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Abstract: A single-date archived QuickBird satellite imagery and oil palm yield data collected over a 12-year time 
series were used to generate empirical oil palm yield models under Malaysian conditions. Vegetation indices and 
yield data were subject to correlation analysis, followed by regression modeling and model validation using standard 
metrics. Results showed a strong positive correlation between vegetation indices and oil palm yields, across different 
planting periods. Among vegetation indices, RVI showed the best correlation with oil palm yield. Empirical models 
were found to be significant for the 1990-2002 and the 1998-1999 planting periods. Models built using RVI and 
MSAVI showed a strong fit between estimated yield and observed yield. In the 1998-1999 planting period, however, 
only RVI and GNDVI showed reliable strength in yield estimation. Overall, findings of this study suggest that 
selected QuickBird-derived vegetation indices can be used to estimate oil palm yields with reliable accuracy. 
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1. Introduction 

Oil palm (Elaeis guineensis) occupies about 
5 million ha of cultivated area in Malaysia, making it 
the single largest plantation commodity in the 
country. Malaysia produces about 45% of the world’s 
total palm oil production, and exports almost 80% of 
its total production. In 2011, the export revenue from 
crude and processed palm oil surpassed USD25 
billion (MPOB 2011).  

Due to the economic significance of oil 
palm as an industrial crop, acquisition of accurate and 
timely information about its agronomy is critical for 
realization of best management strategies. The 
majority of agronomic data, including crop yields, in 
Malaysian oil palm plantations are obtained manually 
via field surveys using destructive techniques. These 
techniques are typically labor-intensive, costly, time-
consuming and generally error-prone. Precise, real-
time, non-destructive estimation of crop productivity 
is necessary for large-scale crops such as oil palm to 
facilitate better pre- and post-harvest operations.  

Remote sensing allows for synoptic 
observation of crop fields repetitively, and is 
increasingly explored as an effective approach for 
real-time crop monitoring and crop yield estimation 
at both local and regional scales (Aboelghar et al. 
2011; Liaghat and Balasundram 2010). Remote 
sensing techniques have the advantage of facilitating 
instantaneous, non-destructive and quantitative 
assessment of crop vigor on a large scale. Application 
of remote sensing techniques to manage agricultural 
resources is rapidly increasing due to improvement in 

spatial, spectral, temporal and radiometric resolutions 
of space-borne satellite platforms. Remote sensing 
techniques have been used to detect Jack Pine 
Budworm defoliation in northwestern Wisconsin, 
USA (Radeloff et al. 1999). They concluded that 
spectral mixture analysis was a reliable technique to 
detect insect defoliation. Additionally, remote 
sensing techniques have been used for detection of 
rice panicle blast (Kobayashi et al. 2000), detection 
of anther smut disease (Microbotryum violaceum) in 
Silene dioica (Nilsson et al. 1994) and detection of 
oil palm tree growth variability in Johor, Malaysia 
(Hashim et al. 2001).  

Remote sensing techniques and technologies 
have enabled precision agriculture to quantify large-
scale spatial and temporal variability, which 
contributes to efficient trouble shooting during crop 
production. In most cases, the ability to pin down 
crop production problems and launch timely 
intervention strategies can result in higher 
profitability. The use of remote sensing techniques in 
conjunction with growth simulation models have 
become increasingly recognized as powerful tools for 
crop monitoring and yield estimation (Bauman 1992). 

Reliable yield estimation is contingent upon 
the ability to identify key agronomic variables, 
including crop maturity, vigor and physiological 
stress. Several studies have been done to estimate 
crop yield using remote sensing technology. Chang et 
al. (2005) found that canopy spectral reflectance data 
obtained at the booting stage can successfully 
estimate rice (Oryza sativa) yield. Goel et al. (2003) 
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and Uno et al. (2005) estimated corn (Zea mays) 
yield using several vegetation indices that were 
computed from compact airborne imagery. Rodriguez 
et al. (2004) showed a significant correlation between 
field reflectance measurements and wheat (Triticum 
aestivum) yield. Peng and Gitelson (2011) used 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Medium Resolution Imaging 
Spectrometer (MERIS) space-borne sensors to 
estimate gross primary production at regional and 
global scales. Fang et al. (2011) successfully 
integrated MODIS-estimated leaf area index and 
vegetation indices with CSM-CERES-Maize for 
improved corn yield prediction. In a recent work by 
Kogan et al. (2012), Advanced Very High Resolution 
Radiometer (AVHRR)-based vegetation indices 
characterizing vegetation greenness and vigor, along 
with moisture and thermal conditions were used to 
estimate yields of winter wheat, sorghum and corn in 
Kansas, USA. It was indicated that implementing a 3-
4 month lead forecast in operational field practice 
will aid farmers to manage weather vagaries, pest and 
disease problems, and nutrient uptake efficiency 
during a growing season (Kogan et al. 2012). 
Simultaneously, this would help decision-makers to 
regulate commodity pricing, marketing, and trade, 
which in turn will contribute to a more coordinated 
approach of addressing food security issues. 

