Some results on the dihedral homology of Banach algebras

Alaa Hassan Noreldeen Mohamed (Alaa H. N.)
Dept. of Mathematics, Faculty of Science, Aswan University, Egypt.
ala2222000@yahoo.com

Abstract

In this paper we describe a technique for calculation of the Banach dihedral homology groups of Banach algebras, to establish the basic properties of this technique and to apply it to some classes of algebras. The technique involves some concepts of relative dihedral homology of the unital Banach algebra with involution. Therefore, we define the free involutive resolution of Banach algebra and given some theorems on the relative dihedral homology of the unital Banach algebra. [Alaa Hassan Noreldeen Mohamed (Alaa H. N.). Some results on the dihedral homology of Banach algebras. Life Sci J 2013;10(4):1216-1220]. (ISSN:1097-8135). http://www.lifesciencesite.com. 160

Key words : Homology-Operator Algebra.

1. Introduction

Many interest has been attached in recent gears the computation of Simplicial, cyclic, dihedral of (co)homology groups Banach algebra and in particular C^{*}-algebra (see [1],[7], [8]).
Firstly, we recall some definition and facts needed in the sequel (see [3],[5],[6]).

Let A be a unital Banach algebra with involution (a unital Banach algebra is a Banach algebra with unit e such that $\|e\|=1$). We denote by $C_{n}(A), \quad n=0,1, \ldots(n+1)$ fold projective tensor power as $A^{\otimes(n+1)}=A \otimes \ldots \otimes A$ of A; we shall call the elements of these Banach space n-dimensional chains.

We
let $t_{n}: C_{n}(A) \rightarrow C_{n-1}(A), \quad n=0,1,2, \ldots, \quad$ denote the operator given by

$$
\begin{align*}
& d_{n}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)= \\
& \sum_{i=0}^{n}(-1)^{i}\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n+1}\right) \\
& \quad+(-1)^{n+1}\left(a_{n+1} a_{0} \otimes \ldots \otimes a_{n}\right) . \tag{1.1}
\end{align*}
$$

It is well known $b_{n-1} b_{n}=0$, for all $n \in N$, is clearly equivalent to $\operatorname{Im} d_{n+1} \subset \operatorname{ker} d_{n}$. The element of $\operatorname{Im} d_{n+1}$ called n-boundaries and the elements of $\operatorname{ker} d_{n}$ are called n-cycles. The complex $C(A)=\left(C_{\bullet}(A), d_{\bullet}\right)$ is a chain complex as $C(A)$:
$0 \leftarrow C_{0}(A) \stackrel{d_{0}}{\longleftarrow} \ldots C_{n}(A) \stackrel{d n}{\longleftarrow} C_{n+1}(A) \leftarrow \ldots$

This complex is called the Hochschild (simplicial) complex and it is homology is called the Hochschild
$\underset{\text { Homology }}{ } H_{n}(A)=H_{n}(A, A)=\frac{\operatorname{Ker} b_{n}}{\operatorname{Im} b^{n+1}}$.
We let $t_{n}: C_{n}(A) \rightarrow C_{n}(A), n=0,1, \ldots$ denote the operator given by
$t_{n}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right)=(-1)^{n}\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$ And we set $t_{0}=i d$. We let $C_{n}(A)$ denote the quotient space of $C_{n}(A)$ modulo the closure of the linear span of elements of the form $x \rightarrow t_{n} x$ where $n=0,1, \ldots$. Note that, from [1], $\operatorname{Im}\left(1-t_{n}\right)$ is closed in $C_{n}(A)$ and $C C_{n}(A)=C_{n}(A) / \operatorname{Im}\left(1-t_{n}\right)$. Thus we obtain a quotient complex $C C_{*}(A)$. of complex $C C(A)$. The homology of $C C_{*}(A)$, denoted by $H C_{n}(A)$ is called the n-dimensional Banach cyclic homology
 operator given by the formula:

$$
\begin{equation*}
r_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{\frac{n(n+1)}{2}} \in a_{0}^{*} \otimes a_{n}^{*} \otimes \ldots \otimes a_{1}^{*}, \quad \in= \pm 1 \tag{1.3}
\end{equation*}
$$

Where * is an involution on A. Note that
$\operatorname{Im}\left(i d_{t_{n}(A)}=1-t_{n}\right)$ is closed in $C_{n}(A)$.
The quotient complex
$C D_{n}(A)=\frac{C_{n}(A)}{\operatorname{Im}\left(1-t_{n}\right)+\operatorname{Im}\left(1-r_{n}\right)}$
of a complex $C_{n}(A)$. The n-dimensional homology of $C D_{n}(A)$ denoted by $H D_{n}(A)$ is called $n-$ dimensional dihedral homology group of a unital Banach algebra A.

