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1. Introduction 

Since the emergence of multiobjective optimiza-
tion problems at the beginning of the second decade of 
the last century, it has become a necessary require-
ment and has an important role to all areas and fields 
in the real world. From its early stages, it evolved sys-
tematically and scientifically through the genius of 
scientists and professionals in this field. It had passed 
has through several stages, and it has branched more 
into various specialized disciplines in the real world.  

The necessity proved that the entry of both of 
randomness and fuzziness (Chou et al., 2009; Bector 
and Chandra, 2005; Katagiri and Ishii, 2000; Hop, 
2007c) into multiobjective programming problems, 
fitness, goals and requirement, was because the real 
world is constantly changing, and its components in 
constant motion and unstable, and the waves of those 
components are continually superimposed. Some sci-
entists and researchers tried to explore the 
multiobjective optimization problems to go through its 
depths, thereby exploring its profundity. They came 
out with various concepts of multiobjective optimiza-
tion problems such as multiobjective stochastic pro-
gramming (Li et al., 2008; Ben Abdelaziz and Masri, 
2009; Mu˜noz and Ruiz, 2009; Aouni and T orre, 
2010; Adeyefa and Luhandjula, 2011), multiobjective 
fuzzy programming (Lotfi et al., 2009; Li and Hu, 
2009; Zhang et al., 2010) and receiving data with the 
uncertainty of information on how to deal, address and 
treat such kind of the problems and data.  

With the passage of time and the growing human-
itarian needs in real life, numerous realistic optimiza-

tion problems need to take into account the various 
multiple objectives, on the one hand, and various 
types of uncertainties, on the other hand. Thus there is 
a need to integrate the previous concepts of 
multiobjective optimization modeling systems to be 
used in multiple life problems (Iskander, 2003; 
Iskander, 2001; Hop, 2007c; Hop, 2007b; 
Rommelfanger, 2007), seeking to achieve different 
conflicting objectives, and to find approximate and 
satisfactory solution in uncertainty with fuzzy random 
circumstances(Yoshida et al., 2000; Kato and Sakawa, 
2011). Since the aim and purpose of the 
multiobjective optimization programming and its 
types is to confront the real problems modeled or for-
mulated in the scientific and systematic manner, and 
find appropriate solutions for them, from here 
emerged the concept of the best or efficient.  

Solution to the multiobjective optimization pro-
gramming. Furthermore, there is no absolute and fixed 
in the real world since everything is relative in nature, 
thus the concept of the best solution is another relative 
characteristics from one to another(Mu˜noz and Ben 
Abdelaziz, 2012; Ben Abdelaziz and Masri, 2010; 
Sakawa et al., 2012b; Sakawa et al., 2012a). So it was 
found out that certain solution may be optimized for a 
specific problem and not to be optimized for the same 
problem formulated by another decision-maker in 
different environments. Thus, studies and researches 
have been done by researchers and scholars to formu-
late the original basic problem in the multiobjective 
optimization model. They found various methods and 
approaches for this purpose and optimal solutions 
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relative to them. On the other hand they looked for a 
Pareto solution (Ben Abdelaziz, 2012; Turgut and 
Murat, 2011; Laumanns and Zenklusen, 2011) and 
defined new specific definitions to this concept. It is in 
this light that this paper presents to study the 
Multiobjective Fuzzy Stochastic Linear Programming 
Problems, and discuss the concepts related to them 
historically, especially in this century. 

This study has surveyed various studies, journal 
articles, and publications to provide a better under-
standing of the multiobjective fuzzy stochastic linear 
programming concept. This study is organized as fol-
lows: section two describes milestones and historical 
stages of multiobjective stochastic linear program-
ming problems since the beginning of the century up 
to the present; section three is the conclusion, fol-
lowed acknowledgment, and the references.  
2. Historical stages of Multiobjective Fuzzy Sto-
chastic Linear Programming Problems 

Inuiguchi and Ramik (2000) have reviewed some 
fuzzy linear programming problems and solution 
techniques. They discusses the general history, the 
introduction of approaches for fuzzy linear program-
ming, and showed how real world modeling with am-
biguity on parameters, and vagueness of aspiration, 
and preferences can represented by fuzzy models in 
two phases: the first phase is fuzzy model for fuzzy 
mathematical programming problem converted to 
fuzzy environment to interpret the problem which is 
the formulation or transformation to a usual mathe-
matical model, while in the second phase uses optimi-
zation technique to find a solution for the usual math-
ematical model in the real life. The difference between 
fuzzy mathematical models and the conventional 
mathematical models were also discussed which were 
associated with fuzzy mathematical model, and its 
solution using post optimization technique by answer-
ing the following question: is the solution valid? If 
not, the decision maker must rebuild fuzzy model, and 
improve the interpretation and re-finding a solution 
for the model. The second fuzzy mathematical ap-
proach compared with stochastic programming, 
showed the advantage, and the disadvantage of the 
fuzzy mathematical programming.  

The study by Cadenas and Verdegay (2000) 
multiobjective mathematical programming (MMP) 
problems or vector optimization problem (VOP) and 
fuzzy multiobjective optimization (FMO) problem 
showed how these problems are transformed into uni-
objective mathematical programming using either the 
weighting approach or the constant approach (��� −
���������, � − ���������� �������) to find the set 
of non-inferior solutions. Parallel to this FMO prob-
lem were studied which is an extensions of VOP in the 
fuzzy environment in its cases. Fuzziness in the con-
straints in two different methods of fuzzification in the 

right hand side of the constraints, the other of both 
coefficients of the technological matrix, including the 
right hand side. Also in the second case, fuzziness in 
the objective functions was developed, and stated as 
follows: 

min [��
�

x, … , ��
�

x]
�. �.

�� ≤ �
� ≥ 0

 

where each ��
�

, j = 1, … , n  is an N-vector of fuzzy 

numbers. On the other side the existence of the fuzzy 
goals assumed, and defined as: 

���� � ∈ ��

�. �.
�� ≤ � ��, � = 1, … , � 

�� ≤ � �, � ≥ 0

 

  
where ≤ �  meaning that there is a membership func-

tions ��: � → [0.1], express that for all � ∈ ��accom-
plishment degree of the ��� constraint to obtain the 
formal problem as follows:  

min [�� �, … , � � �]
�. �.

�� ≤ � ��(�)
� ≥ 0, � ∈ [0,1] 

 

where ��� is an m-vector constraint inverse of the 
membership functions ��, � = 1, … , �  for each α ∈ [0, 
1], and this VOM can be solved elegantly. In addition 
to obtaining VOM the index of Adomo or thats of 
Yagar can be recourse as evident in the study.  

During the waning years of the century and the 
beginning of Buckley and Feuring (2000), they first 
defined the fully fuzzified linear programming (FFLP) 
problem and suggested a solution for it. They have 
considered the parameters, so as the variables that are 
fuzzy numbers in the maximizing fuzzy model and has 
proven that the fuzzy flexible programming can be 
used to explore the set of all un-dominated solutions 
to the multiobjective fuzzy linear programming prob-
lem through an evolutionary algorithm. So in their 
study, the FFLP problem is defined as:  

max �̅= � �
�����

���+ ⋯ + � �
��� ��

����

�. �.
���
���� ��

���+ ⋯ + � ��
���� ��

���� ≤  ��
� , � = 1, … , �

��
�  ≥ 0, ∀�

 

�. �. 
where the ��,������

����, ��� ��
�  are the triangular fuzzy num-

bers, so as ��
����, and code to the FFLP problem as: 

max �̅ = � �̅�

�. �.
��̅ � ≤ ��

�� ≥ 0

 

where � =̅ (��
���, … , � �

��� ),  �����= (��
���, … , � �

���� ), ����� =
(��
���, … , ��

��� ), � =̅ ����
����� as m×n matrix of fuzzy num-



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com  

618 

bers. They explained that a bar over a capital letter 
denoting a fuzzy subset of the real numbers.  

They used the fuzzy properties, mathematical 
analysis, and mathematical logics to explain the mean-
ing of maximization � ,̅ including inequalities of the 
both sides of the constrained programming model, and 
handled the program and searched for the optimal ��. 
They found out the un-dominated set of solution to the 
program, i.e. approximate unbounded solution, em-
ployed the evolutionary algorithm, using fuzzy trian-
gular properties, and the combined mathematical 
analysis and logics. They also used concepts like 
supremum, infimum, maximizing fuzzy number and 
its membership function value, big the area and small 
area under the triangular-shaped fuzzy numbers. 

They changed the programming problem in the 
case of maximizing fuzzy number, the value of the 
objective function into a multiobjective fuzzy linear 
programming problem, and to a single objective pro-
gramming problem in order to find the un-dominated 
solution. The solution algorithm of their evolutionary 
algorithm is changing the maximum value of the ob-
jective into multiple objective functions, and has 
looked for un-dominated set of solutions for the fully 
fuzzified programming.  

The advantage of the method is obvious since 
some or all parameters and variables may be extended 
to the trapezoidal fuzzy number. On the difficulty of 
showing �  ̅can add extra constraints to the feasible 
region in the closed intervals to overcome this issue. 
The proposal approach can be extended to other kinds 
of the fuzzy programming like non-linear fuzzy pro-
gramming. 

Few years before the beginning of this century, 
fuzzy programming for multi-level linear program-
ming problems was of interest to researchers. Some 
has developed this kind of the problems and have been 
constructed and modeled (Y.J. Lai, Hierarchical opti-
mization: a satisfactory solution, Fuzzy Sets and Sys-
tems 77 (1996) 321-335, and H.S. Shih, Y.J. Lai, E.S. 
Lee, Fuzzy approach for multilevel programming 
problems, Comput. Oper. Res. 23 (1996) 73-91.). The 
fuzzy goals of these models were determined by both 
the objective function and decision variables at the 
upper level, and when the fuzzy goals are inconsistent, 
the undesirable solutions are obtained and the produc-
tion of these solutions, depends on Stackelberg solu-
tion to solve fuzzy multi-level programming problem 
which there are three categories; the vertex enumera-
tion approach of Kuhn-Tucker, and the penalty func-
tion approach. These approaches lead to a solution to 
an undesirable one due to its inconsistency as men-
tioned above between determining the fuzzy objective 
goals and the decision variables.  

To overcome this issue, Sakawa et al. (2000b) 
proposes an interactive fuzzy programming for multi-

level linear programming problems with fuzzy param-
eters. This interactive method was proposed after 
eliminating the fuzzy goals for decision variables and 
determining the fuzzy goals of the decision maker at 
all of the levels. A satisfactory solution can be derived 
by updating the degrees of satisfaction on the decision 
maker who considers the balance among whole levels 
of the problem, and the feasibility of the method has 
been proved in the paper.  

Ringuest et al. (2012) presented a paper proposed 
a sampling-based method for generating 
nondominated solutions in stochastic multiobjective 
mathematical programming (MOMP) problems which 
is applicable to both cases of continuous and discrete. 
Supposed that the objective function coefficients are 
random with known probability distribution or can be 
approximated, the method can generals the 
nondominated solution, and all the approach pro-
gramming to solve MOMP problems can be applica-
ble in this proposed method, exception PROTRADE 
method can be applying for this method if the proba-
bility distribution acceptable or agreeable to formulat-
ing as a chance constraints.  

The method is extension of Sobol’s method 
(Sobol, I.M., 1992a. A global search for multicriteria 
problems. In: Goicoechea, A., Duckstein, L. and 
Zionts, S. (Eds.), Proceedings of the Ninth Interna-
tional Conference. Springer, New York, pp. 401-412, 
Sobol, I.M., 1992b. An efficient approach to 
multicriteria optimum design problems. Survey of 
Mathematics for Industry 1, 259-281.) for stochastic 
and deterministic that modeled the parameter space 
investigation (PSI), and can solves the 0 − 1 problems 
for more than ten variables.  

Dhillon and Kothari (2000) attempted to solve no 
inferior surface of the multiobjective thermal power 
dispatch problem and employed the surrogate worth 
trade off method to choose the best solution. Hota et 
al. (2000) formulated �i-objective fuzzy functions and 
how finding the best value optimal solution for it by 
the scale value of the membership function in the in-
terval (0, 1) by giving minimax of it, as follows:  

Max {���������
�

; � = 1, … , ��; � = 1, … , 2��� + 1} 

where 2���  is the number of vertex points of  (� −
1)− dimensional hypercube.  

Yoshida et al. (2000) discussed the fuzzy random 
variables in the multiobjective stochastic program-
ming, and its optimal fuzzy stopping. The 
multiobjective programming approach with chance 
constraints and its right hand sides are normal random 
variables where the constraints have a combined prob-
ability distributions has been modeled and assumed by 
Sinha (2003). On the other hand, the special kind of 
fuzzy mathematical programming (FMP) approach, 
which is multilevel programing (MLP) problems with 
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N levels, namely, bi-level programming (BLP) prob-
lems considered and solved by Sinha and Biswal 
(2000).  

Dubois et al. (2000) outlined of the likeness be-
tween multi-criteria decision making problems, and 
uncertainty decisions, and emphases of the discussed 
examples for each usually separate and, independent 
examples that various and different solution tech-
niques may be applicable for each kind of problems. 
Ringuest et al. (2012)provided three different tech-
nique solution to solve deterministic multicriteria op-
timization problems can be selected as a favorites 
method by the decision maker are; the prior, progres-
sive, and posterior articulation.  

An interactive process contains STEM which is 
the type of Progressive articulation method presented 
by Sun et al. (2000) Stam to help the decision maker 
to avoid evaluate utility function. An interactive fuzzy 
satisficing method based on optimal expected model 
for multiobjective linear programming problems with 
random variable coefficients was studied and modeled 
by Sakawa et al. (2000b).  

The result of the fuzzy transformation is the op-
timization programming problem called stochastic 
linear programming with linear partial information on 
the probability distribution (SPI), the equivalent de-
terministic is the standard linear programming (LP) 
problems when the stochastic transformation on the 
SPI has been ran out by using a chance constrained 
approach and a recourse approach Ben Abdelaziz and 
Masri (2000).  

In many conditions, crisp data are undetermined 
to model real-life states. Since human requirements 
including vague and cannot approximation his prefer-
ence with an exact numerical value. So in this circum-
stance a more realistic approach may be to use linguis-
tic valuations instead of numerical values (Chen, 
2000; Herrera and Herrera-Viedama, 2000), thus the 
fuzziness in decision data collection decision-making 
process were considered by Chen (2000), and he used 
linguistic variables to measure the weights of all crite-
ria, and assessments of each alternative with respect to 
each criteria.  

Mohammed (2000) has provided similarities and 
differences in dealing with hard stochastic program-
ming problems through simple and related fuzzy so 
asSinha and Biswal (2000) in the same time.  

In portfolio selection with the application of 
multiobjective stochastic programming problems, 
Ogryczak (2000) has extended Markowitzs method 
(Markowitz, H., 1952. Portfolio selection. The Journal 
of Finance 7, 77-91.), and developed a multi-criteria 
linear goal programming. The fully fuzzy linear pro-
gramming problem with all fuzzy numbers in its pa-
rameters and variables has been studied by Buckley 
and Feuring (2000) and converted the problem into 

multiobjective fuzzy linear programming problem. 
They have proposed the supple programming method 
which is appropriate to discover undominated set to 
the multiobjective programming, and suggested fur-
ther with an evolutionary algorithm to deal the supple 
programming method.  

The modality measures in fuzzy optimization 
problems have been used by Inuiguchi et al. (2001) 
which combines fuzzy goals and fuzzy decision space.  

Based on his pre-study (H. Katagiri, H. Ishii, T. 
Itoh, Fuzzy random linear programming problem, in: 
Proceedings of Second European Workshop on Fuzzy 
Decision Analysis and Neural Networks for Manage-
ment, Planning and Optimization, 1997, pp. 107-115), 
Katagiri and Ishii (2000) have extended the fuzzy ran-
dom programming (FRP) model which considers the 
coefficients of an objective function of a linear pro-
gramming problem as fuzzy random variables based 
on possibilistic programming (PP) model separation 
and F-model. Mandal and Maiti (2000) considered a 
market place as important as it has its vital role for 
business, and have considered the multi-item invento-
ry models in the marketplace in crisp and fuzziness 
situations.  

Kouwenberg (2001) has developed and tested the 
scenario generation methods for asset liability man-
agement which is considered a financial planning 
problem of a large Dutch pension fund. Considered 
both were the randomly sampled event trees, and trees 
that fit the mean, and covariance of the undertaking 
distribution in each node.  

