
Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 319

The Proposal of a Novel Software Testing Framework

Munib Ahmad 1, Fuad Bajaber 2, M. Rizwan Jameel Qureshi 2

1. Department of Computer Science, COMSATS Institute of Information Technology, Lahore, Pakistan
2. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

munib_kamboh@ciitlahore.edu.pk, fbajaber@kau.edu.sa, rmuhammd@kau.edu.sa

Abstract: Software testing is normally used to check the validity of a program. Test oracle performs an important
role in software testing. The focus in this research is to perform class level test by introducing a testing framework.
A technique is developed to generate test oracle for specification-based software testing using Vienna Development
Method (VDM++) formal language. A three stage translation process, of VDM++ specifications of container classes
to C++ test oracle classes, is described in this paper. It is also presented that how derived test oracle is integrated
into a proposed functional testing framework. This technique caters object oriented features such as inheritance and
aggregation, but concurrency is not considered in this work. Translation issues, limitations and evaluation of the
technique are also discussed. The proposed approach is illustrated with the help of popular triangle problem case
study.
[Ahmed M, Fuad B, Qureshi MRJ. The Proposal of a Novel Software Testing Framework. Life Sci J
2013;10(4):319-326] (ISSN:1097-8135). http://www.lifesciencesite.com. 42

Keywords: Framework; Testing; Software Reliability; Test Oracle

1. Introduction

Software testing is really a difficult job.
Recently software testers have increased their
dependency on automated testing to test software.
Software test automation is often difficult and
complex process. Generating and running the test
cases and generating and verifying test results are
very important in test automation. We identify the
needs to be verified during designing of a test. A set
of expected results are required to verify the actual
results for each test. The process of expected results
generation is done using test oracle (Binder, 2002).
Expected result generator and comparator are two
main components of a test oracle. Implementation
under test is used to generate actual result for a
particular test case. Then actual result is compared
with expected result, generated by expected result
generator for evaluation whether actual result is
correct. The output of comparator will be 0 or 1. If
actual and expected results are same then ok,
otherwise error will be declared.

People are rapidly adopting and relying on
software to perform their daily activities. This level
of dependency and confidence in software requires
the checking of its correct behavior for safety of the
people and their business. Correctness of the
behavior of software depends on how much level you
are performing the testing of that software (Peters
and Parnas, 1998).

Systematic testing especially supported by
suitable tools can greatly increase the effectiveness of
system verification and the confidence in the correct
functioning of the system (Takahashi, 2001).
Automated testing has the ability to reduce the testing

time and save up to 80% of testing costs because
automated tests can execute test cases much faster
than manual testing (Takahashi, 2001). All software
testing researches and practices assume that there is
some mechanism, an oracle, for determining whether
or not the output from a program is correct. “A
Perfect Oracle would be behaviorally equivalent to
the implementation under test (IUT) and completely
trusted. In effect, it would be a defect free version of
the IUT. It would accept every input specified for the
IUT and would always produce a correct result.”
(Binder, 2002). Therefore, the development of a
perfect oracle will be as difficult as the development
of the original software.

The rest of the paper is organized as: section
2 discussed related work. Problem definition is given
in section 3. The proposed technique and its
limitations are discussed in section 4. In section 5, a
case study of popular triangle problem is conducted
to validate our proposed research. The evaluation of
proposed technique is described in section 6.

2. Related Work

The test oracle generation for specification-
based software testing techniques can be classified on
the basis of formal specification notations. We can
categorize formal specifications into six categories
i.e., model-based, algebraic, Logic-based, Net-
based/Graphical, Process Algebra, and
tabular/equation execution-based. An emphasis is
given on the research contributions that target test
oracle generation for specification-based software
testing.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 320

The main idea behind this classification is to
ensure that most of the major contributions and main
techniques should be covered and presented in a
manner that can lead to a comparison based study of
the research efforts that are being carried out in the

area of test oracle generation for specification-based
software testing. So this classification is not mean to
be exhaustive. Table 1 summarizes our classification
of test oracle generation for specification-based
software testing techniques.

Table 1. Classification of Techniques

Specification Category Specification Techniques and Contributions

Model-based

Z Stocks and Carrington (1996), Horcher (1995)
Object Z Carrington et al. (2000)
VDM-SL Meudec (1998)

JML (Java Modeling Language) Boyapati et al. (2002)
State-based Blackburn and Busser (1996)

Algebraic LOBAS Doong and Frankl (1991)
Logic-based HLTL, GIL, ITL Dillon and Ramakrishna (1996)

Tabular/Equation execution-based Anna Hagar and Bieman (1996)

Test oracle generation techniques for
specification-based software testing can be evaluated
on the basis of seven points i.e. notation
independence, object-orientation, coverage, accuracy
of information, usability, complexity, temporal
relationship, automation and tool support on the basis
of their importance and criticality in the development
of an automated test oracle generation for
specification-based software testing.

