}^{l} \mu \kappa_{n}^{\prime} \tau_{g} d s-2 \int_{0}^{l} \mu \kappa_{n} \tau_{g}^{\prime} d s \tag{2.11}\\
& \int_{0}^{l} \mu^{\prime \prime} \kappa_{g} d s=\mu^{\prime}(l) \kappa_{g}(l)-\mu(l) \kappa_{g}^{\prime}(l)+\int_{0}^{l} \mu \kappa_{g}^{\prime \prime} d s \tag{2.12}
\end{align*}
$$

Using Equations (2.5) ,(2.6), (2.11),(2.12), we obtain

$$
\begin{align*}
& I_{1}^{\prime}(0)= \\
& \int_{0}^{l} \mu\left(\kappa_{g}^{\prime \prime}+2 \kappa_{n}^{\prime} \tau_{g}+\kappa_{n} \tau_{g}^{\prime}-\kappa_{g} \tau_{g}^{2}\right) d s+ \tag{2.13}\\
& \tag{2.14}\\
& I_{2}^{\prime}(l) \kappa_{g}(l)-\mu(l) \kappa_{g}^{\prime}(l)-2 \mu(l) \kappa_{n}(l) \tau_{g}(l) \\
& \int_{0}^{l} \varphi d s
\end{align*}
$$

Differentiating of Equation (2.14) at $\mathfrak{t}=0$,

$$
\begin{equation*}
I_{2}^{\prime}(0)=\left.\int_{0}^{l}\left(\frac{\partial \varphi}{\partial t}\right)\right|_{t=0}=\int_{0}^{l} \mu\left[p\left(\frac{\partial \varphi}{\partial u}\right)+q\left(\frac{\partial \varphi}{\partial v}\right)\right] d s \tag{2.15}
\end{equation*}
$$

From (2.13) and (2.15), for all choices of the function $\mu(s), E^{\prime}(0)=0$, the given timelike arc β must satisfy two boundary conditions and differential equation in pseudo -Galilean 3 -space
(BC1)

$$
\kappa_{g}(l)=0
$$

$$
\begin{equation*}
(\mathrm{BC} 2) \kappa_{g}^{\prime}(l)=-2 \kappa_{n}(l) \tau_{g}(l) \tag{2.16}
\end{equation*}
$$

(DE)

$$
b\left[\kappa_{g}^{\prime \prime}+2 \kappa_{n}^{\prime} \tau_{g}+\kappa_{n} \tau_{g}^{\prime}-\kappa_{g} \tau_{g}^{2}\right]_{-\theta_{[}} p\left(\frac{\partial \varphi}{\partial u}\right)^{+} q\left(\frac{\partial \varphi}{\partial v}\right]=0
$$

Case II. Intrinsic formulation for elastic line deformed on a spacelike surface by an external field in the pseudo-Galilean space G_{1}^{3}.

N is imelikee, T and Q are spacelike:
For $\left|\kappa_{g}^{2}-\kappa_{n}^{2}\right|=\kappa_{g}^{2}-\kappa_{n}^{2} \quad$, we have

$$
\begin{align*}
I_{1}^{\prime}(0)= & \int_{0}^{l} \mu\left(\kappa_{g}^{\prime \prime}+2 \kappa_{n}^{\prime} \tau_{g}+\kappa_{n} \tau_{g}^{\prime}+\kappa_{g} \tau_{g}^{2}\right) d s+ \\
& \mu^{\prime}(l) \kappa_{g}(l)-\mu(l) \kappa_{g}^{\prime}(l)+2 \mu(l) \kappa_{n}(l) \tau_{g}(l) \tag{2.17}
\end{align*}
$$

For all choices of the function $\mu(s), E^{\prime}(0)=0$, the given spacelike $\beta_{\text {arc must satisfy two boundary }}$ conditions and differential equation in pseudo-Galilean 3 -space .
(BC1)

$$
\kappa_{g}(l)=0
$$

$$
\begin{equation*}
(\mathrm{BC} 2) \kappa_{g}^{\prime}(l)=-2 \kappa_{n}(l) \tau_{g}(l) \tag{2.18}
\end{equation*}
$$