Comparing the average cost and the risk of the 
stochastic programming policy has resulted into a 
simple fixed model and showed that the performance 
of the multistage programming problems can be im-
proved strictly by choosing a suitable scenario. On the 
other hand, developed and tested methods in con-
structing even trees for ALM models that are rolling 
horizon simulations, indicate that the random sam-
pling method could lead to excessive asset mix 
switching, and spurious profits.  

Mohan and Nguyen (2001) came up with a meth-
od called Preference Level Interactive Method 
(PRELIME) for solving multiobjective fuzzy-
stochastic programming (MOFSP) problems, and con-
sidered MOFSP problem as: Consider MOFSPP of the 
type:  

1. ��� ��� � � �(�)⨁ … ⨁� �� � � �(�), � =

1, … , �,  
2. ��� ��� � � �(�)+
⋯ , +� �� � � �(�), � = 1, … , �, � =
���, … , � ��, �. �.  

3. ����  � � �(�)⨁ … ⨁� ��́ � � �(�)(�)≤

�� ́� , �̀ = 1, … , �̀ ,  
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4. ����
� � �(�)+ ⋯ +  � ���

� � �(�) ≤

���,� , � ̀ = 1, … , � ̀, 
5. �� ≤ � � ≤ � � , � = 1, … , �  

where ��(�)∀�, are linear/nonlinear functions of 
��, … , � �  in crisp environment. Superscript ∼  and ∧ 
stands for fuzziness and randomness respectively. 
Symbol ⊕  denotes extended addition in fuzzy envi-
ronment (In case no misunderstanding, instead of ⊕  
symbol + may be used).  

In their study, a fuzzing method was presented to 
solve multiobjective fuzzy programming (MOFP) and 
multiobjective stochastic programming (MOSP); the 
first real-life modeling of multiobjective optimization 
problems in fuzzy environment, and the source of un-
certainties is fuzziness, while the second problem in a 
stochastic environment with types of uncertainties 
related to randomness. The PRELIME method for 
solving MOFSP problems can be applied to linear as 
well as nonlinear problems with real/integer variables 
having three mechanisms:  

1. Interpretation and treatment of fuzziness, ran-
domness and collection of fuzzy goals are derived, 

2. Interactive phase to help the DM choose his/her 
preference levels and modifying these step by step 
looking at Pareto optimal solution, and 

3. Computational algorithm for solving the result-
ing single-objective programming problem in crisp 
environment occurring in each interactive phase dura-
tion.  

In PRELIME, fuzzifing has been proposed for the 
treatment of stochastic objectives/ constraints. The 
stochastic objectives are treated on the basis of ex-
tended E-method, and the stochastic constraints on the 
basis of fuzzified chance constrains. Both the stochas-
tic objectives and stochastic constraints can be treated 
in a fuzzy environment providing an opportunity for 
trade-off of fuzzy and stochastic objective functions, 
and constraint functions. The method is simple but 
effective in supporting the DM.  

Some programming problems application have 
been applied (Tilmant et al., 2001a; Tilmant et al., 
2001b) with fuzzy stochastic dynamic programming 
(FSDP) model to the reservoir process problems. 
Stanciulescu (2001) applied some real life applica-
tions, especially the optimal viable heating system for 
a certain house.  

The network flow problem presented by Ragsdale 
(2001) describes the recycling operation of used office 
papers. Chen and Tsai (2001a) suggested the additive 
approach for the deterministic crisp model with 
preemptive priority structure where the decision mak-
er can consider priority for the purpose constraints in 
any environment system, and the additive structure 
can be used to obtain the maximum value of the mem-
bership function.  

Further, they presented an important overview of 
fuzzy goal programming. Based on some previous 
studies (M.L. Hussein, An iterative-approach to fuzzy 
chance-constrained parametric goal programming, 
The Journal of Fuzzy Mathematics 5 (1997) 793803, 
R.H. Mohamed, A chance constrained fuzzy goal pro-
gram, Fuzzy Sets and Systems 47 (1992)183– 186), 
Iskander (2001) has made some contributions in the 
fuzzy stochastic multiobjective programming (FSMP) 
problems.  

Caballero et al. (2001) found the efficiency con-
cept solution associated with prime stochastic optimi-
zation problem, and the strong relationship between 
them. This is based on pre-study which provides that 
there is a core relationship between these two concepts 
when they are stated and proved by some theorems 
which are corollary to Caballero et al. (2000). Based 
on utility function and mean-variance model, a model 
of stochastic goal programming (SGP) was proposed 
by Ballestero (2001).  

Lately, dealing with fuzzy programming prob-
lems and solving it, has been the concern and has at-
tracted great attention (Chanas and Zielinski, 2000; 
Chiang, 2001; Maleki et al., 2000; Jamison and 
Lodwick, 2001). Many studies faced great challenges 
while converting the original problem into its equiva-
lent standard LP problems. For example, the signed 
distance method can convert the fuzzy linear pro-
gramming (FLP) problem into a conformist determin-
istic linear programming LP problem as the method of 
ordinary fuzzy numbers used by Chiang (2001), and 
the expected mid- point approach which was proposed 
by Jamison and Lodwick (2001).  

Yao and Wu (2001) in their signed distance 
method, used defuzzifing method to obtain results 
between fuzzy numbers and fuzzy stochastic variables 
using the absolute relationship between changed 
points of fuzzy numbers. The big challenge was the 
expected mid-point of fuzzy numbers which was pro-
posed as the method of ordinary numbers to convert 
the fuzzy linear programming (FLP) problem into 
conformist deterministic linear programming LP prob-
lem and finding an optimal solution for it(Jamison and 
Lodwick, 2001).  

Kofler (2001) showed that in general cases, the 
statistical tools failed and has not enable to provide an 
exact or deterministic evolution of the different prob-
ability distributions. By focusing only on probability 
and possibility at the same time, a fuzzy random 
chance constrained programming formulation was 
proposed (Liu, 2001a; Liu, 2001b).  

Brar et al. (2002) introduced an interactive meth-
od to establish a compromise with non-inferior solu-
tion to optimization problem, which contains more 
than one objective function such as cost and emission 
using a weighted technique. The method employed the 
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evolutionary optimization technique which performs 
search weight age pattern to get the best or optimal 
solution in non-inferior domain.  

They pointed three major improvements in prob-
lem solving and showed two titles broadly grouped in 
the multiobjective programming problems solution 
methods: the non-interactive methods and the interac-
tive methods. On the other hand, it has determined 
three properties of the interactive method such, (i) find 
a non-inferior solution, (ii) interact with DM to get 
and obtain his/her response to the solution, and (iii) 
repeating previous steps (i) and (ii) to satisfy an opti-
mal solution. It showed that the interactive methods 
are mostly used to find non-inferior solutions, and 
proved that the noninferior solution of multiobjective 
mathematical problems is one when improvement of 
one objective function is to be achieved if the expense 
on the other has occurred.  

The intent of Brar et al. (2002) is to solve 
multiobjective thermal power dispatch problem with 
more than two objective functions like the economy 
and the impact to environment due to SO2 and some 
others. The multiobjective programming problems are 
transformed into a single programming problem using 
weighted method. Implied fuzzy decision making the-
ories deals with vagueness or fuzziness is intrinsic in 
constraints and objectives. Thus fuzzy methodology 
has been put up for solving a mathematical problem 
containing or involving multipurpose objectives and 
selecting the best compromise solution for the prob-
lem.  

To reduce the enormous amount of computational 
time, the evolutionary optimization approach proposes 
to look for the optimal weight pattern in the domain of 
non-inferior solution by forming hypercube of weight 
combination around the initial searching point. On the 
other hand, the continuity of the interactive steps or 
process employing another hypercube around the rela-
tively preferred point was compared with the previous 
one; this process is repeated continually until the best 
compromise solution is attained.  

It has been proven in the study that the optimal 
solution for the multiobjective problem was obtained 
by looking for the optimal weightage pattern of objec-
tive functions, with the evolutionary optimization 
technique and the optimal non-inferior solution with 
the maximum satisfaction level which was obtained 
from the membership function.  

Tilmant et al. (2002) presented a fuzzy stochastic 
dynamic programming (FSDP) approach to derive 
steady-state multipurpose reservoir operating policies. 
The methodology under the FSDP problems has four 
steps:  

1. Construct membership functions, 
2. run several FSDP models at the same time with 

different parameters, 

3. Identify selection criteria, and 
4. Perform a sensitivity analysis to determine the 

optimal compensation parameter by running continu-
ous re-optimization programming models with mem-
bership functions which was developed in step 2.  

The general optimization programming method 
for deriving efficient reservoir operating has these 
assumptions: (i) the operating objectives as flexible 
constraints, (ii) hydrologic conditions, and (iii) the 
planning period should be the unbounded. The flexi-
bility of the operating objectives allows researchers to 
capture decision makers preferences on the solution, 
thus the feasible solutions could be examined partial-
ly. It shows that the stochastic dynamic programming 
(SDP) is a powerful approach for optimizing reservoir 
operation problems.  

Also, SDP can be fuzzified to capture the impre-
cise nature of the objectives and/or constraints. Fuzzy 
logic and fuzzy set theory provide the frameworks for 
explaining the vagueness of the objectives, and the 
reasoning approximation by implementing the basic 
two concepts: (i) utilization of fuzzy-rule based on the 
If-Then principle, and (ii) the reliance on fuzzified 
traditional optimization techniques like linear pro-
gramming (LP) and the dynamic programming (DP).  

The study, as pointed out in the beginning having 
a methodology of four steps, has operating objectives 
which is considered as flexible constraints of a sto-
chastic optimization problem over unbounded pro-
gramming. The fuzzy DP equation has been general-
ized by: (i) directly incorporating the probability dis-
tribution of the hydrologic inputs, (ii) the unbounded-
ness of the planning horizon clearly considered, and 
(iii) allowing compensatory connectives to modeling 
multiobjective decision-making. Thus the reservoir 
operating problem is analyzed as infinite sequences of 
decisions, implies that current and future decisions 
may impact any other.  

Moreover, the study pointed out that the tradi-
tional framework for the fuzzy decision-making is 
based on max/min optimization problem unsatisfacto-
ry system, and it addresses the issue when implement-
ing FSDP algorithm like compensation, required, 
time, and systems study by considering the levels of 
both the independence of the systems status and time-
invariant. Hence, the level itself ought to be deter- 
mined by sensitivity analysis comparable to the sys-
tem using criteria, like reliability, and resiliency of 
simulated system optimization.  

The fuzzy linear programming duality has been 
studied by Nishizaki and Sakawa (2001) and Bector 
and Chandra (2002). Fuzzy stochastic linear pro-
gramming (FSLP) problems was converted into a 
standard LP problem by defuzzifing and 
derandomizing fuzzy random variables at the same 
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time or simultaneously in the Random fuzzy depend-
ent-chance programming method(Liu, 2002a).  

The maximization of linear programming prob-
lems considered by some researchers (Caballero et al., 
2001; Chen et al., 2002; Dupacov´a, 2002) empha-
sized that in real life, the researcher often encounters 
the difficulty to determine all the parameters in the 
objectives, matrix coefficients of the constraints, and 
RHS of the matrix constraints.  

It offers two different paths to modeling; the first 
is the imprecision of some data that may be modeled 
by probability distribution, where SLP follows uncer-
tain parameters which are probability distribution of 
maximized SLP problems through random variable 
parameters only in the constraints coefficients, and 
objective functions coefficients which are random 
variable parameters. The second is the imprecision of 
some data modeled as fuzzy sets where FLP problems 
follow the uncertain parameters fuzzy sets provided 
that both sides of the constraints have the same fuzzy 
numbers or fuzzy intervals.  

Yoshida (2003) presented a multiobjective fuzzy 
stopping model of the fuzzy stochastic systems. The 
author discussed the multiobjective fuzzy stopping 
problem, evaluated the randomness by probabilistic 
expectation, and fuzziness by linear ranking functions. 
Also discussed is the optimization problem by fuzzy 
stopping times. On other hand, Pareto optimal fuzzy 
stopping times for multiobjective provides the intro-
duction of the notion of λ−optimal stopping times.  

For his part, Iskander (2003) introduced and 
transformed stochastic fuzzy linear programming 
problem using fuzzy weighted objective function. In a 
stochastic fuzzy linear multiobjective problem, it con-
sidered the right-hand sides of the constraints as inde-
pendent random variables with known distribution 
function. First, to obtain the equivalent deterministic 
fuzzy linear programming model, the constraints in 
the model must be transformed using triangular/ trap-
ezoidal fuzzy numbers, utilizing the chance constraint 
approach, while the left-hand side coefficients, includ-
ing the objective function coefficients are considered 
fuzzy numbers.  

Three criteria used in the comparison are the 
dominance possibility, strict dominance possibility, 
and strict dominance relation. Weights and coeffi-
cients in the fuzzy objective function are considered as 
fuzzy numbers with similar or different membership 
functions. The approach allows the DM to determine 
the value of θ, and α in choosing the most suitable 
dominant criterion. The author showed that this ap-
proach is applicable in different fields like economics, 
industrial engineering, management...etc.  

Stanciulescu et al. (2003) defines multiobjective 
fuzzy linear programming problem with fuzzy deci-
sion variables which sums up to a constant as follows: 

���� = ��
�(�) = ��� � = � ��(�)

= ��� � � ���� � �

�

���

, � = 1, … , �

�. �.

��� (�) = � ���� � � ≤ ��
� , � = 1, … , �

�

���

� ��

�

���
= �

�� ≥ 0, � � ∈ �, � = 1, … , � 

 

where� = (��, … , � �), the n− dimension vector of 

the crisp decision variables: ��
� (�), … , ��

� (�) the fuzzy 

linear objective functions: ��� = (���,� … , � ��� ) ,, the fuzzy 

coefficients of the objective functions,  ��� =

(���,� … , � ��� )  the fuzzy coefficients of the left side of 

the fuzzy linear constraints, ��
�  the fuzzy coefficients 

of the right side of the fuzzy linear constraints, � is a 
real positive constant. 

Stanciulescu et al. (2003) proposed a method us-
ing fuzzy decision variables with joint membership 
function instead of crisp decision variables, consider-
ing lower-bounded fuzzy decision variables that setup 
the lower bounded decision variables, and the general-
izing to lower-upper bounded fuzzy decision variables 
that setup the upper bounded decision variables too.  

Besides the optimal solutions, the method sup-
plies the decision-maker regions containing potential 
satisfactory solutions around the optimal solutions. 
The results of the optimal solution are closely related 
to the special kind of the problems they are coping 
with. The method assists the choice of crisp decisions 
among the fuzzy solutions. The objectives of the 
multiobjective fuzzy linear programming was 
defuzzified by means of the compensation method, 
and the constraints have been defuzzified by a worst 
case by an interactive method and multi-attribute utili-
ty theory (MAUT). On the other hand, it described the 
fuzzy coefficients of the optimization problem by flat 
fuzzy numbers (fuzzy intervals).  

Sinha (2003) assumed a multi-level linear pro-
gramming problem, and fuzzy mathematical pro-
gramming (FMP) approach applied to solve the sys-
tem. The FMP method was for the objective functions 
minimizing linear the use of membership functions.  

The modified method provides a sufficient solu-
tion which is approximated to the ideal solution for all 
individual DM. The method is a higher order multi-
level programming problems (MLPP) applicable to 
pragmatic and logical in calculating the upper/lower 
bounds in max/min objective functions. This method 
takes successive lower lever at any iteration. In the 
study, the value of λ reduces when more levels are 
accounted. It is observed that the FMP is simple to 
implement, interactive, and applicable to MLPP, as 



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com  

623 

well as to multi-level decentralized programming 
problem (MLDPP).  

It is also noted that through the decision-making 
process from the top to the bottom level, the last level 
become important. This is due to the decision vector 
under the control of the latest/lower level tolerance 
limits not given by the DM. Hence, the decision vec-
tor remained unchanged or approximates its value in 
its solution. At a higher level, some tolerance were 
given by the decision vectors so they are free to move 
in the tolerance limitations, and these tolerance levels 
can assumed as variables, while the system can be 
optimizing.  

Novak and Ragsdale (2003) introduced a decision 
support methodology for identifying linear program-
ming (LP) problems robust solutions involving sto-
chastic parameters and multi-criteria. The aim of the 
study is to develop clearly understood methodology 
for solving LP problems with stochastic parameters 
and multiple criteria in spreadsheets.  