Vegetative Index (VI) refers to the ratio of 
reflectance values at different wavelengths, and is 
commonly used to understand plant vigor. Many VIs 
have been developed and tested for estimation of 
biophysical parameters of vegetation (Huete et al. 
2002), quantification of vegetative biomass 
(Jaishanker et al. 2001), estimation of crop acreage 
(Dadhwal et al. 2003), assessment of crop condition 
(Kogan 1997), modeling of crop yield (Dadhwal et 
al. 2003) and precision crop management 
(Haboudane et al. 2004). 

Research on use of remote sensing 
techniques to understand oil palm productivity is 
limited. This work, which is part of an ongoing effort 
to develop remote sensing protocols for precision oil 
palm management, was aimed at understanding the 
relationship between spectral information extracted 
from QuickBird satellite imagery and oil palm yield 
collected over a 12-year time series. 
 
2. Material and Methods  

This study was conducted in a commercial 
oil palm plantation in Bukit Serampang, Johor, 
situated in the southern peninsula of Malaysia. The 
study area is geographically located at 2° 17' - 2° 22' 
N, and 102° 40' - 102° 42.5' E (Figure 1), and 
comprises 56 oil palm management blocks with a 
total acreage of 2724 ha. The average rainfall is about 

1850 mm with the highest amount of rainfall 
occurring in November and December (average > 
200 mm), while the lowest occurs in February and 
June (average < 100 mm). The management blocks 
are mostly situated on Laterite (Typic Plinthudult) 
and Marang (Typic Paleudult) soils. 
(Figure 1. Geographic location of the study area)  
 A system/map corrected and pan-sharpened 
single-date QuickBird image of the study site, 
acquired in August, 2006 was used. The archived 
image had a spatial resolution of 0.61 m (after 
resolution merge) (Laben and Brower 2000), and 
three spectral bands consisting of green (0.52–0.60 
µm), red (0.63–0.69 µm) and near infrared (0.76–
0.90 µm). Satellite image analyses were performed 
on Erdas Imagine 9.1 (ERDAS 2005) using standard 
protocols. Image georectification was carried out 
based on 37 ground control points.   
 Oil palm yield data, recorded as Fresh Fruit 
Bunches (FFB) and expressed in tons per hectare, of 
the 56 management blocks were obtained from the 
plantation management. The management blocks 
were demarcated based on planting year, which 
ranged from 1990 to 2002. The change points within 
oil palm yield time series were determined using the 
Pettitt test (Memarian et al. 2012; Pettitt 1979). 
 The four vegetation indices employed in this 
study were Ratio Vegetation Index (RVI) (Jordan 
1969), Normalized Difference Vegetation Index 
(NDVI) (Rouse et al. 1973), Modified Soil-Adjusted 
Ratio Vegetation Index (MSAVI) (Qi et al. 1994), 
and Green Normalized Difference Vegetation Index 
(GNDVI) (Gitelson et al. 1996). These vegetation 
indices were extracted in correspondence to the 
sampled plots within the 56 oil palm management 
blocks spread over 2724 ha. 
 The vegetation indices were computed using 
the following formula:  
 

                                                       (1) 

                                                   (2) 

 (3) 

                                                (4) 

where:  and  are spectral reflectance from the 

red and near infrared bands, respectively, and  is 
spectral reflectance from the green band. 
 Before performing the correlation analysis, 
the oil palm yield and vegetation index data were 
tested for normality using Shapiro-Wilk and 
Kolmogorov-Smirnov tests. The correlation between 



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com 

 

 853

vegetation index and oil palm yield was computed 
using Pearson coefficient. This was followed with 
regression analysis to generate empirical yield 
estimation models. The explanatory power of 
independent variables in the model and the estimation 
accuracy of model were assessed using the Standard 
Error of Estimates (SEE), F-test, t-test and coefficient 
of determination (R2). Empirical yield estimation 
models were generated based on the calibration data 
set and statistically significant models were validated 
using the validation data set. 
  