2. Results

Let A and B be commutative Banach algebras with unit. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be an involutive Banach algebras homomorphism. We define a free involutive resolution of Banach algebras B over the homomorphism-ism

$$
f: A \xrightarrow{i} R \xrightarrow{\pi} B
$$

where i is an inclusion map and π is a quasiisomorphism, we define the relative dihedral homology;
${ }^{\varepsilon} H D_{*}(A \xrightarrow{f} B)=H_{*}\left(R /\left(A+[R, R]+\operatorname{Im}\left(l-r^{\varepsilon}\right)\right)\right.$
where $[R, R]$ is the commutant of Banach algebra R, r^{ε} is an involution on R, and study its properties operator algebra. Let f be a homomorphism of involutive Banach algebras A and B over a field K with characteristic zero. Let R_{f}^{B} be a free resolution of Banach algebra B over f and for
$r_{1}, r_{2} \in R_{f}^{B}$, let $\left[r_{1}, r_{2}\right]=r_{1} r_{2}-(-1)^{r_{1} \| r_{2} \mid} r_{2} r_{1}$
where $\left|r_{i}\right|=\operatorname{deg} r_{i}, \quad i=1,2$.
Let $\mathrm{C}=\left[\mathrm{R}_{\mathrm{f}}^{\mathrm{B}}, \mathrm{R}_{\mathrm{f}}^{\mathrm{B}}\right]$ be the linear space generated by $\left[r_{1}, r_{2}\right], \quad r_{1}, r_{2} \in R_{f}^{B}$. We construct the complex $\left(\mathrm{C}=\left[\mathrm{R}_{\mathrm{f}}^{\mathrm{B}}, \mathrm{R}_{\mathrm{f}}^{\mathrm{B}}\right]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right) \quad$ where

$$
\mathrm{r}^{\varepsilon}(P)=\varepsilon(-1)^{|P|(|P|-1) / 2} P^{*}
$$

and $*$ is an involution on $R_{f}^{B}, \quad \varepsilon= \pm 1$. Clearly, from the definition of R_{f}^{B}, that $\left[\operatorname{Im}\left(1-r^{\varepsilon}\right)\right]$ is a subcomplex of R_{f}^{B}, we have $\partial\left[\mathrm{r}_{1} r_{2}\right]=\mathrm{r}_{1} r_{2}-(-1)^{\left|r_{1}\right| r_{2} \mid} \mathrm{r}_{1} r_{2}$

$$
\begin{align*}
& =\partial \mathrm{r}_{1} r_{2}+(-1)^{\left|r_{1}\right|} \mathrm{r}_{1} \partial r_{2}-(-1)^{\left|r_{1}\right| r_{2} \mid}\left(\partial \mathrm{r}_{2} r_{1}+(-1)^{\left|r_{2}\right|} \mathrm{r}_{2} \partial r_{1}\right) \\
& =\partial \mathrm{r}_{1} r_{2}-(-1)^{r_{2} \mid\left(r_{1}|+1|\right.} \mathrm{r}_{2} \partial r_{1}+(-1)^{r_{1} \mid}\left(\mathrm{r}_{1} \partial r_{2}-(-1)^{r_{1} \mid\left(r_{2} \mid+1\right)} \partial \mathrm{r}_{2} r_{1}\right) \\
& =\left[\partial \mathrm{r}_{1} r_{2}\right]+(-1)^{\left|r_{1}\right|}\left[\mathrm{r}_{1}, \partial r_{2}\right], \quad\left|\partial \mathrm{r}_{\mathrm{i}}\right|=\left|r_{1}\right|-1, \quad \mathrm{i}=1,2 \tag{2.1}
\end{align*}
$$