The study shows three approaches to solving sto-
chastic programming. The first approach deals with 
probabilistic or chance constraint that constrained the 
probability of infeasibility to be no bigger than pre-
specified value. The second method provides model-
ing future response or recourse which consists of in-
formation about a process after the observation of 
some random event, and the third is solving stochastic 
programming problems containing scenario-based 
analysis.  

It also shows that the advantages and the disad-
vantages of these three approaches. On the other hand, 
there are three techniques for solving deterministic 
multi-criteria optimization problems from the perspec-
tive of stochastic programming; these are the prior 
articulation methods, progressive articulation meth-
ods, and posterior articulation methods. Finally, over 
their proposed methodology, they introduced that Ex-
cel software could be a stochastic programming tool. 

Sakawa et al. (2003) have focused on 
multiobjective linear programming (MLP) problems 
with random variable coefficients in objective func-
tions and constraints. It employs stochastic program-
ming based on probability theory and fuzzy program-
ming representing the ambiguity based on fuzzy con-
cepts. An interactive fuzzy satisficing method for the 
expectation model was introduced after fuzzy goals of 
the decision maker for the objective functions have 
been incorporated. The optimal solution has been ob-
tained based on M-Pareto optimal solution set, and 
investigated the feasibility of the method demonstrat-
ed.  

In the fuzzy and stochastic environment which 
consist of cooperation between fuzzy stochastic sys-
tems with sequences of fuzzy random variables, Yo-
shida (2003) proposed multiobjective fuzzy stopping 

model applicable to the notion of fuzzy stopping times 
based on pre-study (Y. Yoshida, M. Yssuda, J. 
Nakagami and M. Kurano, Optimal stopping problems 
in a stochastic and fuzzy system, J. Math. Analy., and 
Appl. 246, 135–149, (2000)).  

The authors analyzed the multiobjective stopping 
model for fuzzy stochastic systems as extension re-
sults of the classical stochastic systems (J.P. Aubin, 
Mathematical Methods of Game and Economic Theo-
ry, North-Holland, Amsterdam, (1979), and Y. 
Ohtsubo, Multi-objective stopping problem for a 
monotone case, Mem. Fac. Sci. Kochi Univ. Ser. A 
18,99–104, (1997)), and gave Pareto optimal fuzzy 
stopping time for the multiobjective fuzzy stochastic 
model depended on notion of λ− optimal stopping 
time.  

On the other hand, Inuiguchi et al. (2003) studied 

the fuzzy inequalities of the type ��� ≲ �� , and sug-
gested an approach to analyzing the system which 
consists such kinds of inequalities based on other stud-
ies (M. Inuiguchi, H. Ichihashi, Y. Kume, Relation-
ship between modality constrained programming 
problems and various fuzzy mathematical program-
ming problems, Fuzzy Sets and Systems 49 (1992) 
243–259, M. Inuiguchi, H. Ichihashi, Y. Kume, Some 
properties of ex- tended fuzzy preference relations 
using modalities, Inform. Sci. 61 (1992) 187–209, M. 
Inuiguchi, H. Ichihashi, Y. Kume, Modality con-
strained programming problems: a uniEed approach to 
fuzzy mathematical programming problems in the 
setting of possibility theory, Inform. Sci. 67 (1993)93–
126) which are extends directly from another ap-
proach to study these inequalities of the fuzzy system 
(D. Dubois, H. Prade, Ranking fuzzy numbers in the 
setting of possibility theory, Inform. Sci.30 (1983) 
183–224).  

There are attempts by Liu to obtain the standard 
LP problems and solving it from the fuzzy stochastic 
programming problems by performing the defuzzify 
and derandomize, especially calculating the expected 
value of fuzzy random variables but they are too com-
plex and time consuming(Liu, 2001a; Liu, 2001b; Liu 
and Liu, 2002; Liu and Liu, 2003).  

Iskander (2004a) presented and solve certain 
structure by utilizing the chance constrained approach 
and additive criterion. The probabilistic fuzzy con-
straints are presented and the stochastic constraints 
have been transformed into equivalent deterministic 
form by utilizing the chance constrained approach. 
The decision-makers levels of satisfaction are ex-
pressed in the concept of fuzzy relation with three 
cases: when the decision-maker is fully satisfied, 
when the decision-maker is almost satisfied, and when 
the decision-maker is not satisfied. 

 On the other hand, an additive approach has been 
suggested to know if the preemptive priority structure 
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is determined or not. Thus the idea of the determinis-
tic-crisp model within/without preemptive priority 
structure was presented. In the first case, the decision-
maker can set priority ranks for the goal constraints in 
any system constraints, and the concept of the additive 
model is to maximize the membership function for 
every goal constraint; while in the second case is 
when the decision-maker does not able to precisely 
determine the preemptive priority structure, then the 
fuzzy weighted either as trapezoidal or as triangular 
fuzzy numbers should be assigned for the achievement 
degrees of the various goal constraints.  

Finally, the approach allows the decision-maker 
to determine a fuzzy relative for any goal with respect 
to the other goals and helps him/her to avoid infeasi-
ble solutions which may happened if the model with 
preemptive priority structure was used.  

Meanwhile, Iskander (2004b) studied, defined, 
and solved stochastic fuzzy multiobjective linear frac-
tional programs by suggesting the possibility of pro-
gramming approach. Considered programs are fuzzy 
linear fractional objectives and stochastic fuzzy con-
straints. The coefficients and scalars in both numerator 
and denominator in the objective functions are fuzzy 
numbers that can either be trapezoidal or triangular, so 
as to the fuzzy coefficients in the left hand side of the 
constraints, while the right hand side of the constraints 
were considered independent random variables with 
known distribution functions.  

The approach used to transform the program into 
crisp deterministic was mixed using chance con-
strained approach and the possibility programming 
method, as well as employing the prior method in the 
case of exceedance possibility or another strict 
exceedance possibility. In the study, two propositions 
were stated and employed for crisp constraints that 
represent the decision space, and the other is for the 
solution infeasibility of the model to the case of strict 
exceedance possibility. It showed that the suggested 
approach is applicable efficiently in small/large prob-
lems in the case of single objective or multiobjective 
functions. The probability maximization model pre-
sented by Sakawa et al. (2004) was aimed to study 
multi- objective linear programming problems with 
random variable coefficients in objective functions 
and/or constraints. This is the method used to maxi-
mum probability that each objective function becomes 
a determined value with chance constraints conditions.  

The method is focused on multiobjective linear 
programming problems with uncertainty in both the 
objectives and the constraints in order to transform the 
stochastic programming problems into deterministic 
ones. This approach considers the decision maker has 
a fuzzy aim for any one of the objective functions and 
has determined the fuzzy purpose. An interactive 
fuzzy satisficing method was presented and reference 

membership levels were updated to derive a satisfic-
ing solution for the decision maker. The method im-
plemented in several steps is to obtain M-Pareto opti-
mal solution and trade-off rates among membership 
functions by using the Lagrange function and the 
Kuhn-Tucker necessary theorem.  

Urli and Nadeau (2004) presented a paper study-
ing multiobjective stochastic linear programming with 
partial uncertainty. The proposed a scenario approach 
is the called PROMISE/ scenarios. The study deals 
with situations which are modeled by a universal sce-
nario approach without assigning probabilities of 
those scenarios by DM. The researchers suggested 
methods were based on scenarios on multiobjective 
stochastic linear programming problems under partial 
uncertainty considering that the probabilities of those 
scenarios are known. The study’s new pragmatic 
method PROMISE/scenarios deals with partial uncer-
tainty, and has supposed that the probabilities of those 
scenarios are incompletely known.  

The algorithm of the proposed method has two 
main phases: the modeling phase has the 
multiobjective stochastic linear programming prob-
lems with partial uncertainty, the transformation of 
each stochastic objective functions, and stochastic 
constraints to obtain an equivalent deterministic 
multiobjective programming problem. The second 
phase begins with the interactive procedure by build-
ing the pay-off table to obtain the first compromise 
solution by decision to satisfactory compromise if it 
has been obtained or not. If the DM gets and affirma-
tive answer then the problem was solved. Otherwise 
s(h)e attempts to obtain another compromise by im-
proving objective/scenarios, and then s(h)e tries to 
relax the constraints/scenarios or obtain another com-
promise solution by mixing those two procedures. 
This method is derived from the STEM method which 
was developed by Benayoun et. al. (1971) which is 
appropriate for problems with small dimensions. It 
also deals with the case of global scenarios on objec-
tive functions and constraints that can be modified to 
deal with the case of partial scenarios.  

Caballero et al. (2004) tried to obtain efficient so-
lutions by using two different approaches: stochastic 
approach and multiobjective approach. The authors 
have focused on obtaining efficient solutions for op-
timization problems with constraints random variables 
affecting the objective functions since the feasible set 
of the problem considered has been transformed into 
its equivalent deterministic. In the study, they consid-
ered the application of the weighting method to the 
initial problem in the stochastic approach because it is 
one of the more widely used, and has carried out tech-
niques in deterministic multiobjective programming 
problems. The study was organized according to the 
type of stochastic criterion which was applied to get 
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the deterministic problem. For each criterion com-
pared, the optimal solutions for the weighted optimi-
zation problem, corresponding to the stochastic ap-
proach, the efficient solutions have been obtained with 
the multiobjective approach. The study was focused 
on the efficient solution results of the multiobjective 
programming in: 

1. Expected value efficient solution, 
2. Minimum variance efficient solution, 
3. Expected value standard deviation efficient so-

lution, 
4. Minimum risk efficient solution for fix a priori 

an aspiration level, and 
5. Kataokas criterion or efficient solutions with 

fix a probability.  
Comparing these solutions to their corresponding 

in the stochastic approach, i.e. stochastic approach 
versus multiobjective approach, it obtained efficient 
solutions in stochastic multiobjective programming 
problems. The work has carried out (i) the achieve-
ment of efficient solution in the problems of 
multiobjective stochastic programming problems 
through a double transformation techniques of the 
problem, or a combination of the techniques of both of 
stochastic programming approach and multiobjective 
programming approach, (ii) the achievement of effi-
cient solutions of stochastic multiobjective program-
ming problems by the stochastic approach using the 
weighted method which is strictly related to problem 
resolved by the multiobjective approach, and (iii) the 
dependency between random variables taking into 
account the stochastic approach even partially, in 
terms of covariance.  

In this sense, it is given in real cases that there ex-
ist stochastic dependences among objective functions. 
The existence of these dependences in stochastic ap-
proach is more appropriate achievement of efficient 
solutions than the multiobjective approach because 
determines a certain interval of stochas-
tic/multiobjective landscape of the real problem.  

Yang and Li (2002) and Chen and Tsai (2001b) 
studied fuzzy linear programming using goal pro-
gramming to transform multiobjective linear pro-
gramming approach to its standard LP problems. After 
the transformation, the entire objective functions have 
a scalar criterion by weights as conventional strategy 
formulation. These weights additive model can be 
specified by the DM as coefficients of the individual 
terms into easy additive fuzzy achievement function to 
reflect the relative importance for the different 
weights.  

There are some weighted min-max approaches as 
emphasized by Lin (2004) and Yang and Li (2002). 
On the other hand, Li et al. (2004) studied the satisfy-
ing optimization method on goal programming for 
fuzzy multiple objective optimization problem. They 

used varying-domain optimization method to solve 
multiobjective optimization problem with preemptive 
priorities determined by DM. In addition, the relative 
importance between objectives and the desirable 
achievement degree for each objective was distin-
guished by Chen and Tsai (2001b) stating that the 
more important of the objectives, the higher the desir-
able achievement degree is obtained. Adding the ineq-
uity about membership function and desirable 
achievement degree of all objectives to the model 
formulation is considered as a new constraint in a 
clear manner.  

Bector and Chandra (2002) and Bector et al. 
(2004b) have considered duality in fuzzy linear pro-
gramming problems establishing a two person zero-
sum matrix game with fuzzy goals. It showed that 
there exist equivalence between two person zero-sum 
matrix game with fuzzy goals and a pair of primal-
dual fuzzy linear programming problems. They have 
proven that there is no strong duality between pair of 
fuzzy linear programming problems in the general.  

Bector et al. (2004a) introduced duality for linear 
programming problems with fuzzy parameters. Ac-
cording to Bector and Chandra (2002) there is an 
equivalence between two person sum zero matrix 
game with fuzzy pay-offs and primal-dual pair of this 
kind of fuzzy linear programming problems.  

Luhandjula (2003) introduced linear program-
ming with fuzzy random variable (frv) in the case of 
inclusive constrained, and modeled as follows:  

max ��
�. �.

����� + ⋯ + � ���� ⊆ � �; � = 1, … , � 
�� ≥ 0; � = 1, … , �

 

where ��, ��� ��� �� are frvs on (Ω, F, P).Considered 

to solve this problem should be reformulating as fol-
lowing:  

min �
�. �.

�� ⊆ �
����� + ⋯ + � ���� ⊆ � �; � = 1, … , � 

�� ≥ 0; � = 1, … , �

 

where � is a maximal tolerance for the objective 
function. It is recommended that the last formula can 
be set in the form of semi-infinite program, and under 
mild considerations can be transformed it into stand-
ard LP problems to solve it, and eventually finding the 
optimal solution. On the other hand, Luhandjula 
(2004) found some potential choices like simplicity, 
efficiency, and effectiveness of frv.  

Some applications have been done to fuzzy sto-
chastic linear programming (FSLP) problems and 
converted it toward multistage programming problems 
(Weber and Zhaohao, 2000b; Weber and Zhaohao, 
2000a; Weber and Cromme, 2004). Shahinidis (2004) 
applied stochastic in several various fields like energy 
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investment, production planning, water management, 
and finance.  

Recently, studding optimization problems com-
bined with both fuzzy optimization programming 
problems and stochastic optimization programming 
problems, has been of interest to researcher. Many 
have studied on how to convert the original problem 
into standard LP problem. They found two main strat-
egies: the first is to de-fuzzify and (or) derandomize in 
sequential manner, and second is to run both two ac-
tion at the same time.  

Luhandjula (2004) chose the first one and con-
verted the fuzzy stochastic optimization problem to its 
equivalent LP problems by defuzzifing first followed 
by derandomizing. However, discretizing the fuzzy set 
via α−levels has inserted too many extra constraints to 
the original constraints.  

Nehi and Mashinchi (2004) have considered 
fuzzy linear programming (FLP) problems and used a 
comparison concept of fuzzy numbers to solve it by 
using ranking functions to suit their requirement under 
an assumption. Generally, there are accepted measures 
for application of the ranking functions, hence they 
have obtained an equivalent crisp model to FLP prob-
lems, and then used it to obtain optimal solution for 
FLP problem.  

Rommelfanger (2007) considered the FLP prob-
lems as followed: 

��� � � (�) =  ��
��� + ⋯ + � �

���

�. �.
������ + ⋯ + � �

���� ≤ ��
�, � = 1, … , �

�� ≥ 0, � = 1, … , �

 

where ���, ����, ��� ��� are fuzzy sets on R. Provided 

that some data modeled by fuzzy sets, and both sides 
of the constraints have the same fuzzy numbers or 
fuzzy intervals, and proposed a procedure for solve it. 
On the other hand Sakawa et al. (2004) considered the 
following SLP problems:  

��� ���(�)=  ��
�(��)�� + ⋯ + � �

�(��)��

�. �.
����(��)�� + ⋯ + � �

��(��)�� ≤ ��
�(��), � = 1, … , �

�� ≥ 0, � = 1, … , �

 

Sakawa et al. (2004) used the mean value of the 
objective functions combined with the fat solution to 
solve the multiobjective problem of �  fuzzy linear 
programs, and known probabilities �(��), his result 
was as follows:  

���� � ���(�)� = �[� ���

�

���

�

���

 (��). �(��)]��

�. �.
����(��)�� + ⋯ + � �

��(��)�� ≤ ��
�(��), � = 1, … , �

�� ≥ 0, � = 1, … , �

 

Multistage integer programming (MSIP) models 
deal with size extension subjects under stochastic 

conditions through expansion of multistage stochastic 
integer programming (MSIP) models (Chen et al., 
2002; Ahmed et al., 2003; Lulli and Sen, 2004) These 
studies of MSIP models the independent uncertainties 
in the left-hand of constraints hardly considered, espe-
cially Ahmed et al. (2003) which considers the opti-
mization problem as a multistage size expansion prob-
lem with doubt/ uncertainty in demands, cost parame-
ters, and scale in expansion costs.  