3. Results  

Oil palm yield data were discretized into 
three evaluation periods based on planting year 
(Table 1) so as to represent the oil palm stands as 
immature (< 5 years old), young (< 7 years old) and 
mature (> 8 years old). As demonstrated by the Pettitt 
test, there was a significant difference (at p=0.05) 
between mean oil palm yields in the 1990-1997 and 
1998-1999 planting periods. Similar difference was 
found in the 1998-1999 and 2000-2002 planting 
periods. The Shapiro-Wilk and Kolmogorov-Smirnov 
tests showed that the yield data were normally 
distributed (Table 2). However, the vegetation index 
data did not adhere to a normal distribution (Table 2), 
hence, they were treated using the Box-Cox 
transformation technique (λ=5) to ensure normality. 
After data transformation, the vegetation index data 
adhered to a normal distribution (Table 3). 

Table 1 shows the yield data discretized 
based on planting year. 

Table 2 shows the Normality test applied on 
the original yield and vegetation index data. 
Table 3 shows the Normality test applied on the 
transformed vegetation index data. 

All vegetation indices showed significant 
correlation (Table 4) with oil palm yield in the 1990-
2002 (entire 12-year time series), 1998-1999 and 
2000-2002 planting periods. In these planting 
periods, oil palm yield was best correlated with RVI. 
In the 1990-1997 planting period, however, only 
NDVI showed significant correlation with oil palm 
yield. Clearly, the 3- to 7-year old oil palm stands 
demonstrated a strong positive relationship between 
VIs and yields, as compared to the 8- to 15-year old 
stands. 

Table 4 shows the Correlation (r) between 
oil palm yield and vegetation indices across different 
planting periods.  
 Linear regression models were significant 
only in the 1990-2002 and 1998-1999 planting 

periods (Table 5). Goodness of Fit (GOF) for the 
regression of yield on NDVI and MSAVI in the 
1998-1999 interval was larger than 0.8, while that of 
RVI and GNDVI registered lesser than 0.8. The R2 
values of the empirical models in the 1998-1999 
planting period were higher than those in other 
periods. Figures 2 and 3 illustrate scatter plots and 
linear trends of the calibration data sets, 
corresponding to the 1990-2002 and 1998-1999 
intervals. 

Figure 2 shows the oil palm yield estimation 
as a function of vegetation index calibrated based on 
the 1990-2002 planting period. 
Figure 3 shows the Oil palm yield estimation as a 
function of vegetation index calibrated based on the 
1998-1999 planting period. 
 Model validation for the 1990-2002 planting 
period is shown in Table 6 and Figure 4. All four 
vegetation indices exhibited strong robustness in 
estimating oil palm yield where t-test revealed no 
significant difference between estimated yields and 
observed yields at the 0.05 level. The models 
featuring RVI and MSAVI as the estimator variable 
showed strong fits between estimated yield and 
observed yield with an r value of 0.96 and 0.89, 
respectively. 

Table 6 shows the Validation of empirical 
oil palm yield (Y) models calibrated based on the 
1990-2002 planting period. 

Figure 4 shows the Fit between observed 
yield and estimated yield in the 1990-2002 planting 
period. 
 Model validation for the 1998-1999 planting 
period is shown in Table 7 and Figure 5. Although 
the t-test indicated that all four vegetation indices 
were able to estimate oil palm yields, models 
featuring NDVI and MSAVI as the estimator variable 
recorded a weak fit (r values of 0.45 and -0.13, 
respectively) between estimated yield and observed 
yield. Meanwhile, models featuring RVI and GNDVI 
as the estimator variable showed reliable strength in 
yield estimation with an r value of 0.95 and 0.89, 
respectively. 

Table 7 shows the Validation of empirical 
oil palm yield models calibrated based on the 1998-
1999 planting period. 