Then $\left[\mathrm{R}_{\mathrm{f}}^{\mathrm{B}}, \mathrm{R}_{\mathrm{f}}^{\mathrm{B}}\right]$ is subcomplex in R_{f}^{B}, therefore, the chain complex of K-module which is $\left(\left[\mathrm{R}_{\mathrm{f}}^{\mathrm{B}}, \mathrm{R}_{\mathrm{f}}^{\mathrm{B}}\right]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right)$ is a subcomplex of
R_{f}^{B}.
Definition 2.1: Let $f: A \rightarrow B$ be F-Banach algebras (char $K=0$) homomorphism, R_{f}^{B}, be a free resolution of Banach algebra B over f. Then the relative dihedral homology is defined by:

$$
\begin{align*}
& { }^{\varepsilon} H D_{*}(A \xrightarrow{f} B)= \\
& \quad H_{*}\left(\frac{R_{f}^{B}}{\left(A+[R, R]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right.}\right) \tag{2.2}
\end{align*}
$$

Definition 2.2: The F-Banach algebra $\mathrm{A}<\mathrm{t}>$ generated by the elements $a_{0} t a_{1} t \ldots t a_{n}, \quad n \geq 0$, can be considered as differential graded Banach algebras by requiring that the morphism $\mathrm{A} \rightarrow \mathrm{A}<t>$ is a morphism of involutaive differential graded Banach algebras and $\operatorname{deg} t=1, \partial t=0$ and $t^{*}=t$.
Lemma 2.3: The Banach algebras $\mathrm{A}<\mathrm{t}>$ is splitable. It is a free Banach algebras resolution of the Banach algebras $B=0$ over the homorphism $\mathrm{A} \rightarrow 0$.
Proof. Define the following chain complex
 (2.3)
where $A t \ldots t A$ (n-times) is a K-module and the boundary operator ∂ is given by:

$$
\begin{aligned}
\partial\left(a_{0} t a_{1} t \ldots t a_{n-1} t a_{n}\right) & =\sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \ldots t a_{i}(\partial t) a_{i+1} t \ldots t a_{n} \\
& =\sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \ldots t\left(a_{i} a_{i+1}\right) t \ldots t a_{n}
\end{aligned}
$$

(2.4)

Note that the differential ∂ in $\mathrm{A}<t>$ is equivalent to the operator

$$
\begin{gather*}
\delta_{n}^{\prime}: C_{n}(A) \rightarrow C_{n-1}(A)(\text { see }[2],[10]), \text { defined by } \\
\delta_{n}^{\prime}\left(a_{0} \otimes \ldots \otimes a_{n}\right)= \\
\quad \sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n} \tag{2.5}
\end{gather*}
$$

From [9] the complex $\left(C_{n}(A), \delta_{n}\right)$ is splitable and so the complex $\mathrm{A}<\mathrm{t}>$ is also splitable, that is, $H_{*}(A<t>)=0$. Then, a Banach algebra $\mathrm{A}<\mathrm{t}>$ is free
resolution of the Banach algebra $B=0$ over the homomorphism $A \rightarrow 0$.

Lemma 2.4: The complex $(A\langle t\rangle /[A, A\langle t\rangle])$ is standard simplicial complex.

Proof. Let the complex ($A\langle t\rangle /[A, A\langle t\rangle]$), it's generated by the elements $a_{0} t a_{l} t \ldots t a_{n-1} t$, since $a_{0} t a_{1} t . . t a_{n}=a_{n} a_{0} t a_{1} t . . t a_{n-1} t, \quad(\bmod [A, A<t>])$
. The action of the differential ∂ on the complex ($A\langle t\rangle /[A, A\langle t\rangle]$) is given by

$$
\begin{align*}
\partial\left(a_{0} t a_{1} t \ldots t a_{n-1} t a_{n}\right) & =\sum_{i=0}^{n-1}(-1)^{i} a_{0} t a_{1} t \ldots t\left(a_{i} a_{i+1}\right) t \ldots t a_{n} \\
& +(-1)^{n} a_{n} a_{0} t a_{1} t \ldots . . a_{n-1} t \tag{2.6}
\end{align*}
$$

Consider the complex:

$$
\begin{equation*}
A \stackrel{i d}{\longleftarrow} A \stackrel{\delta}{\longleftarrow} A^{\otimes 2} \stackrel{\delta}{\longleftarrow} \ldots A^{\otimes n} \stackrel{\delta}{\longleftarrow} \ldots, \tag{2.7}
\end{equation*}
$$

where δ is the differential in the standard Hochschild complex. Since the space $\left(A\langle t\rangle /[A, A\langle t\rangle]_{n+1}\right)$ identifies with the space;

$$
\begin{equation*}
A^{\otimes n+1}: a_{0} t a_{1} \ldots . t a_{n} t \rightarrow a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}, \tag{2.8}
\end{equation*}
$$

and the differential in ($A\langle t\rangle /[A, A\langle t\rangle]$) identifies with the differential in the standard Hochschild complex.