Iskander (2005) suggested an approach for solv-
ing a stochastic fuzzy linear programming problems 
utilizing two possibilities and two necessity domi-
nance indices based on Dubois and Prode (D. Dubois, 
H. Prode, Ranking Fuzzy numbers in the setting of 
possibility theory, Information Sciences 
30(1983):183-224). In the stochastic fuzzy linear pro-
gramming problem, the stochastic fuzzy constraints 
were transformed to deterministic fuzzy constraints by 
incorporating fuzzy tolerance measures using the 
chance constrained approach. Thus, the equivalent 
fuzzy objective function subject to the deterministic 
fuzzy constraints was made to become fuzzy linear 
programming problem. Hence, the program obtained 
can be transform to its crisp equivalent program, and 
the transformation is applicable for different fuzzy 
numbers trapezoidal/ triangular.  

The transformation of the problem was done in 
both the objective function, as well as that of the con-
straints by assuming the fuzzy coefficients of the ob-
jective and constraints are trapezoidal numbers and by 
utilizing the α – cut approach. On the other hand, 
transforming the constraints should be formulated 
according to each dominance index such as the (Pos-
sibility of Dominance (P D), Possibility of Strict 
Dominance (P SD), Necessity of Dominance (ND), 
and Necessity of Strict Dominance (NSD)). 

It was also the suggested approach for formulat-
ing crisp set constraints that depends on utilizing the α 
− cut approach for membership functions of fuzzy 
coefficients of the constraints and the fuzzy tolerance 
measures for using the chance constrained approach. 
Therefore, for each of the four dominance indices, the 
deterministic-crisp linear programming problem can 
be solved by giving values to the α in the closed inter-
val [0, 1].  

According to the suggested approach for compar-
ing closed crisp intervals, the approximation that may 
exist due using another approach can be avoid, and in 
general comparison among for dominant indices, the 
value of objective function Z pointed that; 

ZNSD ≤ ZP SD ≤ ZP D,and ZNSD ≤ ZND ≤ ZP 
D; where ZP D,ZP SD,ZND, and ZNSD are the value 
of objective functions; P D,P SD, ND, and NSD re-
spectively.  

Multiobjective inventory models for stochastical-
ly deteriorating items under a single management, and 
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limited storage space formulated by Mahapatra and 
Maiti (2005), assumes the demand capacities of the 
people in developing countries like India, Nepal, 
Bangladesh,...etc., that the price of goods and com-
modity determines the demand. The demand of com-
modity depends on the time, selling price, stock level, 
quality of the item, and so on. The deterioration of 
commodities depends on the quality level and the du-
ration of storage time. A two parameter Weibull dis-
tribution in time � was followed with the time-related 
function for deterioration. The quality level of items 
changes inversely with production rate and the unit 
production is dependent upon the production rate. In 
addition, the cost is also quality dependent which is 
considered over the production cost. It assumed that 
the items were produced separately by companies un-
der individual ownership and stored in single items 
capacity warehouse.  

Under these assumptions, the inventory system 
involves n items, the planning horizon is finite, and 
the lead time is negligible, and there is no replacement 
of deteriorated units. The maximum profit objectives 
are formulated and derived for all items as to the 
multiobjective inventory problems. By using the de-
veloped goal programming (GP) method, the problem 
was solved and the compromise solution was obtained 
for the model. The results were derived without short-
age and partially back logged shortages. The results of 
the compromise solution have been obtained as a sin-
gle objective, and eventually, the multiobjective prob-
lems were compared.  

The paper presents an interactive approach for 
production-inventory objectives general man/machine 
interaction with membership functions (linear mem-
bership functions, quadratic membership functions, 
and exponential membership functions) for the objec-
tive goals. Finally, Pareto optimal and satisficing solu-
tions tested the model to the interactive fuzzy satisfic-
ing method (IFSM) which has been used by the DM.  

The existence of stochastic goal programming 
(SGP) problems examined by Aouni et al. (2005) and 
the goal programming (GP) problems, has been devel-
oped in the probabilistic situation, taking into account 
the DMs preferences and explicated it by using the 
concept of satisfactory function based on pre-studies 
(Martel, J.-M., Aouni, B., 1990. Incorporating the 
decision makers preferences in the goal programming 
model. Journal of the Operational Research Society 41 
(12), 11211132, Roy, B., Bouyssou, D., 1993. Aide 
multicritre la dcision:Mthodes et cas. Economica, Par-
is.). Based on his previous study (Zmeskel, 2001) 
Zmeskel (2005) applications of portfolio selection in 
fuzzy stochastic environments, and the use of fuzzy 
stochastic methods and approaches in the field.  

Ben Abdelaziz and Masri (2005a) studied the goal 
programming based on (Ben Abdelaziz, F., Lang, P., 

Nadeau, R., 1995. Distributional efficiency in 
multiobjective stochastic linear programming. Euro-
pean Journal of Operational Research 85, 399415, Ben 
Abdelaziz, F., Lang, P., Nadeau, R., 1999. Efficiency 
in multiple criteria under uncertainty. Theory and De-
cision 47, 191211), saw that the multiobjective sto-
chastic programming (MSP) can be challenged and 
can face difficulties.  

Aouni et al. (2005) showed the decision maker 
can establish some parameters or values, especially in 
the portfolio selection problems where the values are 
stochastic. Zmeskel (2005) presented the fuzzy sto-
chastic optimization problems arising from several 
situations in the real world, and there is a difficulty to 
determine the goals, objectives, constraints, and coef-
ficients for the problems because they depend on vary-
ing factors. Liu and Liu (2005) proposed fuzzy ran-
dom programming with equilibrium chance con-
straints by converting the problem into standard LP 
problem through defuzzifing and derandomizing fuzzy 
random variables simultaneously. Based on previous 
study (Bector et al., 2004a) Bector and Chandra 
(2005) on fuzzy matrix game proved that it is equiva-
lent to primal programming problems and its dual 
programming problem.  

The fuzzy field with random variables is patenta-
ble for applications of different decision making is-
sues and problems.Dutta et al. (2005) proposed a 
model with fuzzy random variable, while an interac-
tive method was presented (Katagiri and Sakawa, 
2004; Katagiri et al., 2005) and the stochastic pro-
gramming approach to fuzzy random MST problem. 
This is also to value at risk methodology for index 
portfolio which was proposed by Zmeskel (2005) un-
der soft situations as a fuzzy-stochastic method. A 
class of FLP problems was considered and discussed 
based on a new concept of duality and fuzzy relation-
ships and some feeble and robust theorems were in-
ferred (Ramik, 2003; Ramik, 2005).  

Some applications on fuzzy stochastic linear pro-
gramming (FSLP) problems have been done (Nguyen, 
2005b; Nguyen, 2005a) and FSLP problems have been 
extended toward multiobjective linear/nonlinear pro-
gramming problems. A stochastic programming with 
fuzzy linear partial information on probability distri-
bution by Ben Abdelaziz and Masri (2005b), has de-
fined the probability distribution by crisp or fuzzy 
inequality on the probability of the different natures 
states. Both stochastic linear program with linear par-
tial information and stochastic linear program with 
fuzzy linear partial information on probability distri-
bution has been defined and stated. It showed that in 
stochastic linear program with fuzzy linear partial 
information on probability distribution where proba-
bility distribution � is known, it became a stochastic 
linear program.  
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The paper presented a strategy for both of the 
fuzzy/stochastic programs in two steps: the fuzzy 
transformation and the stochastic transformation. In 
fuzzy transformation, the fuzziness on the stochastic 
linear programming with fuzzy linear partial infor-
mation was addressed, and α−cut technique on trian-
gular membership function was used to defuzzify the 
fuzzy inequalities on the probability distribution using 
DMs credibility. The second step has two main ap-
proaches namely: the chance constraints approach and 
the recourse approach in order to obtain an equivalent 
deterministic linear programming problem, followed 
by using a modified L−shaped algorithm to solve the 
obtained deterministic programming problem.  

The paper also presented a proposition with proof 
on minimization of the upper expected value on the 
recourse approach, and some notations in the modified 
L − shaped method. It asserts on the convergence to 
an optimal solution by using modified L − shaped 
method by inserting a theorem with proof. A study by 
Abbas and Bellahcene (2006) deals with the kind of 
problem incorporating integer variables in the con-
straints of a multiobjective stochastic linear program-
ming (MOSLP) problem and assumed that:  

min �� = � �(�)�, � = 1, … , �
�. �.

�� = �
�(�)� = ℎ(�)

� ≥ 0, � �������

 

where ��, τ, ℎ are random matrices with dimen-
sions (1 ×  �), (��  ×  �), ��� (��  ×  1) respective-
ly, defined over some probability space 
(Ω, �, �); �, ��� � are deterministic matrices of di-
mensions (� ×  �), ��� (� ×  1) respectively. The 
study considered a joint finite discrete probability dis-
tribution (��, ��), � = 1, … , �  of the random data, and 
for each realization �� of �  associated a criterion 
��� = � �(��) the matrix � (��) and the vector ℎ (��)) 
taken into account the different scenarios affecting the 
� objective functions, and the stochastic constraints.  

On the other hand, the idea of recourse function 
using single-criterion stochastic programming was 
back. In addition, it defined each of the concepts of 
feasibility, optimality, efficiency of a solution, and 
dominated of an integer feasible point solution.  

The study proposes an algorithm combining the 
cutting plane technique and the L-shaped de- compo-
sition method by getting integer efficient solution to 
the multiple stochastic integer linear programming and 
after representing uncertain aspirations of the DM by 
converting the original problem into its equivalent 
deterministic multiobjective integer linear program-
ming (MOILP), leaving the MD to choose his/her ef-
ficient solution according to the depended preferences. 
The method is to generate all the efficient solutions of 
the feasibility cuts optimization problem by solving 

sequences of problem of progressively more con-
strained single objective integer linear programming 
problems, and the additional constraints at each itera-
tion generated efficient points, and ensure that it ob-
tained new generated solutions that are efficient, and 
consists of repeating several steps, proving that the 
procedure to find all efficient solutions of the stochas-
tic integer converges into a finite number of steps, 
depending on finitely feasible bases from the recourse 
matrix, and repeated applications of cutting plane by 
application Gomorys cuts.  

The approach has the advantage giving the DM 
too information. The efficient solutions and optimal 
cost values of the random constraint violates of the 
efficient solutions. The approach is appropriate for 
problems with small number of scenarios since only 
one objective problem is solved at each iteration, 
hence the approach could be applicable for large num-
ber of objectives, and on the other hand, the feasibility 
cuts cancel some parts of the first-stage decision set, 
thus a new iteration numbers is needs to obtain the 
efficient solutions.  

To deal with the supplier selection problem in 
supply chain system (Chen et al., 2006), it explained 
that the determination of suitable suppliers in the sup-
ply chain is a key strategic consideration, and the de-
cisions of the field is complicated complex, unstruc-
tured, and factors such as: quality, price, flexibility, 
and delivery performance should be assumed to de-
termine appropriate suppliers. In the paper, the con-
cept of Technique for Order Performance by Similari-
ty to Ideal Solution (TOPSIS) proposes a methodolo-
gy for solving supplier selection problems in fuzzy 
environment, assuming that the decision data and 
group decision-making process vague, and estimated 
with un-exact numerical values or considering the 
fuzziness of them. Also, linguistic variable have been 
used to assess the weights of criteria and ratings.  

To deal with the TOPSIS, concepts and defini-
tions were used in the paper such as: positive ideal 
solution (PIS), negative ideal solution (NIS), fuzzy 
sets, fuzzy numbers, normalized fuzzy number, con-
vex set, universe fuzzy number, α−cut of the fuzzy 
number, a positive trapezoidal fuzzy number(PTFN), 
fuzzy matrix, linguistic variable, and the identical of 
fuzzy numbers. In the paper extended that; supplier 
selection in supply chain system is a group multi-
criteria decision-making (GMCDM) problem, and 
consisting of the main four sets:  
1. A set of � decision-makers say; � = {��, … , � �};  
2. A set of m possible suppliers say, � =
 {��, … , � �}; 
3. A set of �  criteria say,  � =  {��, … , � �}; with 
which supplier performances are measurable; 
4. A set of performance ratings of ��  (� =
 1, 2, . . . , �) with respect to criteria �� (� =
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 1, 2, . . . , �), say, � =  {���, � =  1, 2, . . . , �;  � =

 1, 2, . . . �}. 
Finally, the authors concluded that TOPSIS 

method can deal with the ratings quantitatively, quali-
tatively, and select the appropriate supplier effectively 
and can be a useful tool the supplier selection prob-
lems in supply chain management system. It can also 
be used in determine ranking order as well as the 
evaluation of all possible suppliers.  

Luhandjula (2006) reviewed papers on fuzzy sto-
chastic linear programming and showed that the re-
searchers have combined the information which are 
both fuzzily imprecise, and probabilistically uncertain 
in many real-life problems based decision on i.e. com-
bining possibilistic and probabilistic uncertainties, 
more clear modeling, and problem solving issues in 
situations where randomness of parameters, fuzziness 
of coefficients, and numbers co-occur in a linear op-
timization problems namely fuzzy stochastic linear 
programming problems.  

As known linear programming (LP) problems 
which are operationally applicable nowadays are sim-
plex method, ellipsoid method, and the interior point 
methods to solve LP problems with certainty. But in 
the real world, we face concrete problems with some 
level of uncertainty related values to various parame-
ters, and some of the components of the problem. The 
rationality model builder states the optimization pro-
gramming problems in the real life involving probabil-
istic description of unknown elements. These under-
takings lead to stochastic linear programming, or 
problem consisting of informational imprecision 
which leads to deal with fuzzy linear problems. On the 
other hand, DM may deal with probabilistic problem 
and possibilistic uncertainty which leads to fuzzy sto-
chastic linear programming (FSLP) or grappling with 
the optimization problem in hybrid situations.  

Luhandjulas study deals with FSLP problems in 
the following sides: the tools for combining fuzziness 
and randomness to state FSLP problems, and its math-
ematical form, problem statement, and unified meth-
odological approach, as well as the solution approach-
es for FSLP problems. Thus, the re- searcher studied 
FSLP problems of these three aforementioned aspects: 
first, to deal with logic mathematically with situations 
of FSLP problems taking both fuzziness, as well as 
randomness in the problem. It needs to deal with ideas 
of probability and fuzzy sets theories. In other words, 
defining and dealing with the following notions and 
concepts like:  

• Probability of a fuzzy event, 
• Probabilistic set, 
• Fuzzy random variable (frv), 
• Random fuzzy variable (rfv), and 
• Linguistic probabilities 

The author deals with the first three concepts and 
defined it resourcing by some of references he used. 
He recommended to interested researcher to find them 
at references he used. The study deals with the issues 
by taking it in its two sides: problem statement, and 
unified methodological approach for FSLP problems. 
For the problem statement, the paper pointed out that 
FSLP problems are different and may be distinguished 
by any manner, or a number of aspects which each 
one leads to varied model. The aspects include the 
kind of uncertainty level which enters into the linear 
programming problem based on the most famous and 
most studied FSLP problems as follows:  

1. Flexible stochastic linear. 
2. Inclusive-constrained linear programming with 

frv coefficients. 
3. Inequality-constrained linear programming 

with frv coefficients. 
4. Linear programming with random variables, 

and fuzzy numbers. 
It should be noted that although each type of these 

problems differ on research methodology to a solu-
tion, the DM can governed them by a common set of 
principles dealing with the problem effectively and 
efficiently.  

