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1.Introduction 

Manning  studied intrinsic formulation for elastic 
line deformed external field on a surface by external 

field 
3E

 ( Manning, 1988). Intrinsic equations for a 
elastic line in Lorentz-Minkowski space was  
researched (Gürbüz and Görgülü, 2000), (Gürbüz, 
2000). In this paper we derive intrinsic formulation for 
elastic line deformed external field on a surface by 
external field in pseudo-Galilean space. 

In this section we give preliminaries on pseudo-

Galilean space 
3
1G .  The definitions relation to 

3
1G was taken (Divjak, 2008). 

The pseudo-Galilean 3- space 
3
1G

is the three 
dimensional real affine space with the absolute figure 
{w,f,I} , where w is a fixed plane, f a line in w and I a 
hyperbolic involution of the points of f. The pseudo-
Galilean space length of the vector x(x,y,z) is defined 
by 
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A curve parametrized by the parameter of arc 

length s=x  is given in the coordinat form by 

 (x)=(x,y(x),z(x)). The curvature )(x and )(x  of 
an curve are given by (Divjak, 2008). 
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The associated moving trihedron is given by 
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where 1 or 1 and it is called a Frenet 

trihedron associated to the curve. If t is timelike, n is a 
spacelike vector, b is spacelike,.  Frenet-Serret 
formulas are given as following: 
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For regular curve in 
3
1G ,   is defined as 

following 

3
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where PG
 denotes pseudo-Galilean cross 

product. If 1e  is unit spacelike vector, 2e  is unit 

spacelike vector , 3e
 is a unit timelike vector , 

ba PG
 is given as following: 
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where 
),,(),,,( 321321 bbbbaaaa 

.  If 1e
 

is unit spacelike vector, 2e  is unit timelike vector , 3e
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is a unit spacelike vector , 
ba PG

 is given as 
following: 
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Theorem 1.1. Let F be the timelike surface in 
3
1G

 and 

 denote an arc on F.  The analogue of the Frenet-

Serret formulas in pseudo-Galilean 3-space 
3
1G  is 
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where g  is the geodesic curvature , g  is the 

geodesic torsion, n  is the normal curvature. 

1,,1,,1,  QQNNTT
. 

Theorem 1.2. Let F be the spacelike  surface in 
3
1G

 

and  denote an spacelike  arc on F.  The analogue of 
the Frenet-Serret formulas in pseudo-Galilean 3-space 

3
1G  is 
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where g  is the geodesic curvature , g  is the 

geodesic torsion, n  is the normal curvature. Also, 

1,,1,,1,  NNQQTT
. 

 
2. Intrinsic Method 

In this section, we study intrinsic formulation for 
elastic line deformed on surface by an external field in 

pseudo-Galilean space  
3
1G

. 

The arc  is called elastic line if it is extremal for 
the variational problem of (2.1) within the family of all 

arcs of length l on non-null surface F having the same 

initial point and initial direction as  in the pseudo-

Galilean space  
3
1G

. 
If elastic line is exposed to a static force field, it 

has a trajectory that minimizes the sum of its elastic 

energy and its energy of interaction with the field in 
3
1G . The problem is to to minimize the energy E , 

dsbE
l
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, 
among elastic  lines with trajectories 

))(),(( svsu
 of fixed length l  and arc length , 

ls 0 , contained pseudo-Galilean surface 

),( vu
in pseudo-Galilean space 

3
1G

. 

 is constant measuring the strength of the 

external  field, 
),( vu

 gives its shape and  denotes 
elastic bending energy  in the pseudo-Galilean 3-space 
. 

The equilibrium trajectory are the extrema of the 

sum of stress and potentiel energies in 
3
1G . The path of 

the elastic line have to satisfy a differential equation, 
which is derived by variational methods on the pseudo-
Galilean 3-space. 

Assume   lies in a coordinat patch ),( vu of 

F . Thus  


is given as 
))(),(()( svsus  

. Also, 
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for suitable scalar functions p(s) and q(s).  Define 
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for l 0 .   











dl
t

PG
 








)(

0

,

 
Case  I.   Intrinsic formulation for elastic line 
deformed on a timelike surface by an external field 

in the pseudo-Galilean space 
3
1G . 

i. If  
T is timelike , Q and N are spacelike , 

T
t
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,   l 0  (2.3) 
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With second differentiation Equation (2.5) , we 
obtain 
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Third differentiation Equation (2.5) gives 
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Lemma 2.1.  In pseudo-Galilean 3-space, 
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From (2.3)  and (2.6), we obtain 
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Let  
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 denote the total square curvature of the arc . 
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. For 0t , the total square 
curvature is 
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From (2.9), we obtain 
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Using integration by parts 
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Using Equations (2.5) ,(2.6), (2.11),(2.12) ,we obtain 
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Differentiating of Equation (2.14) at t=0, 
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From (2.13) and (2.15), for all choices of the function  
)(s

, 
0)0(' E

, the given timelike  arc 


 
must satisfy two boundary conditions and differential equation in pseudo –Galilean 3-space 
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Case II.  Intrinsic formulation for elastic line deformed on a spacelike surface by an external field in the 

pseudo-Galilean space 
3
1G . 

N is imelikee , T and Q are spacelike: 

For 
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For all choices of the function  
)(s , 0)0(' E , the given spacelike  arc must satisfy two boundary 

conditions and differential equation in pseudo –Galilean 3-space . 
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Given spacelike 


arc must satisfy two boundary conditions and differential equation in pseudo –Galilean 3-
space . 
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3. Results 

Theorem 3.1. On the timelike surface in in pseudo-Galilean space for the case 0 , an timelike geodesic arc is 
elastic line if and only if it satisfies 

02 gn
.                   (2.20) 

Since 
0g , from the third equation of (2.16), 
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From (2.21), first integral is obtained 
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tconsgn tan2 
.The constant must vanish, from the second equation of (2.16). 

Theorem 3.2. An timelike geodesic arc on the timelike surface in pseudo-Galilean space for the case 0 , is 
elastic line if and only if it satisfies 
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u
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       (2.22) 
Proof.  From (2.16) ,  we get (2.22). 

Theorem 3.3. . An spacelike geodesic arc on the spacelike  surface in pseudo-Galilean space for the case 0 , is 
elastic line if and only if it satisfies 
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       (2.23) 
Proof.  From (2.18) , we have (2.23). 

Example 3.1.  An timelike arc on timelike plane for 0  in 
3
1G

, is elastic line if and only if it lies on a geodesic. 

Proof.  On timelike plane ,  
 sinhcosh)( 12 kkg 

=0 and 
0sinhcosh 22

1   kn . From the 
third equation of (2.16), 

0g  

The first integral is 
.constg   

The boundary coinditions of (2.16), 
0)(  lg . Thus 

0g . 

Example 3.2. An arc on first kind helicoid for 0  in 
3
1G

, is elastic line . 

Proof.  On first kind helicoid, 
0n  and 

0g . Thus (2.16) is satisfied.. 
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