Theorem 2.5: Let A be a unital Banach algebra with involution. Then
${ }^{\varepsilon} H D_{i}(A \xrightarrow{f} B)={ }^{\varepsilon} H D_{i-1}(A)$
${ }^{\varepsilon} H D_{i}(A)$ is the dihedral homology of F - Banach algebras (char $K=0$).
Proof: Consider the factor complex
($A\langle t\rangle /[A, A\langle t\rangle]+\operatorname{Im}\left(1-r^{\varepsilon}\right)$) such that;

$$
\begin{align*}
a_{0} t a_{1} t \ldots t a_{n-1} t= & (-1)^{n(n-1) / 2} \varepsilon \mathrm{ta}_{n}^{*} t a_{n-1}^{*} \ldots t a_{1}^{*} \\
& =(-1)^{n(n-1) / 2} \varepsilon \mathrm{ta}_{0}^{*} t a_{n}^{*} \ldots t a_{1}^{*} \mathrm{t}, \tag{2.9}
\end{align*}
$$

where $\varepsilon= \pm 1$,

$$
\begin{aligned}
& \operatorname{deg} a_{0} t a_{1} t \ldots t a_{n-1} t=n, \quad \operatorname{deg}\left(\mathrm{a}_{\mathrm{n}}^{*}\right)=0, \\
& \operatorname{deg} a_{0} t a_{1} t \ldots t a_{n} t=n+1 .
\end{aligned}
$$

The dihedral homology of $\mathrm{A}<\mathrm{t}>$ is the dihedral homology of the complex

$$
\left(A<t>/[A<t>, A<t>]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right) .
$$

By factor $\mathrm{A}<\mathrm{t}>$ first by the subcomplex
$\mathrm{A} \leftarrow 0 \leftarrow 0 \leftarrow \ldots$ and second by the Subcopmlex
$\left(A<t>/[A<t>, A<t>]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right)$ we

get a homomorphism

${ }^{\varepsilon} C D_{*}(A \rightarrow 0) \rightarrow{ }^{\varepsilon} C D_{*-1}(A)$, which induces an isomorphism of the dihedral homology groups ${ }^{\varepsilon} H D_{*}(A \rightarrow 0) \rightarrow{ }^{\varepsilon} H D_{*_{-1}}(A)$.
Theorem 2.6: Let $f: A \rightarrow B$ be a homomorphism of a commutative Banach algebras over a field K (char $K=0$). Then the relative dihedral homology ${ }^{\varepsilon} H D_{i}(A \xrightarrow{f} 0)$, does not depends on the choice of the resolution.

Proof: The homomorphism f induces homomorphism of chain complexes

$$
\begin{equation*}
f_{*}:{ }^{\varepsilon} C D_{*}(A) \rightarrow{ }^{\varepsilon} C D_{*}(B) \tag{2.10}
\end{equation*}
$$

where ${ }^{\varepsilon} C D_{*}(A)$ is a dihedral complex. Consider the diagram

$$
\begin{equation*}
\mathrm{A} \xrightarrow[\mathrm{f}]{ } B \tag{2.11}
\end{equation*}
$$

Where R_{f}^{B}, is defined above, i is an inclusion map. Since

$$
H_{i}\left(R_{f}^{B}\right)=\left\{\begin{array}{l}
B, i=0 \tag{2.12}\\
0, i>0
\end{array}\right.
$$