For the unified methodological approach for 
FSLP problems and its optimal solution, the paper 
explained a general procedure for solving a FSLP 
problems with three main steps: the first step contains 
the program statement and program with fuzzy and 
random data, while the second step consists of uncer-
tainty processing like the minimum uncertainty, the 
maximum uncertainty, and the uncertainty invariance 
principles to obtain an equivalent deterministic prob-
lem, and the last step consists of solving the obtained 
resulting deterministic problem by a software program 
or by the emergence metaheuristics. But in the third 
side solution of the approach for FSLP models, the 
paper dealt with the in two sides: 
• Flexible SLP. 
• LP with frv coefficients. 
What related to Flexible SLP there are: 
1. Problem formulation; considered LP of the form: 

(�� )�
��� �� (�)�

��(�)� ≲ � �(�); � = 1, … , �
� ∈ � = {� ∈ � �|� ≥ 0}

� 

2. Symmetrical approaches for (�� ).  
3. Asymmetrical approaches for (�� ). 

These above approaches are some steps for solv-
ing (�� ). While for LP with frv coefficients, there are 
the following methods associated with each one with 
solution steps:  

1. Inclusive constrained case. 
2. Inequality-constrained case. 
3. LP with random variables, and fuzzy numbers. 
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Finally, in the paper pointed out that extension of 
FSLP problems may be carried out toward (MOL/N) P 
problems, so as multistage problems, and it has rich 
potential applications in many fields like air pollution 
regulation, production scheduling, network location, 
and others. In the study of fuzzy multiobjective linear 
model for supplier selection in supply chain(Amid et 
al., 2006), a fuzzy multiobjective linear model was 
developed with vagueness, imprecision of the goals, 
constraints, and parameters, and the decision-making 
was complicated. It tries to overcome the vagueness of 
the information because the supplier selection is a 
multiple criteria (cost, quality, delivery time, serves...) 
decision-making (MCDM) problem, and a purchasing 
manager should analyze the trade-off among the sev-
eral criteria where input information is not precisely 
known. Based on basic concepts like the theory of 
fuzzy sets, α−cut, fuzzy decisions, and symmet-
ric/asymmetric fuzzy decision-making, the fuzzy sup-
plier selection model has been formulated as:  

�� = � �����, � = 1, … , �,

�

���

�� = � �����, � = � + 1, … , �,

�

���

�. �.
� ∈ ��, �� = {�/�(�) =

 � ����� ≤ � �, � = 1, … , �; � ≥ 0

�

���

}

 

Where ���,���,��  are crisp or fuzzy values. The 
previous problem has been solved by using fuzzy line-
ar programming employing the max-min operator as 
used by Zimmerman (1987, 1993). The convex 
(weighted additive) operator, which enables the DM to 
assign different weights to several criteria, summariz-
es the step solutions in a model algorithm of supplier 
selection problems to the fuzzy multiobjective pro-
gramming. As previously pointed in the real world, 
many input data are not exactly known for the DM. 
Hence, a fuzzy multiobjective model should be devel-
oped for supplier selection to assign different weights 
to different (various) criteria. The fuzzy model helps 
the DM to find out suitable ordering from each suppli-
er which helps purchasing manager to arrange the per-
formance on cost, quality, quantity, delivery time... 
etc. On the other hand, transforming the fuzzy 
multiobjective supplier selection problem into an 
equivalent convex fuzzy programming model, as well 
as into crisp single objective linear programming, re-
duces the dimension of the model system, and makes 
the application of the fuzzy approach easier, and less 
computational.  

The study concluded that in the real world, the 
proposed model has vector optimization problem by 

using a single utility function to preference of DM 
because the values of objective criteria and the con-
straints expressed are vague that have no equality im-
portance.  

Li et al. (2006) discussed a kind of multiobjective 
programming problem with fuzzy random coeffi-
cients.  

The portfolio selection problem of Ben Abdelaziz 
et al. (2007) presents a multi-objective stochastic pro-
gramming where the parameters in the objectives are 
random, has normal distribution, and has transformed 
multi-objective stochastic programming into its equiv-
alent deterministic by combining the chance con-
strained compromise programming model, and con-
strained programming model.  

The basic idea of portfolio selection theory by 
Markowitz (1952), considers several conflicting ob-
jectives like; rate of return, liquidity, and risk, and 
collected them as multi-objective programming prob-
lems. The main objectives of portfolio problems are: 
corporal validity objectives, the stocks acceptability 
by the investors, and the financial objectives. Hence, 
in many decision-making it is able to state some val-
ues of parameters either as goal programming or as 
compromise programming; thus by developing multi 
criteria linear goal programming, the multi-objective 
stochastic programming has been extended.  

The purpose of the paper is to deal with portfolio 
selection with some random parameters with normal 
distribution. Chance constrained compromise pro-
gramming allows the DM to use conflicting objective 
functions, and eventually collecting them in multi-
objective stochastic programming, which was illus-
trated in the portfolio selection from the Tunisian 
stock exchange market.  

In the paper, goal programming and compromise 
programming models are used, and the multi-objective 
stochastic programming was formulated. It proposed 
deterministic equivalent program by using chance 
constrained programming and chance programming 
approaches, and has called the resulting approach 
chance constrained compromise programming in the 
random constrained. While the random objectives 
depended on statistic concepts such as mean, variance, 
and standard deviation. Thus the chance constrained 
compromise programming allows conflicting objec-
tives and random parameters in multiobjective sto-
chastic programming to find a compromise solution to 
its equivalent deterministic program.  

The fuzzy stochastic goal programming by Hop 
(2007a) measures to attain the value of fuzzy stochas-
tic goals. The new approach was used to defuzzify and 
derandomize the fuzzy stochastic goal programming 
problems in order to obtain standard linear program.  

In recent years, solving fuzzy optimization prob-
lems, as well as stochastic optimization problems has 
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attracted attention by researchers. Stochastic and 
fuzzy aspects were combined by researchers to pro-
vide an efficient tool to treat and describe real world 
problems when faced by uncertainty and imprecision 
information of optimization problems. The researchers 
have been challenging the fuzzy stochastic optimiza-
tion problems to find efficient solution to convert the 
problem into its equivalent deterministic optimization 
problem.  

Hops method to solve the fuzzy stochastic goal 
programming problems of uncertainty and imprecision 
consists of goals, objectives, constraints, and parame-
ters which are related to goals are random variables.  

The method is a new approach to attain the values 
of fuzzy random variables to convert the problem into 
standard form of linear programming which was the 
extension of Luhandjulas work (Luhandjula, 
M.K.1996. Fuzziness and randomness in an optimiza-
tion framework.Fuzzy Sets and Systems 155,89–102), 
and Luhandjula (2006)based on some important con-
cepts like: fuzzy random variable, random interval, the 
necessary and efficient condition relation between 
random variable and random interval, lower-side at-
tainment of random variable, both-side attainment of 
random variable, average lower-side attainment of two 
random variables, average both-side attainment of two 
random variables, and fuzzy stochastic goal program-
ming.  

The advantage of this method is it streamlines by 
developing different approach which are more effi-
cient than those exists compared with Liu and Liu 
(2003) model having small number of constraints and 
variables compared with Luhandjulas linear pro-
gramming model.  

In the portfolio selection problem, Ben Abdelaziz 
et al. (2007) present multiobjective stochastic pro-
gramming which considered that the parameters in the 
objectives as random and normally distributed. It 
transformed multiobjective stochastic programming 
into its equivalent deterministic by combining the 
chance constrained compromise programming model 
and constrained programming model.  

As mentioned earlier, Markowitz (1952) theory of 
portfolio selection also deals with some parameters 
that are random with normal distribution with chance 
constrained compromise programming (CCCP) com-
bined together with chance compromise program-
ming(CCP) based on compromise programming (CP). 
This was as pointed previously to allow the DM to use 
conflicting objective functions, and collecting them in 
as multiobjective stochastic programming as illustrat-
ed by portfolio selection problem from the Tunisian 
stock exchange.  

In the paper, GP and CP models are used and the 
multiobjective stochastic programming was formulat-
ed. Moreover, it proposed deterministic equivalent 

program by using CCP and CP approach, hence CCCP 
approach; first in random constraints, and consequent-
ly in random objectives, depending on the statistic 
concepts like mean, variance, and standard deviation. 
Thus, it is considered that CCCP approach allows con-
flicting objectives and random parameters in 
multiobjective stochastic programming to find a com-
promise solution to its corresponding equivalent de-
terministic program.  

It is observed that the new deterministic formula-
tion is found to be multiobjective stochastic program 
since the computation of transformation, the best/ideal 
values for each assumed objective combined with CP 
and CCP approaches, gets a deterministic program-
ming from multiobjective stochastic program.  

In the measure, the attained values of fuzzy num-
bers and/or fuzzy stochastic variables, Hop (2007c) 
presents a model to convert the fuzzy linear pro-
gram/fuzzy stochastic linear programming problems 
to its corresponding deterministic linear programming 
problems, and to find solution to it. The author based 
on his another paper Hop (2007a) defined some im-
portant concepts and formulated the fuzzy linear pro-
gramming as follows:  

��� ��
�. �.

��������� ≤ ���; � = 1, … , �

�

���

�� ≥ 0

 

where � is a 1 ×  �  matrix and �, � ��� � ×  �, � ×
 1 matrices of fuzzy variable constraint coefficients. 
He obtained the following standard LP problem after 
applied upper-side attainment index to the constraints:  

��� �� − � ��

�

���

�. �.

�� (���
� �, �(����)��) =

�

���

 ��;  � = 1, … , �

��, �� ≥ 0 

 

The solution of this LP gives better results in 
terms of objective values compared to those solved in 
traditional methods. This is because the method com-
pares fuzzy numbers based on their relative relation-
ships among them that made the constraints relaxes, 
and then larger spreads of the fuzzy numbers. Thus, 
overlapping areas between the fuzzy numbers increas-
es and the results are better. In the traditional methods, 
the fuzzy numbers are converted into corresponding 
deterministic and do not adjust the values of determin-
istic constraints, so as it to the deterministic case.  

On the other hand, the fuzzy stochastic linear 
program defined and formulated as follows: 
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��� ��
�. �.

�(����)��� ≤ ������
; � = 1, … , �

�

���

�� ≥ 0, � ∈ Ω, � = 1, … , �

 

where � �� 1 ×  �  matrix and �, � ��� � ×  �, � ×
 1 matrices of fuzzy random variable constraint coeffi-
cients defined on a probability space (Ω, �, �). After 
applying the lower-side attainment index to minimize 
achievement between LHS and RHS the problem be-
come: 

��� �� − ∑ ��
�
���

�. �.
�� (∑ ������

�
��

�
��� , ������

) = ��(�);  � = 1, … , �

��, �� ≥ 0, , � ∈ � 

  

Finally, by using stochastic programming techniques 
to de-randomizing the problem, the corresponding 
deterministic problem is obtained as follows:  

��� �� + �[ ∑ ��
�
��� ]

�. �.
�� (∑ ������

�
��

�
��� , ������

) = ��(�);  � = 1, … , �

��, �� ≥ 0, , � ∈ � 

  

where �  is the mathematical expectation. When the 
author solved the last deterministic programming 
problem and compared the results with Luhandjulas 
model (M.K. Luhandjula, fuzziness and randomness 
in an optimization framework, Fuzzy Sets and Sys-
tems 77 (1996) 291-297), he found out that the objec-
tive value was less than exited in Luhandjula’s result. 
However, since the program problem was minimized, 
hence he has a better result; in addition his model has 
fewer constraints compared with that result, and for 
larger problems, the computation of his model rela-
tively is better.  

Hop (2007b) continued on studying 
fuzzy/stochastic linear programming problems. He 
presented another model to solve such types of opti-
mization problems by using superiority and inferiority 
measures. This model was to convert fuzzy/stochastic 
linear programming problems to its corresponding 
conventional deterministic linear programming prob-
lems to find an optimal solution to it.  

In the study, the author tried to find an efficient 
solution for the fuzzy/stochastic linear programming 
problems that he presented a new model to measure 
the superiority and inferiority of the triangular fuzzy 
numbers/fuzzy stochastic variables. The model takes 
the triangular fuzzy numbers/ fuzzy random variable 
because of their important properties, and holding 
most of the information about fuzzy numbers like the 
lower/upper bounds of numbers and most of its possi-
ble value. Thus, based on his available, the study 
(Hop, 2007a; Hop, 2007c), also defined and developed 

a set of triangle fuzzy numbers (T -numbers) as fol-
lows:  

�� = ��� = (�, �. �), �, � ≥ 0 � 
and 

��� (�) =

⎩
⎪
⎨

⎪
⎧ max�0,1 −

� − �

�
�, �� � ≤ �, � > 0

1, �� � = 0, ���/�� � = 0

��� �0,1 −
� − �

�
�, �� � > �, � > 0

0, ��ℎ������

� 

where the scalars �, � ∈  �� are called the left and the 
right spreads respectively, Also defined superiori-
ty/inferiority of the fuzzy numbers as: if �� and �� are 
fuzzy numbers, then the superiority and inferiority of 
�� over �� is defined as:  

�(�� , ��) = ∫ max {0, sup{�: ���(�) ≥ � }−
�

�

sup��: ��� (�)≥ � �}��,  

�(�� , ��) = ∫ ��� {0, inf{�: ���(�) ≥ � }−
�

�

inf��: ���(�)≥ � �}�� for all � ∈  (0, 1). So he con-
sidered the two fuzzy numbers:  
��  =  (�, �, �), ��  =  (�, �, �)  ∈  �� , ��� ��  ≤  ��  then 
the superiority of �� over ��  is: 

����, ��� = � − � +
���

�
, and inferiority of ��  to � � is: 

I���, ��� = � − � +
���

�
 

Similarity, the superiority/inferiority between two 
fuzzy random variables �≃and �≃ defined as: 

�(�≃, �≃) = �(�) − �(�) +
�(�)��(�)

�
, 

 I(�≃, �≃) = �(�) − �(�) +
�(�)��(�)

�
 

In solving fuzzy/stochastic linear programming 
problems, the difference among developed methods is 
the manner to defuzzify and/or derandomize fuzzy 
number/fuzzy stochastic variables. There are two main 
manners to convert the fuzzy linear program so as to 
fuzzy stochastic linear programming problems into 
conventional deterministic linear program through 
sequential manner and simultaneous manner. In the 
sequential manner, the defuzzifing process is per-
formed first and derandomizing process is done se-
cond. If done simultaneously, both defuzzifing and 
derandomizing process is done at the same time, and 
each has its advantage and disadvantage.  

The author selected the first one to solve the prob-
lem, thus he restricted the idea and optimization con-
cepts (Hop, 2007a; Hop, 2007c) to solve 
fuzzy/stochastic linear programming problems by us-
ing superiority and inferiority measures as: 
1. Fuzzy linear programming 
1.1 Fuzzy linear programming with fuzzy constraints, 
considered:  
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��� ��
�. �.

∑ �������� ≤ ���; � = 1, … , ��
���

�� ≥ 0

  

Maximized the objective subject to superiority of 
right-hand sides over left-hand sides, and inferiority of 
left-hand sides to the right-hand sides of constraints, 
and with paying a penalty for any violation of superi-
ority and inferiority, so the model can be converted to 
corresponding equivalent deterministic problem as:  

max  �� − [���� ����������, ���

�

���

�

+� ��� ����, ���������

�

���

�]

�� ≥ 0, � = 1, … , �

 

Where ��, �� are penalty coefficients, determined 
without any rule, and can find the optimal solution of 
it easily.  
1.2 Fuzzy linear programming with fuzzy constraints 
and objective function. 
He extended his consideration to more general case as: 

��� � ��̃��

�

���

�. �.

�(����)�� ≤ ���, � = 1, … , �

�

���

�� ≥ 0, � = 1, … , �

 

The converted equivalent problem is: 
��� �

�. �.

��� � ��̃��

�

���

≥ 0

�(����)�� ≤ ���, � = 1, … , �

�

���

�� ≥ 0, � = 1, … , �

 

Then, 

���� − ����, ∑ ��̃��
�
��� � − ����∑ ��̃��

�
��� , ��

−����∑ ��������, ���
�
��� � − �������, ∑ ��������

�
��� �

�. �.
�� ≥ 0, � = 1, … , �

, thus, 

the formulation is the standard linear programming if 
crisp value θ fuzzified as (θ, 0, 0), and solving it. 
2. Fuzzy stochastic linear programming problems. 
The fuzzy stochastic linear programming problems 
were considered as follows: 

��� ��
�. �.