(DE) $b\left[\kappa_{g}^{\prime \prime}+2 \kappa_{n}^{\prime} \tau_{g}+\kappa_{n} \tau_{g}^{\prime}+\kappa_{g} \tau_{g}^{2}\right]_{-} \theta_{[} p\left(\frac{\partial \varphi}{\partial u}\right)^{+} q\left(\frac{\partial \varphi}{\partial v}\right]=$
Given spacelike $\beta_{\text {arc must satisfy two boundary conditions and differential equation in pseudo -Galilean 3- }}$ 3space.
(BC1) $\kappa_{g}(l)=0$

$$
\begin{align*}
& \text { (BC2) } \kappa_{g}^{\prime}(l)=2 \kappa_{n}(l) \tau_{g}(l) \tag{2.19}\\
& \text { (DE) } \quad b\left[\kappa_{g}^{\prime \prime}+2 \kappa_{n}^{\prime} \tau_{g}+\kappa_{n} \tau_{g}^{\prime}+\kappa_{g} \tau_{g}^{2}\right]_{+\theta_{[}} p\left(\frac{\partial \varphi}{\partial u}\right) q\left(\frac{\partial \varphi}{\partial v}{ }_{]=0}\right.
\end{align*}
$$

3. Results

Theorem 3.1. On the timelike surface in in pseudo-Galilean space for the case $\Theta=0$, an timelike geodesic arc is elastic line if and only if it satisfies

$$
\begin{equation*}
\kappa_{n}^{2} \tau_{g}=0 \tag{2.20}
\end{equation*}
$$

Since $\kappa_{g}=0$, from the third equation of (2.16),
$-2 \kappa_{n}^{\prime} \tau_{g}-\kappa_{n} \tau_{g}^{\prime}=0$.
From (2.21), first integral is obtained

$$
\kappa_{n}^{2} \tau_{g}=\text { cons } \tan t \text {.The constant must vanish, from the second equation of (2.16). }
$$

Theorem 3.2. An timelike geodesic arc on the timelike surface in pseudo-Galilean space for the case $\Theta \neq 0$, is elastic line if and only if it satisfies

$$
\begin{equation*}
b \kappa_{n}^{2} \tau_{g}-\Theta\left[p\left(\frac{\partial \varphi}{\partial u}\right)+q\left(\frac{\partial \varphi}{\partial v}\right)\right]=0 \tag{2.22}
\end{equation*}
$$

Proof. From (2.16), we get (2.22).
Theorem 3.3. An spacelike geodesic arc on the spacelike surface in pseudo-Galilean space for the case $\Theta \neq 0$, is elastic line if and only if it satisfies

$$
\begin{equation*}
b \kappa_{n}^{2} \tau_{g}-\Theta\left[p\left(\frac{\partial \varphi}{\partial u}\right)+q\left(\frac{\partial \varphi}{\partial v}\right)\right]=0 \tag{2.23}
\end{equation*}
$$

Proof. From (2.18), we have (2.23).
Example 3.1. An timelike arc on timelike plane for $\Theta=0$ in G_{1}^{3}, is elastic line if and only if it lies on a geodesic. Proof. On timelike plane, $\tau_{g}=\left(k_{2}-k_{1}\right) \cosh \theta \sinh \theta=0$ and $\kappa_{n}=k_{1} \cosh ^{2} \theta-\sinh ^{2} \theta=0$. From the third equation of (2.16),

$$
\kappa_{g}^{\prime \prime}=0
$$

The first integral is $\kappa_{g}^{\prime}=$ const.
The boundary coinditions of (2.16), $\kappa_{g}^{\prime}(l)=0$. Thus $\kappa_{g}=0$.
Example 3.2. An arc on first kind helicoid for $\Theta=0$ in G_{1}^{3}, is elastic line .
Proof. On first kind helicoid, $\kappa_{n}=0$ and $\tau_{g}=0$. Thus (2.16) is satisfied..

References

1. Manning G. Elastic line deformed on a surface by external field. Physical Review A 1988; 38:30733081.
2. Gürbüz, N and Görgülü (2000). Intrinsic equations for a relaxed elastic line on an oriented surface in the Minkowski space in R_{1}^{3}. Hadronic Journal . 23: 143-163.
3. Gürbüz, N and Görgülü A . Intrinsic equations for a relaxed elastic line on an oriented surface in the

Minkowski space in R_{1}^{n}. Turkish J. of Math. 24:283-294.
4. Gürbüz N (2007).Intrinsic formulation for elastic line deformed on a surface by external field in the Minkowski space. J.Math.Anal.Apl. 327 :10861094.
5. Divjak B (2008). The equiform differential geometry of curves in the pseudo-Galilean space. Mathematical Communications $13: 321-332$.