Then the isomorphism $\pi_{*}:^{\varepsilon} C D_{*}\left(R_{f}^{B}\right) \rightarrow{ }^{\varepsilon} C D_{*}(B)$ induces an isomorphism of the homology of these omplexes. Since

$$
\begin{align*}
& { }^{\varepsilon} H D_{i}(A \xrightarrow{f} B) \rightarrow{ }^{\varepsilon} H D_{i}(A \xrightarrow{\text { gof }} C) \\
& \rightarrow{ }^{\varepsilon} H D_{i}(A \xrightarrow{g} C) \rightarrow{ }^{\varepsilon} H D_{i-1}(A \longrightarrow \quad B) \rightarrow \ldots \tag{2.13}
\end{align*}
$$

where $i_{*}{ }^{\varepsilon} C D_{*}(A) \rightarrow{ }^{\varepsilon} C D_{*}\left(R_{f}^{B}\right)$ is an inclusion, then

$$
M\left(i_{*}\right) \approx\left[{ }^{\varepsilon} C D_{*}\left(R_{f}^{B}\right) /{ }^{\varepsilon} C D_{*}(A)\right]
$$

where $M\left(i_{*}\right)$ is a cone of i,

$$
\begin{gather*}
{ }^{\varepsilon} C D_{*}\left(R_{f}^{B}\right) \\
{ }^{\varepsilon} C D_{*}(A) \longrightarrow{ }_{f_{*}}{ }^{\varepsilon} C D_{*}(B)
\end{gather*}
$$

(see [12]).

The symbol \approx denotes a quasi-isomorphism. It is clear, that the following diagram is commutative and hence

$$
M\left(f_{*}\right) \approx^{\varepsilon} C D_{*}\left(R_{f}^{B}\right) /{ }^{\varepsilon} C D_{*}(A)
$$

Following ([4],[7]), we have
${ }_{[} C C_{*}\left(R_{f}^{B}\right) / C C_{*}(A) \approx R_{f}^{B} / A+\left[R_{f}^{B}, R_{f}^{B}\right]$,
where $C C_{*}$ is the Conne`s cyclic complex, and by using the spectral sequence

$$
E_{i j}^{2}={ }^{\varepsilon} H_{*}\left(Z / 2, H_{*}\left(R_{f}^{B}\right)\right)=^{\varepsilon} H D_{i+j}\left(R_{f}^{B}\right), \text { we }
$$

have

$$
\begin{align*}
& { }^{\varepsilon} C D_{*}\left(R_{f}^{B}\right) /{ }^{\varepsilon} C D_{*}(A) \approx \\
& \quad R_{f}^{B} / A+\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\varepsilon}\right) \tag{2.15}
\end{align*}
$$

so,
$M\left(f_{*}\right) \approx\left(R_{f}^{B} / A+\left[R_{f}^{B}, R_{f}^{B}\right]+\operatorname{Im}\left(1-r^{\varepsilon}\right)\right)$
Then ${ }^{\varepsilon} H D_{i}(A \xrightarrow{f} B)$ does not depend on the choice of R_{f}^{B}.

Theorem 2.7: Let A, B and C are involutive Banach algebra. Then the following sequence $A \xrightarrow{f} B \xrightarrow{g} C$ induces the long exact sequence of relative dihedral homology;

Proof: From theorem (2.6), we have been proved that any homomorphism $f: A \rightarrow B$ of involutive algebra in an arbitrary category is equivalent to an inclusion $i: A \rightarrow R_{f}^{B}$. Then, for a sequence
$A \xrightarrow{f} B \xrightarrow{g} C$ of involutive Banach algebra, we have the following complex

Consider the following sequence of mapping cones $0 \rightarrow M\left(i_{*}\right) \rightarrow M\left(i_{*}^{*}\right) \rightarrow M\left(i_{*} O i_{*}^{*}\right) \rightarrow 0$
In general, the sequence (2.18) is not exact and the composition of two
morphism will be zero. However, the cone over morphism $M\left(i_{*}\right) \rightarrow M\left(i^{*}\right)$, is canonically homotopy equivalent to $M\left(i_{*} \mathrm{O} i_{*}\right)$
So we get the following exact sequence of the relative dihedral homology

$$
\begin{align*}
& { }^{\varepsilon} H D_{i}(A \xrightarrow{f} B) \rightarrow{ }^{\varepsilon} H D_{i}(A \xrightarrow{g o f} C) \\
& \rightarrow{ }^{\varepsilon} H D_{i}(A \xrightarrow{g} C) \rightarrow{ }^{\varepsilon} H D_{i-1}(A \xrightarrow{f} B) \rightarrow \ldots \tag{2.19}
\end{align*}
$$