�(����)��� ≤ ������
; � = 1, … , �

�

���

�� ≥ 0, � ∈ Ω, � = 1, … , �

 

where �, �, �  are 1 ×  �, � ×  �, � ×  1  matrices of 
fuzzy random variable constraints respectively, and 
defined on a probability space (Ω, �, �). 
By the same manner which is used to convert fuzzy 
linear programming problem, the formula can be con-
verted into corresponding deterministic standard linear 
programming problem as:  

max �� − ��� �� ��(�)

�

���

� − ��� � � ��(�)

��

�����

�

��(�������
�

��,

�

���

(���)� = � �(�), � = 1, … , �

�� �������
� = � �(�), �������

�
��

�

���

 

= � �(�), � = � + 1, … ,2�

��, ��(�) ≥ 0, � ∈ �

 

where � is the expected value. The researcher showed 
illustrative numerical example of his proposed model 
to solve these types of optimization problems better 
than others especially that of Luhandjulas method 
because of:  
• The proposed method gives better solution than 
Luhandjula’s method,  
• The proposed method considering the amount of 
calculations and complexities embedded in 
Luhandjula’s method,  
• The proposed method is with a few number of con-
straints, and more simplicity of conversion, 
• The proposed method has taken the comparison of 
fuzzy stochastic variables based on their membership 
function relationships, and 
• The proposed method abolishes wholly or fully 
properties to maximize the objective function. 

Since the fuzzy variable linear programming 
problems have been explored, and various formula-
tions have been developed, especially linear pro-
gramming with triangular as well as trapezoidal fuzzy 
variables, have attracted some interest recently. Many 
researchers have employed the triangular fuzzy varia-
bles in their studies. On the other hand, linear pro-
gramming with trapezoidal variables has also been an 
interest and attracted researchers in the last few years 
ago. Mahdavi-Amiri and Nasseri (2007) presented 
fuzzy linear programming problems applied to linear 
ranking function to present trapezoidal fuzzy numbers. 
After proposing the method in the formulation of dual 
problem in linear programming problem with trape-
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zoidal fuzzy variables, they got some results of duali-
ty.  

The authors proved that the auxiliary problem is 
another type of the linear programming problem with 
trapezoidal fuzzy variables, and in the other words, the 
dual of it is the auxiliary problem. After they estab-
lished the dual program, the crisp data results was 
used and developed into a dual algorithm for solving 
the linear programming problem with trapezoidal 
fuzzy variables, and showed that the algorithm may be 
useful for post optimality/sensitivity analysis.  

It is noticed that their main contributions is the es-
tablishment of duality and complementary slackness. 
In addition, the use of certain linear ranking function 
to inserting trapezoidal fuzzy numbers, and using the 
results to develop a dual simplex algorithm, and using 
it directly to primal simplex tablue. In the paper, nec-
essary notations and definitions of fuzzy set theory 
were given discussing fuzzy numbers and the proper-
ties, so as linear ranking function. After that they de-
fined the linear programming problems with trapezoi-
dal fuzzy variables, fuzzy basic feasible solution, for-
mulation of the dual problem with trapezoidal fuzzy 
variables, and dual simple method with trapezoidal 
fuzzy variables. They showed that a numerical exam-
ple can be used in a dual simplex algorithm for solv-
ing the primal/dual directly. In solving multicriteria 
programming problems with imprecise data and in-
formation, researchers offered two different methods: 
the use of probability distribution or the use of fuzzy 
sets. However, Rommelfanger (2007) presented a 
concept for solving multi-criteria linear programming 
problems with crisp, fuzzy or stochastic values, and 
suggested that the two solution concepts may be used 
in parallel/simultaneous or in combination depending 
on the real situation. He based his opinion on econom-
ic problems since the well-known probabilistic or 
fuzzy solutions are not suitable because the stochastic 
variables do not have simple traditional and classical 
distribution, while the fuzzy values are not intervals.  

He proposed a new method which retained the 
original objective functions dependent on the different 
states and situations of nature, and studied the follow-
ing linear programming problem:  

��� �(�) =  � ��� + ⋯ + � ���

�. �.
����� + ⋯ + � ���� ≤ � �; � = 1, . . . , �

�� ≥ 0, � = 1, … , �

 

and he saw for modeling the problem may be in: 
1. A stochastic linear program, the uncertain parame-
ters or probability distribution as follows: 

��� �(�) =  � �(�)�� + ⋯ + � �(�)��
�. �.

���(�)�� + ⋯ + � ��(�)�� ≤ � �(�); � = 1, . . . , �
�� ≥ 0, � = 1, … , �

 

where ��(�), ���(�), ��(�) are random variables on 

probability space, and can be solved either by Fat so-
lution, chance constraint programming, stochastic 
programming with recourse, and integrated chance 
constrained program if the coefficients of the con-
straints are random variable parameters. 

Or, by optimization of the mean value 
�����(�(�, �)), minimization of the variance 
���� ���(�(�, �)), and minimum risk problem 
����� (�|�(�, �)  ≥  �), � is a certain aspiration 
level.  
2. A fuzzy linear program as: 

��� ��(�) =  ��
��� + ⋯ + � �

���

�. �.
������ + ⋯ + � �

���� ≤ ��
�; � = 1, . . . , �

�� ≥ 0, � = 1, … , �

 

where ��, ���, �� are fuzzy sets on �, and there are sev-

eral methods for solving this model if both sides of 
each constraint have the same type of fuzzy numbers 
or fuzzy intervals, in addition this fuzzy linear pro-
gram has some special cases like; some or all the pa-
rameters of the objective function crisp, some or all 
constraints are crisp, and some are or all constraints 
have the soft form, i.e.∑ ��� ≾ ���; � = 1, . . . , ��

��� . 

To transform stochastic linear programming prob-
lems into its corresponding equivalent standard form 
of linear programming system, it is possible to intro-
duce the constraints and/or objectives in the fuzzy 
system as additional extra constraints, and solving the 
system with several objective kinds by crisp, fuzzy, or 
stochastic. Thus, the author suggested a new method 
to combine the fuzzy set theory and the probability 
concepts to solve multi-criteria linear programming 
problems with crisp, stochastic, or fuzzy values, where 
he sees it as complementing with each other. Hence, 
his proposal method is sufficient to use fuzzy numbers 
or fuzzy intervals for modeling the parameters if they 
are described imprecisely by fuzzy sets, and scenarios 
selected in the suitable manner. The presenter showed 
the advantages of the method because the process 
could be done interactively by changing the aspiration 
levels and/or the risk aversion. In addition, fuzzy line-
ar programming based on aspiration levels which are 
used in the proposed method offers the possibility to 
use more flexibility in the left hand side of the extend-
ed extra constraints.  

Peng and Liu (2007) introduced a new concept of 
birandom variables and exhibited the framework of 
birandom variables or the class of hybrid of uncertain-
ties which consists of randomness and roughness; 
while Ak¨oz and Petrovic (2007) studied fuzzy 
iportant relations and defined three types in different 
linguistic terms:  

• Slightly more important than, 
• Moderately more important than, and 
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• Significantly more important than. 
Many models like multistage stochastic pro-

gramming (MSP) approach which is the extension of 
the two-stage stochastic programming (TSP) ap-
proach, multi-stage stochastic integer programming 
(MSIP) approach in the past decades have been pre-
sented by researchers who dealt with multilayered 
scenarios tree to address a multistage capacity expan-
sion problem, economies of scale in costs, and water 
resources.  

Previous methods did not deal (hardly) with inde-
pendent uncertainties of the constraints in the left 
hand-side, so as cost coefficients, hence many real life 
world problems with inexact mathematical program-
ming is effected to deal with the difficult real life 
problems that motivated Li et al. (2008) to present a 
study to deal with inexact, and presented a paper for 
water resources management under uncertainty to 
proposed in inexact multistage stochastic integer pro-
gramming (IMSIP) method. They proved that the 
method is able to deal with uncertainty in probability 
distributions, so as discrete intervals, and has able to 
reflect the dynamics in the water resources manage-
ment systems, balancing between drought and flood-
ing, as well as maximized economic benefits and on 
the other side minimized system failure.  

The authors showed the advantages of IMSIP 
over TSIP. It can deal with uncertainties in exit stream 
flow by generating scenarios in its future events. The 
proposed method reflects effectively the dynamic 
complexities in water resources management system 
in multistage context, and can deal with uncertainties 
presented as probabilities, so as intervals. IMSIP 
method can communicate uncertainties of all model-
ing parameters, so as interactions of the parameters 
into the optimization process.  

Katagiri et al. (2008) considered the 
multiobjective fuzzy random programming (FRP) 
problem, and proposed to solve the model by combin-
ing both the possibilistic programming (PP) and sto-
chastic programming (SP) approaches. This is due to 
the real-life world decision making problems that 
deals with multiobjectives/multiple criteria, and they 
are may be fuzzy, or random, fuzzy-random. Thus, the 
authors presented an interactive proposal method to 
solve multiobjective programming problem with fuzzy 
random coefficients, and gave a definition of random 
variable different from another researchers. It ex-
plained fuzzy random programming, stochastic pro-
gramming, and possibilistic programming, and gave 
special attention to concepts: vagueness and ambigui-
ty, where vagueness represents the fuzziness of which 
degree the element of the set belongs, while ambiguity 
is related to the fuzziness itself. The defined the prob-
lem formulation of the fuzzy random multiobjective 
linear programming problem as follows:  

�������� ��
≃ �, � = 1, … , �
�. �.

� ∈ � ≜ {� ∈ ��|�� ≤ �, � ≥ 0}
 

where denoted randomness and fuzziness of the objec-
tive coefficients by the” dash above”, and” wave 
above” i.e.” −” and” ∼” respectively, � is � −dimen-
sional decision variable column vector, �  is an 
� ×  �  cofficient matrix, and b is an m−dimensional 
column vector, and ���

≃, � = 1, … , �  of the vector 

���
≃ = (���

≃, … , � ��
≃ ) fuzzy random vectors, take fuzzy 

numbers with respect to occurrence of each event of 
�. 

On the other hand, they defined Pareto optimal as 
weak solution to construct an interactive satisficing 
method and for fuzzy random multiobjective linear 
programming problems associated with algorithm and 
flowchart. They sing out their proposed method by 
conclusions: combining a program of the fuzzy pro-
gramming approach with SP approach is complex as 
compared individually, but more realization to real-
life world problems, and the deterministic minimax 
problem can be solved optimality by combining the 
bisection method and the first-phase of the two-phase 
simplex method of the standard LPP, and the obtained 
solution it is at least weak Pareto optimal solution.  

In fuzzy linear programming problems, Wu 
(2008) suggested an optimality conditions for linear 
programming problems with fuzzy coefficients. He 
investigated the optimality conditions after introduc-
ing some basic properties and arithmetic of fuzzy 
numbers, and formulated two linear programming 
problems with fuzzy coefficients: first, a 
crisp/conventional and the other is the fuzzy linear 
constraints. The proposed two solutions for the two 
problems are through deriving the optimality condi-
tions for the problems by introducing the multipliers 
properties. 

The solution concepts were considered on the or-
dinary fuzzy numbers. The optimality conditions for 
the solution concepts/nondominated solution in the 
proposed approach of the multiobjective programming 
problem were naturally elicited. 

Iskander (2008) proposed to utilize the possibility 
programming to transform the fuzzy multiobjective 
linear programming as modeled (D.S. Negi, E.S. Lee, 
Possibility programming by the comparison of fuzzy 
numbers, Computers and Mathematics with Applica-
tions 25 (1993) 4350) into its corresponding equiva-
lent crisp programming according to the authors modi-
fications (Iskander, 2004b; Iskander, 2002) and used 
the two main criteria with the same evaluation con-
cept: the global criterion method and the distance 
functions method.  

In the study, the possibility programming in the 
fuzzy multiobjective linear programming problems 
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was modeled, and showed its two cases: the 
exceedance possibility and strict exceedance possibil-
ity. The proposed global criterion method and the dis-
tance functions method respectively as follows:  

�������� �� = �((��� − ��)/���)�

�

���

�������� �� = (� |��� − ��|�

�

���

)
�

��

 

where ��� is the most desired predetermined value of 
the ��. 

The proposed computational comparison recom-
mended that in the case of exceedance possibility ex-
ponent � takes 1 is better, where if it takes 2, the glob-
al criterion method is more preferable. However, the 
decision-maker has to choose his level θ of the re-
quired possibility, and the study c onclused that in 
general, the case of strict exceedance possibility is 
preferable than the case of exceedance possibility. Li 
et al. (2008) emphasized that the solution of hybrid 
multiple-objective problems can be found by using of 
fuzzy set concepts specifically fuzzy linguistic varia-
bles. Allowing a hold of strong duality has been prov-
en by an approach study in fuzzy linear programming 
problems under certain conditions (Inuiguchi et al., 
2003; Wu, 2008).Based on the PP- model, E-model, 
V-model, and F-model (Katagiri et al., 2001; Katagiri 
et al., 2003b; Katagiri et al., 2003a) the probability 
distribution model was applied and converted into 
maximize probability measure (Katagiri et al., 2008).  

The types of single and/or multiobjective LP 
problems where the variable of the RHS of constraints 
are fuzzy parameters have been studied, t and were 
considered by some researchers (Ganesan and 
Veeramani, 2006; Maleki, 2002; Nehi et al., 2002). 
Gil et al. (2006) considered the fuzzy random varia-
bles and presented the structure of fuzzy random vari-
ables and proved that a fuzzy number is a convex set, 
and helps others to various equivalent definitions of 
fuzzy random variable (Katagiri et al., 2008) class of 
hybrid. Xu and Yao (2009) based on Liu (2002b) in-
troduction on the concepts of random rough variable 
and random rough expected value; the chance con-
strained multiobjective programming (CCMOP)  

Model is presented by him as follows:  
���{��, … , ��}

�. �.
�ℎ{��(�, �) ≥ ��}��

≥ � �, � = 1, … , �

�ℎ{��(�, �) ≥ ��}��
≤ � �, � = 1, … , �

� ∈ �

 

where �  is a random rough variable ��, ��, ��, ��  are 
predetermined confidence levels, i = 1,..., m,and r = 
1,..., p dealing with uncertain optimization problems 
with randomness and roughness in the same time. 
Based on the chance measure of random rough varia-

ble which was defined by Liu (2004) considered the 

�� – ��  multiobjective programming model as follows: 
��� {��

≃��, … , � �
≃��}

�. �.
��

≃�� ≤ � �
≃, � = 1, … , �

� ≥ 0

 

where ��
≃ = (���

≃, … , � ��
≃ )�, ��

≃ =
(���

≃ , … , � ��
≃ )�, ��

≃; are random rough vectors , � =
 1, . . . , �, � =  1, . . . , �. 

Xu and Yao (2009) turned the constructed ran-
dom rough variables into crisp equivalent model and 
employed an interactive algorithm. Then a random 
rough simulation was applied to deal with general 
random rough objective functions and random rough 
constraints to convert the problem into crisp equiva-
lent problem. Finally, a combination of random rough 
simulations with genetic algorithm was applied to find 
a compromise solution to the original problem. On the 
other hand, they have proven that this combination is 
more effective and efficient than the traditional algo-
rithm for complex problems.  

In an amendment article, a paper by Chou et al. 
(2009) which was noted by Hop (2007c), proposed a 
method in studying multiobjective linear program-
ming problems in fuzziness and randomness environ-
ment. It has amended the paper of its method about 
how to convert the multiobjective optimization prob-
lems with fuzziness and/or randomness into its corre-
sponding equivalent LP problems, where Hop em-
ployed the relative relationship between fuzzy num-
bers and fuzzy stochastic variables. The relative rela-
tionship which was obtained was called attainment 
values of degrees such lower side attainment index 
(both-side attainment index and average index). In 
Hops approach, the relationship and attainment values 
play the main role to convert of fuzzy and fuzzy sto-
chastic linear programming problems into crisp or 
standard LP problems and then solving it.  

The authors proved that the Hops proposal has 
failed or flawed and confound his proposal because it 
could not the find maximum/minimum values of de-
sired objectives, and neglected some of the relevant 
and unavoidable theoretical essentials; hence, they 
emphasized that in their revisions:  

• The intersection of two membership functions 
not always exist, 

• The Hop’s preposition is not general but special 
case that means the proposal which construct based on 
the preposition is not general but special case, and 

• showed that by resolving the numerical exam-
ples were solved by his proposal method infeasibility 
solution.  

On the other hand, it was discovered that there are 
some scholars who proposed the fuzzy environment 
based on Hops proposed method, have not noted that 
this method results to infeasibilities (Gao et al., 2008; 
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Qiu and Shu, 2008; Xu et al., 2008; Xu and Liu, 
2008).  