Figure 5 shows the Fit between observed 
yield and estimated yield in the 1998-1999 planting 
period. 
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Figure 1. Geographic location of the study area 
 
 

 
Figure 2. Oil palm yield estimation as a function of vegetation index calibrated based on the 1990-2002 planting 
period 
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Figure 3. Oil palm yield estimation as a function of vegetation index calibrated based on the 1998-1999 planting 
period 
 

 
Figure 4. Fit between observed yield and estimated yield in the 1990-2002 planting period 
 
 
 



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com 

 

 856

 
Figure 5. Fit between observed yield and estimated yield in the 1998-1999 planting period 
 

Table 1. Yield data discretized based on planting year 
Evaluation period 1Palm age Number of yield records 2Mean oil palm yield (t ha-1) 

1990-1997 8-15 17 2.79 
1998-1999 6-7 12 2.00 
2000-2002 3-5 27 1.39 

1In relation to the acquisition date of QuickBird imagery; 2Refers to fresh fruit bunches 

 
Table 2. Normality test applied on the original yield 

and vegetation index data 

Data  
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic Significance Statistic Significance 
Yield* 0.053 0.200 0.979 0.451 
RVI 0.129 0.021 0.934 0.004 
NDVI 0.156 0.002 0.916 0.001 
MSAVI 0.170 0.000 0.895 0.000 
GNDVI 0.158 0.001 0.927 0.002 

*Significant at p < 0.05  
RVI: Ratio Vegetation Index, NDVI: Normalized Difference 
Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference 
Vegetation Index  

 

Table 3. Normality test applied on the transformed 
vegetation index data   

VI  
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic Significance Statistic Significance 
RVI* 0.095 0.200 0.963 0.083 
NDVI* 0.122 0.037 0.961 0.066 
MSAVI* 0.105 0.185 0.949 0.018 
GNDVI* 0.101 0.200 0.968 0.137 
*Significant at p < 0.05 
RVI: Ratio Vegetation Index, NDVI: Normalized Difference 
Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference 
Vegetation Index 

 

Table 4. Correlation (r) between oil palm yield and vegetation indices across different planting periods 
 Planting year  n RVI NDVI MSAVI GNDVI 

1990-2002 56 0.789** 
 

0.762** 
 

0.744** 
 

0.713** 
 

1990-1997 17 0.380 
 

0.522* 
 

0.398 
 

0.311 
 

1998-1999 12 0.895** 
 

0.831** 
 

0.761** 
 

0.884** 
 

2000-2002 27 0.617** 
 

0.599** 
 

0.611** 
 

0.559** 
 

*Significant at p < 0.05, **Significant at p < 0.01 
RVI: Ratio Vegetation Index, NDVI: Normalized Difference Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference Vegetation Index 
Note: Data cloud for each correlation is given next to the respective correlation value  
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Table 5. Regression of oil palm yield (Y) on vegetation indices based on the calibration data set 
Planting period n Vegetation Index R2 GOF F p Regression Equation 
1990-2002 37 RVI 0.491 <0.8 33.799 0.000 Y = 0.673 + (0.006 × RVI)* 
(Entire time series) 

 
NDVI 0.445 <0.8 28.013 0.000 Y = 0.597 + (56.543 × NDVI)* 

  
MSAVI 0.430 <0.8 26.419 0.000 Y = 0.119 + (17.419 × MSAVI)* 

  
GNDVI 0.339 <0.8 17.970 0.000 Y = 0.634 + (64.6 × GNDVI)* 

1990-1997 11 RVI 0.086 <0.8 0.845 0.382 Y = 1.502 + (0.004 × RVI)  
(8- to 15-year old palms) 

 
NDVI 0.209 <0.8 2.377 0.158 Y = 1.327 + (45.037 × NDVI)  

  
MSAVI 0.090 <0.8 0.894 0.369 Y = 0.72 + (15.268 × MSAVI)  

  
GNDVI 0.062 <0.8 0.595 0.460 Y = 1.914 + (32.186 × GNDVI)  

1998-1999 8 RVI 0.789 <0.8 22.376 0.003 Y = 0.465 + (0.007 × RVI)*  
(6- to 7-year old palms) 

 
NDVI 0.814 >0.8 26.321 0.002 Y = 0.341 + (66.536 × NDVI)*  

  
MSAVI 0.811 >0.8 25.795 0.002 Y = -0.086 + (19.251 × MSAVI)*  

  
GNDVI 0.761 <0.8 19.082 0.005 Y = -0.076 + (100.106 × GNDVI)*  

2000-2002 18 RVI 0.091 <0.8 1.592 0.225 Y = 1.234 + (0.002 × RVI)  
(3- to 5-year old palms) 