Example 2.8: Let A be F-Banach algebra (char

 $K=0$) and M is A-bimodule. For a chain complex U. of involutive Banach algebra, consider the complex$$
S^{n}\left(A, U_{\bullet}\right)=A \bigotimes_{A \otimes A^{o p}} U_{\bullet}^{\otimes(k+1)}
$$

. If we act on
$S^{n}\left(A, U_{\bullet}\right)$ by the dihedral group D_{n+1} of order $2(n+1)$ by means :

$$
\begin{aligned}
t_{n}\left(u_{0} \otimes \ldots \otimes u_{n}\right) & =(-1)^{\mu} u_{n} \otimes v_{0} \otimes \ldots \otimes u_{n-1} \\
{ }^{\alpha} r_{n}\left(u_{0} \otimes \ldots \otimes u_{n}\right) & =(-1)^{\theta} \alpha u_{n}^{*} \otimes \ldots \otimes u_{1}^{*} \otimes u_{0}^{*} \\
& =(-1)^{n(n+1) / 2} \varepsilon t a_{0}^{*} t a_{n}^{*} \ldots t a_{1}^{*} t, \alpha= \pm 1
\end{aligned}
$$

where

$$
\begin{aligned}
\mu= & \left(\operatorname{deg} \mathrm{p}_{\mathrm{n}}\right)\left(\sum_{i=0}^{n-1} \operatorname{deg} \mathrm{p}_{\mathrm{i}}\right)= \\
& \left(n+\sum_{i=0}^{n} \operatorname{deg} \mathrm{p}_{\mathrm{i}}\right)\left(n+\sum_{i=0}^{n} \operatorname{deg} \mathrm{p}_{\mathrm{i}}-1\right) / 2
\end{aligned}
$$

If U_{0} is free involutive resolution of a Banach algebra A, then the complex $S^{n}\left(A, U_{\bullet}\right)$ can be considered by the complex $S^{n}(A, M)$.

Author:

Alaa Hassan Noreldeen Mohamed
Department of Mathematics, Faculty of science, Aswan University,
Aswan, Egypt.
E-mail: ala2222000@yahoo.com

References

1. Helemski, A. YA. "Banach cyclic (co) homology and the Connes-Tsygan exact sequence " J. London Math. Soc. (2)46 (1992), 449-462.
2. Alaa Hassan, \& Gouda, Y. Gh. "on the dihedral (co) homology for schemes" Int. electronic journal of algebra, vol. 5 (2009), 106-113.
3. Alaa Hassan Nor Eldean \& Yasien Ghallab Gouda, "Excision of the dihedral cohomology", A.M.S.E. vol. 37, No.1, 2000.
4. Alaa Hassan NorEldean \& Yasien Ghallab Gouda "Dihedral Homology of Polynomial Algebras" International Journal of Algebra, Vol.5, 2011, no.12, 569-578.
5. Zinaida A., "Relative cohomology of Banach algebras", J. operator theory, 41(1999), 23-53.
6. Connes A., "Non- commutative differential geometry. Part II: de Rham homology and non
commutative algebra", Inst. Hautes Etudes Sci. Publ. Math.No 62 (1986), 94-144.
7. Connes A. \& Marcolli, M. "A walk in the noncommutative garden", An invitation to noncommutative geometry, World Sci. arXiv:math/0601054,MR2408150 (2008).
8. Weibel C. A., "An introduction to homological algebra", Cambridge studies in Advanced Mathematics, Vol. 38, Cambridge University press, Cambridge, 1994.
9. Gouda Y. GH. \& Alaa H. N., On the trivial and nontrivial cohomology with inner symmetry groups of some classes of operator algebras, Int. Journal of Math. Analysis, Vol. 3, No.8(2009), 377-384.
10. Loday, J.-L. "Homologies diedrale et quaternique [Dihedral and quaternionic homology, Adv. In Math. 66(1987), No. 2, 119148 (French).
11. Mohamed Elhamdadi, Hermitian Algebraic KTheory and Dihedral Homology, International Journal of Algebra, Vol. 4, 2010, no. 3, 143 152.
12. Krasauskas, R. L., S. V. Lapin \& Solov`ev., Y. P. "Dihedral homology and cohomology. Basic notions and constructions", Math. USSR-Sb. 61 (1988), No.1,23-47, [Translated from Math. Sb. (N.S.) 133(175)(1987), No.1,25-48.