Ben Abdelaziz and Masri (2009) have extended 
their previous study (Ben Abdelaziz and Masri, 
2005b), by introducing the multistage stochastic pro-
gramming with fuzzy probability distribution for the 
first time. Their extended proposal was focused on 
fuzzy probability distribution defined by triangular 
fuzzy numbers. The proposal has two levels of uncer-
tainty: randomness on the parameters and the fuzzi-
ness on the values of probability distribution. The 
strategy is the same with their pre-study on two-step 
fuzzy transformations: first, utilizing the α−cut tech-
nique to defuzzify the fuzzy probability distribution, 
while the in the second step of stochastic transfor-
mation, they considered the risk attitude of the deci-
sion maker to obtain the deterministic equivalent 
standard programming. And lastly, they used a modi-
fied nested decomposition method to get the solution 
for the original problem.  

They relied their solution on two concerns that 
has considered the high level of uncertainty and the 
ambiguity of the problem being undertaken, and have 
supposed that DMs ability to estimate the credibility 
degree α on the information sources. On the other 
hand, the DMs pessimistic for future events to look for 
a robust solution. The advantage of the proposed solu-
tion is the nested decomposition algorithm that gener-
ates the optimal solution in countable steps. Hashemi 
et al. (2006) has considered the possibilities of mean 
value and variance of the fuzzy numbered which con-
sidered symmetric triangular fuzzy numbers.Lotfi et 
al. (2009) addressed a full fuzzy multiobjective linear 
programming (FMFLP) problems and considered all 
variables and parameters as fuzzy triangular asymmet-
ric numbers with certain conditions.  

They considered the defuzzification approach on 
the nearest symmetric triangular approximation. The 
concept of symmetric triangular fuzzy numbers used 
in addition to the concept of the nearest symmetric 
triangular approximation of fuzzy numbers or fuzzy 
quantity. After converting the full multiobjective 
fuzzy linear programming (FMFLP) problem into 
multiobjective linear programming (MOLP) problem 
with crisp numbers for parameters and variables, and 
on the other side, for solving FMFLP problems, the 
ranking of the constraints was also considered.  

The advantage of the method is that it can be used 
even if the entries of the matrix constraints may be 
negative as well as for objective coefficients. The dis-
advantage of the method is the value of objective 
functions that may not satisfy the fuzzy production of 
two positive fuzzy asymmetric parameter numbers 
because of the fuzzy production properties.  

Based on (Chen and Tsai, 2001b; Li et al., 2004), 
Li and Hu (2009) presented a paper to study multiple 

optimization problem, and introduced satisfying opti-
mization method based on goal programming for solv-
ing fuzzy multiple objective optimization problem. 
The proposed method is adapted to solve the fuzzy 
optimization problems with the three different rela-
tions introduced by Ak¨oz and Petrovic (2007).The 
method follows the more important objective in 
achieving the higher desirable satisfying degrees, re-
formulated the fuzzy multiple objective optimization 
problem, and the new reformulated fuzzy optimization 
problem. Each of the desirable degrees of achieve-
ment, and the important difference maximized objec-
tive done by ranking the desirable satisfying degrees 
under the inter-working with DM.  

The result consists of DMs satisfying his/her 
fuzzy preference because of the trade-off between 
satisfying optimization and the importance of the re-
quirement which is taken into a count and was real-
ized at the same time. The proposed method verifies 
the efficiency, flexibility and sensitivity. In the con-
tinuous optimization problem for stochastic 
multiobjective programming (SMOP) problems in 
order to cover an important gap in the scientific litera-
ture, Mu˜noz and Ruiz (2009) presented an interval 
stochastic multiobjective (ISTMO) programming 
problems, more clearly an interval reference point-
based method for stochastic multiobjective program-
ming problems. It is an extension of Urli and Nadeau 
(2004) and (Urli and Nadeau; 1990 in PROMISE, 
Teghem et al.; 1986 in STRANGE in discrete optimi-
zation problems) wherein the proposed interactive 
method refers to a combination of the concept of 
probability efficiency for stochastic problems, and the 
reference point for deterministic multiobjective prob-
lems. The main idea in this method is that the DM 
expresses his/her references by dividing the different 
range of all objectives into some special intervals like: 
very poor, poor, fair, good, very good that are ac-
ceptable to redviding and redefining during the pro-
cess.  

This interactive method helps the DM to verify 
the interactive procedure for solving SMOP problems, 
as well as understanding the stochastic nature of the 
problem. This is to discover the risk levels he/she is 
willing to accept on each objective function by trade-
offs among the objective functions by considering: 

• Efficiency analysis, 
• Determination of satisfying solutions, and 
• Compromise programming approach. 
Thus, as emphasized by authors, the interactive 

method comes with three new contributions:  
• The DM must find reasonably comfortable, and 

natural to give the information required by the meth-
od, to avoid throwing in consistent in formulations 
into the optimization problem, 
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• Based on the noted mentioned above 
informations, the method must get the solution in rea-
sonable number iterations, and 

• The method must aid the DM to understand the 
stochastic nurture of the problem, gives the DM the 
risk of levels associated with each iteration solution.  

The method has relied on the probability efficien-
cy (Kataoka, S., 1963. A stochastic programming 
model. Econometrica 31, 181196.) in order to adapt 
the reference point as the first step to choose an effi-
ciency criterion. Although this method was basically 
introduced to solve and treat optimization problems 
with continuous random variables, the results de-
scribed in Larsen et al. (2002) can be tackled together 
in this method to understand in the analyzing for the 
discrete case of the random variables.  

Hu et al. (2009) introduced an interactive satisfic-
ing method based on alternative tolerance for fuzzy 
multiple objective optimization. This new tolerance of 
the dissatisficing objectives is based on (R. Benayoun, 
J. De Montagolfier, J. Tergny, O. Larichev, Linear 
programming with multiple objective functions: step 
method (STEM), Math. Program. 1 (3) (1971) 
366375.), and the objective functions in attaining their 
aspiration levels are iteratively relaxed so that other 
objective functions are improved. 

This procedure is continued until all the objective 
functions are satisficing. According to this method the 
new tolerance of dissatisficing objectives are generat-
ed by using an auxility programming problems. More-
over, according to this method, the membership func-
tions may either be changed or added to the objective 
constraints.  

Through changing the tolerance of objective func-
tions, different membership functions are modeled and 
has removed the difference among objective functions 
which was determined by strict priority, and to over-
come the unfeasibility if it appears that the attainable 
reference point method is referred which introduced 
by Wang et al. (2001). The paper suggests an efficient 
solution by lexicographic two-phase programming 
method (E.S. Lee, R.J. Li, Fuzzy multiple objective 
programming and compromise programming with 
Pareto optimum, Fuzzy Sets Syst. 53 (1993) 275288.), 
and if the objective values are lower than aspiration 
goals, adding the objective constraints about the goal 
values, then the solution is reduced into weak efficient 
solution.  

The advantages of this method are: effectively in 
the optimization results which can be applied in non-
linear optimization problems in addition to linear op-
timization problems. This may be used to solve a gen-
eral multiobjective optimization programming 
(MOOP) problems.  

A special situation of multiple level programming 
problem (MLPP) includes two optimization problems 

called the bilevel programming problem (BLPP). This 
was considered and discussed (Deb and Sinha, 2009a; 
Deb and Sinha, 2009d; Deb and Sinha, 2009c) based 
on evolutionary multiobjective optimization (EMO) 
principles and on BLPP planned active and hybrid 
evolutionary-local-search constructed algorithm which 
offers a challenging test problem (Deb and Sinha, 
2009b). The paper of Aouni and Torre (2010) showed 
how to get a stochastic solution of stochastic 
multiobjective (SMOP) problem by using goal pro-
gramming (GP) model. The proposed approach con-
tains two unit activities: first, a unit devoted to the 
introduction of corresponding deterministic equivalent 
problems when the feasible set is random and dis-
played how to solve these problems by using goal 
programming technique. In the second unit they tried 
and supposed SMOP to be a random variable. In the 
new approach, which deals with stochastic goal pro-
gramming (SGP), they highlighted that there are dif-
ferent SGP formulations based on the solutions of the 
corresponding equivalent deterministic programming 
problems. Their approach has dealt with these two 
types of decision making solutions: the discrete and 
the continuous cases.  

They showed that in the discrete situation, the 
best solution can be obtained by using the highest 
probability criterion, while in the other case, can esti-
mate the mean and the variance of the unknown solu-
tion. These solutions become more and more accurate 
in increasing the number of observations. The pro-
posed approach needs more computational time than 
the one that is based on deterministic equivalent prob-
lems. This is due to the fact that there is some optimi-
zation problems needed to be run and solved since this 
approach assumes that the SMOP solution is a random 
variable. Hence, according to the Central Limit Theo-
rem (CLT) the larger number of observations, the 
more precise will be the approximation of the statisti-
cal moment of the SMOP solution.  

Zeng et al. (2010) saw that some goals, coeffi-
cients and constraints of crop area planning could not 
be well-defined because the goals or constraints of the 
decision-making could not be expressed. This is pre-
cisely because the utility function may be not defined 
precisely due to uncertainty of natural and environ-
ment factors. This includes the limitation of human 
beings understanding in crop planning owing to pa-
rameters such as surface water withdrawal, crop, 
yield, price, irrigation volume are uncertainty.  

So, they proposed the fuzzy multiobjective linear 
programming (FOMOLP) model and its correspond-
ing fuzzy goal programming (FGP) problem to crisp 
which can be solved by the traditional or conventional 
programming methods, and applying the proposed 
method to crop area planning to Liang Zhou region, 
Gansu province of northwest China. Their crop plan-
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ning problems have conditions where the coefficients 
of the objective functions, goals, and constraints are 
all ambiguous. The following objectives of the study 
are: FMOLP problem with fuzzy triangular numbers 
and its corresponding FGP problem are transformed to 
crisp one and then solving it through traditional meth-
od, where they applied the proposal method to north-
west China. 

 The FMOLP model was developed and was used 
to solve thereby obtaining optimal crop area pattern 
under different water-saving levels. Compared to 
MOLP, the FMOLP model is more appropriate when 
the fuzzy characteristics in the coefficients, goals and 
constraints are involved in the decision-making. The 
FMOLP model presents a more stable approach as 
strategy in agriculture when goals, constraints and 
coefficients of objectives are presented by uncertainty. 
The FMOLP model and FGP problem can be applied 
in other management and decision-making fields.  

In continuous optimization, Ben Abdelaziz and 
Masri (2010) forwarded the multiobjective stochastic 
linear programming under partial uncertainty, and 
solved the multiobjective stochastic linear program 
(MSLP) with partial known probability distribution. 
They studied the case on probability distribution de-
fined by crisp inequalities. Further, they have pro-
posed a chance constrained programming (CCP) ap-
proach and the compromise programming (CP) ap-
proach to transform MSLP with linear partial infor-
mation on probability distribution (MSPLI) into corre-
sponding equivalent standard LP problem and solved 
it using modified � −shaped method. First they ad-
dressed and defined MSPI as follows: 

��� � = � (�)� = [� �(�)�, … , � �(�)�]
�. �.

�(�)� − ℎ(�) ≥ 0
� ∈ ��

 

where �� = {� ∈ ��: ��� = � �, � ≥ 0}  is the set of 
deterministic constraints with ��  is ��  ×  �  matrix 
and ��  is ��  vector; �, � ��� ℎ are random matrices 
of � ×  �, � ×  �, �� � � ×  1  respectively defined 
on some probability space (Ω,  2Ω , �)  with Ω =
 {��, . . . , �� } is a discrete set of events,   2Ω  is the 
power set of Ω  and P is the partially known-
probability distribution that signs to each � ∈  2Ω  the 
probability of occurrence � (�). 
Second, they defined the polyhedral set of the gather-
ing probability �� as follows: 

� = {� =  (��, … , � �)�: �� ≤ �,� �� = 1,

�

���

�� ≥ 0, �

= 1, … , �}  
where = � �� , and� = � � are respectively s × N and s × 

1 and fixed matrices.  

Third, they employed the CCP approach, CP ap-
proach and the chance constrained compromise CCCP 
approach, and consequently, they used modified 
L−shaped method to obtain the compromise solution 
to the MSPI. Their method does not take into account 
on cases where the shortage occurs in constraints, and 
does not consider a recourse version of the compro-
mise programming approach to MSPLI. In 
multiobjective stochastic integer programming (MSIP) 
problems, Kato et al. (2010) concentrated on 
multiobjective integer programming problems involv-
ing random variables coefficients in both of the 
multiobjective and constraints.  

They projected an interactive fuzzy satisficing 
method based on fractal criterion optimization for 
MSIP problems, and verified their plan method in 
gradual environment, or introduced the chance con-
strained conditions into the problem, transformed and 
reformulated the problems into agreeing equivalent 
deterministic integer programming problems based on 
fractal criterion optimization, introduced fuzzy goals 
into the problem, employed and defined a new con-
cept efficient solution, namely: � −  � −  efficiency 
as follows: �∗ ∈ �  is said to be a M − θ− efficient 
solution to:  

�������� �����(�)�, � = 1, … , �
�. �.

� ∈ �

 

if and only if there doesn’t another � ∈  � such that 

�����(�)� ≥ � ����(�∗)�, ∀� ∈ {1, … , �} , and 

�� ���(�)� > � ���(�∗)� , ��� �� ����� � ∈ {1, … , �} , 

for all the optimization model, where, ��(. ) is a mem-
bership function to quantity a fuzzy goal for the ���  
objective function in the optimization model.  

They introduced the � −  � −  efficiency as a 
combination of stochastic approaches and fuzzy ones. 
Finally, used a genetic algorithm (GA) of constructed 
an interactive satisficing method to develop satisficing 
approximation efficient solution M − θ− efficient by 
adapting the membership levels considered.  

Zhang et al. (2010) proposed a fuzzy-robust sto-
chastic multiobjective programming (FRSMOP) ap-
proach to integrate fuzzy-robust linear programming 
and stochastic linear programming into a general form 
of multiobjective programming problems. For reflect-
ing the decision-makers preference can generate se-
lected number of non-inferior or robust solutions. 
They have proven that the FRSMOP approach can 
deal with fuzziness and randomness effectively where 
the information of parameters were uncertain and can 
be expressed as a fuzzy membership functions or as 
probability distribution. On the other hand, FRSMOP 
method has been developed by the authors and has 
applied it to a case study of planning petroleum waste 
management successfully.  
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They concluded that the DM can generate the 
proposal approach by selecting a number of non-
inferior desired solutions by trade-offs between con-
flicting environmental and economic objectives. 
Hence, the method is applicable to many other practi-
cal real life problems if there exist a trade-off among 
conflicting objectives.  

On the Pareto sufficient solution, Bringmann and 
Friedrich (2010) suggested a fully polynomial ran-
domized approximation scheme (FPRAS) for hyper 
volume, but with hardly computational step since it 
must be performed as search algorithm at each itera-
tion of the Pareto sufficient solution procedure.  

A capacity investment has been formulated and 
discussed as a kind of stochastic multiobjective inte-
ger programming (SMOIP) problems, and a local 
search metaheuristics has been proposed as a solution 
technique for it(Claro and Sousa, 2010).  

Various kinds of fuzzy linear programming (FLP) 
problems have been considered (Ebrahimnejad et al., 
2010; Ebrahimnejad and Nasseri, 2010; Ebrahimnejad 
et al., 2011; Nasseri and Ebrahimnejad, 2010b; 
Nasseri et al., 2010) and several research methodology 
using the concept of comparison of fuzzy numbers to 
solve these problems were proposed. Most suitable 
methods stated are based on the concept of compari-
son of fuzzy numbers using linear ranking functions. 
Zheng et al. (2011) studied BLPP and presented a new 
proposal method, namely a fuzzy inter-active method 
in BLPP, where the lower level/follower level is a 
multiobjective linear optimization problem as well as 
upper level/leader level. They formulated bilevel 
multiobjective programming problem (BMOP) as fol-

lows: 

(�. �)����(�,�)

�. �.
��� + ��� ≤ � �

� ≥ 0
�ℎ��� � ������ 

�
�����

�. �.
��� + � �� ≤ � �

� ≥ 0

 

where � ∈ ���, � ∈ ���  the decision variables of 
BMOP are dividied into two classes; up level 
ble � and lower level variable �. 
 �: ��� × � �� → � ��, � = ���, … , ���

�, 

 � ∈  ���×� �, ��, ��, ��, ��, ��, ��  are of appropriate 
dimensions.  