 
NDVI 0.058 <0.8 0.982 0.336 Y = 1.292 + (14.139 × NDVI)  

  
MSAVI 0.066 <0.8 1.131 0.303 Y = 1.166 + (4.482 × MSAVI)  

  
GNDVI 0.038 <0.8 0.633 0.438 Y = 1.34 + (13.759 × GNDVI)  

GOF: Goodness of Fit  

*Significant at p < 0.05 level based on F-test 
RVI: Ratio Vegetation Index, NDVI: Normalized Difference Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference Vegetation Index 
 

Table 6. Validation of empirical oil palm yield (Y) models calibrated based on the 1990-2002 planting period 
Empirical model: Y = 0.673 + (0.006 × RVI)  Y = 0.597 + (56.543 × NDVI)  Y = 0.119 + (17.419 × MSAVI)  Y = 0.634 + (64.6 × GNDVI)  

n 19 19 19 19 
SSE 6.409 6.897 7.524 7.993 
SEE 0.614 0.637 0.665 0.686 
R2 0.921 0.868 0.789 0.888 
t-stat 1.339 1.170 1.338 1.340 
p (t-test) 0.197 0.257 0.197 0.197 

SSE: Sum of Squared Error, SEE: Standard Error of Estimates 
RVI: Ratio Vegetation Index, NDVI: Normalized Difference Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference Vegetation Index 

 
Table 7. Validation of empirical oil palm yield models calibrated based on the 1998-1999 planting period 

Empirical model: Y = 0.465 + (0.007 × RVI)  Y = 0.341 + (66.536 × NDVI)  Y = -0.086 + (19.251 × MSAVI)  Y = -0.076 + (100.106 × GNDVI)  

n 4 4 4 4 
SSE 1.452 2.242 3.082 1.238 
SEE 0.852 1.059 1.241 0.787 
R2 0.909 0.202 0.016 0.795 

t-stat 1.955 1.638 1.348 1.887 
p (t-test) 0.146 0.200 0.271 0.156 
SSE: Sum of Squared Error, SEE: Standard Error of Estimates 
RVI: Ratio Vegetation Index, NDVI: Normalized Difference Vegetation Index, MSAVI: Modified Soil-Adjusted Ratio 
Vegetation Index, GNDVI: Green Normalized Difference Vegetation Index 
 
4. Discussions  

All four vegetation indices extracted from 
the QuickBird satellite imagery showed a strong 
positive correlation with oil palm yields in the 1990-
2002, 1998-1999 and 2000-2002 planting periods. 
However, only NDVI showed significant correlation 
with oil palm yields in the 1990-1997 planting 
period. This infers that the QuickBird-derived 
vegetation indices were more appropriate for yield 
estimation among younger (3- to 7-year old) palms 
than that of older ones (8- to 15-year old). Among the 

vegetation indices, RVI gave the best correlation with 
oil palm yield.  

Based on the correlated response between 
oil palm yields and vegetation indices, empirical 
yield estimation models were calibrated and validated 
across the yield time series. These models were 
significant in the entire 12-year time series (1990-
2002) and the 1998-1999 planting period. However, 
empirical models in the 1998-1999 planting period 
resulted in a better linear fit, as compared to models 
in the 1990-2002 planting period. In validation, the 
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models featuring RVI and MSAVI as the estimator 
variable showed strong fits between estimated yield 
and observed yield. 

From the perspective of managing oil palm 
plantations, findings from this study are in agreement 
with a landmark report by Tucker (1979), who 
concluded that the correlation of vegetation index and 
vegetation biomass (yield) will facilitate non-
destructive detection of decline in vegetation vigor, 
greenness or health.  

NDVI and RVI are well-known indices and 
are the most commonly used ratio-based vegetation 
indices (Gilabert et al. 2002; Jackson and Huete 
1991). From this study, RVI showed better 
correlation with yield than NDVI. Such a finding is 
in agreement with Aparicio et al. (2002) and Serrano 
et al. (2000). Both studies concluded that RVI is a 
better indicator than the traditional NDVI in 
estimating physiological response in wheat. The 
capability of RVI in extraction of vegetation 
information of young oil palm was demonstrated by 
Salleh (1993). 