The considered problem is solved through two 
steps: the first step was the transformation of the lead-
er level into multiobjective optimization problem to 
achieve efficient solutions, while the other is a meas-
urement function to check up the obtained solution if 
its efficient or not. The interactive method emphasizes 
that the final solution for the optimization problem is 

always efficient to the leader level, while the follower 
level examines all these efficient obtained solutions to 
help the measurement function until the acceptable 
solution is obtained.  

Laumanns and Zenklusen (2011) examined the 
stochastic convergence of random search techniques 
of Pareto front approximations to achieve the random 
search techniques, equipped with Archive size bound-
ed to store a limited aggregate solutions and other 
data, were able to get a good approximation to the 
Pareto. They recommended and analyze two archiving 
plans that allow to retain a series of groups out of the 
solution due to meet with one possibility to −Pareto 
set of a certain quality, under very mild assumptions 
on the process used for sampling new solutions.  

The first algorithm uses hierarchical network for 
the definition of the family of dominance relations 
approximate to compare solutions and solution sets. 
The acceptance of the new solution is based on the 
potential function that calculates the number of em-
ployed boxes (at numerous levels), and thus keeps the 
progress monotonous accurately into a limit, which 
covers the Pareto front with non-overlapping funds in 
the best possible accuracy. The second scheme 
adapted is to modify the present value on the basis of 
information that has been collected during the previ-
ous period. In this way, it will be probable to achieve 
the convergence of the best (smaller enough) value 
and to solve a variety of solutions corresponding k − 
dominates all other solutions, which is probably the 
best likely result on the behavior of reducing research 
methods random or metaheuristics for approximate 
Pareto front.  

Kato and Sakawa (2011) studied MSLP problems 
and proposed an interactive fuzzy satisficing method 
based on variance minimization under expectation 
constraints for MSLP problems. They attached the 
case where all the coefficients in the objective func-
tions and the constraints in the optimization problem 
are random variables. The authors used the concept of 
chance constrained conditions to transform such 
MSLP problems into equivalent deterministic standard 
LP problems based on the variance minimization 
model in expectation constraints circumstances, after 
introducing fuzzy goals and aims to reflect the ambig-
uous expressions of the decision maker on objective 
functions. They verified that the interactive fuzzy 
saisficing method can easily be employed to solve the 
deterministic LP problems which were attained from 
the MSLP problems because since the deterministic 
optimization problems are convex. On the other hand, 
it is observed that if the DM studied the objective 
functions well, perhaps the ambiguity of the DMs 
judgments for the objective functions be less, and 
could obtain a robust compromise solution for the 
original optimization problem.  
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The multiobjective integer programming (MIP) 
problems with stochastic objective coefficients con- 
sidered by Turgut and Murat (2011), proposed to gen-
erate a Pareto surface as a solution method for it. Alt-
hough there are two main exact methods for solving 
stochastic multiobjective programming (SMOP) prob-
lems, namely: the multiobjective approach and sto-
chastic approach in converting MOP problems into its 
equivalent deterministic programming problems. The 
authors preferred the second approach to achieve effi-
cient solutions rather than the first one.  

Thus, the multiobjective was converted to its 
equivalent deterministic one based on minimum ex-
pectation and variance efficiency concepts, followed 
by the Pareto method to generate all Pareto surface of 
MOIP problems.  

After four years of linear programming with 
fuzzy parameters (Jimen´ez et al., 2007), a critical 
analysis of Hatami Marbini and Tavana (2011) pro-
posed an amendment to the optimal crisp value which 
is imposed in Jimenezs method. They showed and 
examined the method given by counterexample that 
their proposed method is not to be generalized as it 
offers as an optimal solution under precise restrictive 
conditions. They could not confirm their claim that the 
method proposals DMs with reliable information to 
launch fuzzy goals and aims in real-world problems, 
thus emphasized that their method can be generalized 
to solve many real-world linear programming prob-
lems where all the coefficients are fuzzy numbers.  

In Adeyefa and Luhandjula (2011), many papers 
have been reviewed and surveyed in multi-objective 
stochastic linear programming (MOSLP) problems 
from the second half of the last century to the first 
decade of this century.  

The paper presents that the important ideas from 
optimization, probability theory, and multi criteria 
decision analysis, and concrete real life problems, may 
put the MOLP problem model as several objective 
functions conflicted, and random variable data under 
one roof in the optimization problem.  

The authors showed that there are three main 
compromise solutions in the MOSLP problems, name-
ly: hard, soft, and metaheuristics associated with re-
searchers following each method for singling out the 
solution. On the other side, it explains each compro-
mise solution that the original problem may be solved 
by one of the main methods: stochastic approach 
which reduces the problem to a single objective sto-
chastic program, the multiobjective approach which 
converts the problem into a deterministic 
multiobjective program, and the hybrid approach 
which combines the appropriate manner of stochastic 
approach with multiobjective approach.  

In addition the paper focuses on the hard com-
promise solution, and specific a section to compar- 

ison among different solution approaches, and showed 
the advantages and disadvantages for each approach, 
furthermore inserts applications for each one. 

The paper concludes that the systematic approach 
to decision making and problem solving can be of-
fered as efficient tools to deal with MOSLP problem, 
and could inserts some of its properties. In Katagiri 
and Sakawa (2011), they focused on multiobjective 
fuzzy random programming (MOFRP) problems 
which the objective function coefficients are fuzzy 
random variables, the concept � −  � −Pareto opti-
mality definition has been extended and a new Pareto 
optimal solution named � −  � −  �−Pareto optimal 
solution defined.  

The study proposes an interactive method using 
the reference point method (A.P. Wierzbicki, The use 
of reference objectives in multiobjective optimization 
theoretical implications and practical experiences, 
WP-79-66, International Institute for Applied Systems 
Analysis, Laxenburg, Austria, 1979), to satisficing the 
new Pareto optimal solution.  

The advantage of the proposed method is the use 
of a combination of the first stage of two-stage sim-
plex method with the bisection method to obtain exact 
solution, as it is difficult to solve MOFRP problem 
and getting an exact solution for it, involving fuzzy 
random variables, or complex of the form mixture of 
fuzziness and randomness. Sakawa et al. (2000a) has 
modeled two-level linear programming involving 
fuzzy random variable. To deal with such kind of the 
problems, � −  level sets of fuzzy random variables, 
and α− stochastic two level linear programming prob-
lems were defined and with the cooperative behavior 
of decision makers, solution methods for decision 
making problems have been considered in the hierar-
chical models in fuzzy random circumstances.  

Stochastic two-level programming problem has 
been transformed and reduced into deterministic pro-
gramming problem, and the interactive fuzzy was con-
sidered to satisficing obtained solution for the decision 
maker at the upper level of the cooperative relation 
between decision makers. The advantage of the pro-
posed method is it can solve all problems by the sim-
plex method.  

Maleki et al. (2000) who proposed a crisp model 
equivalent to FLP problems, presented a new method 
for solving fuzzy number linear programming (FNLP) 
problem and using its solution to obtain fuzzy solution 
of fuzzy variable linear programming (FVLP) prob-
lems. Mahdavi-Amiri and Nasseri (2006) extended the 
concepts of duality in FNLP problems, while Nasseri 
and Ebrahimnejad (2010a) used this extension as a 
similar problem leading to the dual simplex procedure 
for solving FNLP problems.  

On the other hand, Ebrahimnejad et al. (2010) 
proposed a primal-dual simplex procedure to obtain a 



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com  

642 

fuzzy solution of FVLP problem as an efficient meth-
od. Furthermore, a fuzzy primal simplex method has 
been applied to solve flexible LP problem directly 
without needing to solve any auxiliary problem 
(Nasseri and Ebrahimnejad, 2010b).  

Since the discovery that the dependence idea of 
Maleki et al. (2000) does not lead to an efficient solu-
tion when the decision variables bounded in FNLP 
problem, a new approaches have been proposed 
(Ebrahimnejad and Nasseri, 2010; Ebrahimnejad et 
al., 2011) to overcome this weakness and inefficiency 
of the dual and prime simplex method.  

Ebrahimnejad (2011) presented a paper general-
ized the concept of sensitivity analysis in FNLP prob-
lems. Applied fuzzy simple algorithm and used the 
general linear ranking functions on fuzzy numbers to 
regulate changes in the optimal solution of FNLP 
problems as a result from data changes.  

The author built his proposal by depending on 
sensitivity analysis on crisp linear programming pa-
rameters as highlighted by Bazaraa et al. (2005). Fur-
thermore, he depended on if → then fuzzy concept in 
his paper, i.e. if the change affects the optimality, he 
performed primal pivots to attain optimality using 
fuzzy primal simplex method, otherwise if the change 
rescinds the optimal feasibility, he performed dual 
pivots to attain optimal feasibility using fuzzy dual 
simplex method. The researcher got out by the spelt 
conclusion that the fuzzy primal simplex algorithm 
and the fuzzy dual simplex algorithm stated by 
Mahdavi-Amiri et al. (2009) and Nasseri and 
Ebrahimnejad (2010a) respectively can be used on LP 
problem with fuzzy numbers for post optimality anal-
ysis.  

Ben Abdelaziz (2012) considered the 
multiobjective stochastic programming (MOSP) prob-
lems and surveyed most solution approaches to the 
MOSP problems. The kinds of problems were consid-
ered that the random variables can be in the objectives 
as well as in the constraints. After the definition of the 
MOSP problems in its general form, and in its linear 
case, the author emphasized that the linear case of the 
problem has not been well-defined mathematically. 
He divided his paper into three main sections: 

• Transforming of MOSP problems, 
• Efficient solutions for the MOSP problems, and 
• Real applications of the MOSP problems. 
For the first section, in order to solve MOSP 

problem, it needs to be transformed into its equivalent 
deterministic form and finding an optimal solution for 
it.  

Since the random variables exist in both the ob-
jectives and the constraints, therefore before trans-
forming the multiobjective, the random constraints 
have to be addressed and transformed to obtain a de-
terministic feasible set. As soon as the random con-

straints have converted into feasible deterministic con-
straints, the multiobjective functions should be trans-
formed either by multiobjective transformations or by 
stochastic transformations.  

The first transformation eliminate the randomness 
of the problem in the first step, after that it must look 
for appropriate technique to solve the deterministic 
model and generally solved by interactive methods. 
Several proposed methods have been inserted to solv-
ing MOSP problem by multiobjective transformations. 
While in the second one, the multiobjective ought to 
be aggregated first to obtain a uniobjective stochastic 
program, then solving it by stochastic approach like 
weighted sum approach, and the obtained problem can 
be handled either by a recourse method or by a chance 
constrained method, by goal programming approach 
or compromise programming models. Also, several 
approaches were inserted for this transformation.  

On efficient solutions for the MOSP problem, 
when the DM solving the deterministic transformed 
problem from the original problems, (he) must be 
concerned in the second step for the best solution, 
because it is natural to view the solution for the origi-
nal problem as a non-dominated. To overcome this 
weakness, the DM must search the Pareto-efficient 
solutions, or to consider the probability distribution in 
order to define efficient solutions. The paper provides 
some general definitions for the efficient solutions for 
the MOSP problem. For real applications of the prob-
lem, several applications have been inserted in various 
fields like water resources management, management 
of stochastic farm resources, mineral blending, ther-
mal power generation scheduling, human resource 
management, and financial applications. The paper 
concludes that understanding the situation of the prob-
lem by program modeler has its role and his/her con-
tribution in the resolution process has also its role to 
get an optimal solution to the original problem, and 
depending on the decision situation and numerous 
meanings of efficient solutions can be measured.  

In (Mu˜noz and Ben Abdelaziz, 2012), the sto-
chastic multiobjective programming (SMOP) prob-
lems deals with the concepts of satisfactory solution 
for these kind of problems, different concepts of satis-
factory solutions for SMOP problems have been in-
troduced, and has defined a new concept of solution.  

The paper shows the aims and purposes of the 
study; analyze the different concepts of disease solu-
tions for SMOP problems through the application of 
fundamental criteria in conversion objective functions 
to deterministic ones through expected value, standard 
deviations, and probabilistic goals.  

On the other hand, authors ideas and suggestions 
are displayed as follows: First, the DM must choose 
transformation criteria for all stochastic objectives 
individually and the specific corresponding aspiration 
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levels. Second, the obtained aspiration levels must be 
analyzed according to the other transformation criteri-
on for each stochastic objective, and supply the DM of 
various satisfactory sets which are included from 
his/her satisfactory solutions have been selected. 
Third, the DM can change the transformation criterion 
for some stochastic objectives during the transfor-
mations analysis.  

In the study, two transformation criteria for sto-
chastic objectives have been considered: expected 
value-standard deviation and the Kataoka criterion, 
where the authors defined three satisfactory solution 
concepts: ��, �� ��� 2��.On the other hand, the pa-
per proposed some new propositions: a set of satisfac-
tory solutions �� �� 2�� and a set of satisfactory so-
lutions �� �� 2��.  

Sakawa et al. (2012b) studied fuzzy random two 
(bi)-level linear programming (BLP) problems with 
vagueness judgments of decision makers. He intro-
duced fuzzy goals into formulated non-cooperative 
problem involving fuzzy random variables and has 
considered Stackelberg solutions for decision making 
problems in hierarchical optimizations in fuzzy ran-
dom circumstances.  

The authors considered that each objective func-
tion fulfills the possibility and necessity measuring 
fuzzy goal correspondingly through stochastic pro-
gramming with fuzzy maximum probability (A. 
Charnes, W. W. Cooper, Deterministic equivalents for 
optimizing and satisficing under chance constraints, 
Oper. Res. 11(1963)1839), then proposed a new 
bilevel fuzzy random decision making models that 
fulfills maximum probabilities in which the degrees of 
each necessity and possibility is greater than or equal 
to pre-specific value.  

They transformed the problem into its corre-
sponding equivalent deterministic bilevel fractional 
programming (DBFP) problem by extending 
Stackelbergs concept solutions which can be obtained 
by combining the variable transformation method 
(Charnes A., Cooper W.W. (1962) Programming with 
linear fractional functionals. Nav Res Logist Q 
9:181186), and ���  best algorithm (Bialas WF, 
Karwan MH (1984) Two-level linear programming. 
Manag Sci 30:10041020) and by introducing compu-
tational methods in getting the deterministic bilevel 
programming (DBP) problem. Finally, looking for an 
optimal solution for the obtained DBP problem and a 
compromise feasible solution can be obtained for the 
original problem. Sakawa et al. (2012a) continuously 
studied BLP problems, dealt with new decision mak-
ing problems, and introduced several concepts like: 
hierarchical modeling and structures, fuzziness and 
randomness simultaneously, no cooperative relation-
ships between two decision makers are taken into ac-
count in dealing with bilevel linear programming 

(BLP) problems, considering non-cooperation be-
tween decision makers, and assuming that both possi-
bility and necessity measure is fulfilled by each objec-
tive function.  

Considering the vague nature of decision making, 
fuzzy goal is introduced to minimize fuzzy random 
non-cooperative BLP problems, thereby transforming 
such model into stochastic bilevel programming (SBP) 
problem to maximize the degree of possibility and 
necessity; then transforming the SBP problem through 
expectation optimization in the stochastic program-
ming by extending Stackelbergs concept solutions as 
pointed in their previous study, and to finally look for 
an optimal solution for the obtained DBP problem.  
3. Conclusion 

In this paper, we have surveyed the various types 
of multiobjective linear programming problems, the 
fuzziness and/or randomness in objective functions 
and/or in constraints and the full fuzzy stochastic line-
ar programming problems. We have studied the 
multiobjective fuzzy stochastic linear programming 
problems chronologically from the beginning of the 
century up to the present, and what relatives to them, 
such; modeling, and how to transform them into their 
corresponding deterministic multi (uni) objective line-
ar programming problems, and what research method-
ologies used to achieve this aim. On the one hand, 
how the deterministic problem has been solved, and 
on the other hand the optimal solution for the original 
has been discussed too. 
 Finally, we concluded that: 
1. We have not examined all studies and publica-

tions for multiobjective fuzzy stochastic linear 
programming because this collective action and 
institutional, and we cannot, 

2.  each of multiobjective fuzzy/stochastic linear 
programming problems addresses and deals with 
real world problems partially, and neither meet 
the desired purpose nor achieve the desired aim of 
the problem, 

3.  with the increasing complexity and entangle-
ments of the real world, facing the real life world 
problems requires multiobjective fuzzy stochastic 
non (linear) programming problems, and in the 
uncertainty circumstances and environments, and  

4.  Pareto optimal solution and solution efficiency 
are two relative concepts from DM to other.  
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