However, NDVI was found to be better 
correlated with yields of rice (Mohd et al. 1994) and 
wheat (Singh et al. 2002), and vegetation cover 
(Elmore et al. 2000) as compared to other vegetation 
indices. According to de Wit and Boorgaad (2001), 
NDVI is the most widely used and well understood 
vegetation index. This may be driven by the fact that 
NDVI computation is simple, and possesses the best 
dynamic range and sensitivity to changes in 
vegetation cover (Gielen and de Wit 2001). Raun et 
al. (2001) reported estimates of in-season yield using 
NDVI that was well correlated in wheat. Likewise, 
Inman et al. (2007) found that NDVI has potential to 
estimate grain yield in corn. Previous studies have 
also shown that crop yields can be successfully 
estimated using NDVI (Hayes and Decker 1996; 
Rasmussen 1998) and the relationship between yield 
and spectral reflectance could be integrated into 
process-based crop models for better predictive 
power (Moulin et al. 1998).  

Thenkabail et al. (2004) indicated that the 
best spectral-based yield estimation model in oil palm 
was based on an IKONOS satellite platform, 
featuring red and near infrared bands. In our study, 
all the vegetation indices, except for GNDVI, 
featured red and near infrared bands. GNDVI 
employs the green band instead of the red band, 
which probably explains why GNDVI registered the 
lowest correlation with oil palm yield.  
 Murthy et al. (1994) found that vegetation 
indices computed from satellite imagery taken at 
panicle initiation and heading stages of rice showed a 
high correlation with yield. They concluded that 
satellite-derived vegetation indices could aid yield 

estimation in large-scale plantings. However, they 
cautioned that one single-date image representing one 
particular phenological stage may trigger difficulties 
in yield estimation due to the different planting dates 
and crop varieties commonly employed at the field 
scale.  
 However, in our study, vegetation indices 
extracted from the single-date QuickBird imagery 
performed well in yield estimation of oil palm stands 
aged between 3 and 7 years old. The strength of 
empirical models bearing RVI and NDVI within the 
entire 12-year time series (1990-2002) was possibly 
due to a larger number of combined observations 
from the 1998-1999 (n = 12) and 2000-2002 (n = 27) 
planting periods, as compared to the 1990-1997 (n = 
17) planting period. Studies have shown that 
vegetation indices such as NDVI, RVI and SAVI 
derived from 3-band multispectral imagery such as 
Quickbird or UK DMCi II cannot be correlated well 
with the age of oil palm trees because the leaf area 
index of the oil palm canopy generally stabilizes after 
10-13 years of age (Corley and Gray, 1976). The 
stabilized development in canopy results in less 
separability among mature oil palm stands, as sensed 
by satellite imagery. In addition, the relationship of 
oil palm canopy area and the age of oil palm stands 
using WorldView-2 in Africa has demonstrated a 
good relationship (R2=0.88) for stands less than 13 
years of age but no relationship was observed for 
older stands (Chemura, 2012). These findings support 
the fact that less variation in canopy and possibly 
biomass can be observed via remote sensing of 
mature oil palm stands (i.e. stands aged 13 years and 
over). It is also worth noting that the oil palm begins 
to fruit between 2.5 and 3 years after planting, and 
continuously produces fruits for the next 22 years 
with an average production of about 200 kg fresh 
fruit bunches per tree per year. Peak oil palm yields 
typically occur from 10 to 12 years after planting. 
 This study has demonstrated that selected 
QuickBird-derived vegetation indices can be used to 
estimate oil palm yields with reliable accuracy. In 
this work, the ability of selected vegetation indices, 
derived from a single-date archived high resolution 
satellite imagery, to estimate oil palm yields at the 
management block scale was demonstrated. This 
study provides an important benchmark for applying 
remote sensing technology in the management of 
plantation-scale oil palm. Oil palm yield estimation 
based on empirical models, as described in this work, 
can be computerized using a simple spreadsheet 
interface so as to facilitate optimal agronomic 
intervention, particularly with regard to crop 
harvesting, crop stress alleviation and input 
application. However, empirical models generated in 
such a manner are typically site-specific and may be 
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limited by the macro- and micro-environmental 
factors operating within the crop field at a given time. 
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