Few researchers (Richardson, 1994) and
(Dillon and Ramakrishna, 1996) presented notation
independence techniques which are not strictly
dependent on the syntax and structure of a particular
formal specification notation. Carrington et al. (2000)
and Boyapati et al. (2002) targeted the object oriented
features. A technique reveals most number and types
of faults as it may have sufficient coverage of formal
specification. Stocks and Carrington (1996), Doong
and Frankl (1991), Hagar and Bieman (1996), and
Boyapati et al. (2002) presented test oracle
generation techniques to provide sufficient coverage
of formal specifications. Most of the researchers
generated expected result generator and comparator
in their research. Horcher (1995) developed a
technique in which Z specifications may be used
instead of a test oracle to validate the observed test
results automatically.

Test oracle provides accurate information
that becomes more important for the testing of safety
critical software. This is because we cannot afford
faults in such kind of systems. Test oracle techniques
provide accurate information, are presented in
(Horcher, 1995). Test oracle and system under test
(SUT) can be used in parallel to test the intended
behavior of SUT and test oracle should provide
results in useful manner, for examples in the form of
bits and bytes (True or False, 0 or 1), electronic
signals, hardcopy and display (Binder, 2002). This

will improve usability of test oracle. Test oracles
generated by Horcher (1995) provide information in
useful manner and can be used in parallel with SUT.
Blackburn and Busser (1996), and Horcher (1995)
developed techniques for safety critical systems and
these techniques are very complex in nature. Test
oracle generated for testing of real time systems
should generate the results in specified time.

3. Problem Definition

VDM++ is a popular formal specification
language in software industry during last several
years. It supports object oriented features and
provides full specifications coverage. Meudec (1998)
discussed a technique to generate test cases from
specifications written in VDM-SL. Meudec (1998)
did not address expected result generation in his
work; in other words Meudec did not address test
oracle generation using formal specifications written
in VDM-SL. This work has no support for object
oriented features. There is a need to develop test
oracle using VDM++ formal specifications to support
object oriented features and having full coverage of
formal specifications. Test oracle can also provide
accuracy of information and easily be used in parallel
with SUT.

4. The Proposed Testing Framework

In this research we are focusing on the
methodical derivation of active test oracles from
formal object-oriented specifications. Using a
number of specifications of container classes, we
have produced a mapping from VDM++
specifications to C++ test oracles. Our aim is that the
derived oracles will be general enough to be usable in
most testing frameworks. Overall flow graph of our
proposed technique and complete testing framework
are presented in figure 1.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 321

Figure 1. Framework for Specification-based
Software Testing

In figure 1, rectangles with circular edges
representing document or template and straight
rectangles representing phases of given framework in
which some processing is being done. The colored
part of this framework is relating to our proposed
technique. In this part, formal specifications written
in VDM++ are provided to generate test oracle for
specification-based software testing. The first phase
of our proposed technique is to optimize these
specifications using mapping rules in such a way that
these specifications can easily be transformed into
C++ test oracle classes. Optimization transforms the
specification to a form more suited to systematic
translation to C++. In next phase i.e. transformation
phase structural mapping is performed to produce
C++ code with structure corresponding to that of the
specification. Then for mapping of predicates to C++
code translation is performed in this phase. Expected
Result Generator is used to produce expected results
using this C++ code produced from VDM++
specifications. Test cases produced manually or
systematically using VDM++ specifications applying
any test case generation technique are provided to
Expected Result Generator to produce expected
results. Test case generation is not a part of our
proposed technique.

Actual Result Generator produces actual
results using Implementation under Test (IUT). Same
test cases are provided to Actual Result Generator
and Expected Result Generator to produce actual and
expected results respectively. Actual Result
Generator is not a part of our proposed technique.
Actual Results can be produced manually, but in
systematic testing Actual Result Generator can be
automated to automate the whole testing process.
These actual and expected results are provided to
comparator to compare. At the end Test Oracle
Manager manages the test cases, actual and expected
results and their comparison results. This information
will be useful in regression testing as well as for
documentation. Detail discussion of all the phases
included in our proposed technique i.e. Optimization,
Transformation, Expected Result Generator,
Comparator, and Test Oracle Manager is presented in
following subsections.

4.1 Optimization

Optimization is the rearrangement of the
specification to simplify translation to an
implementation language. We performed
optimization in two steps. In first optimization step,
we mapped VDM++ data types for declared variables
to its equivalent C++ data types according to the
problem for which VDM++ specification is written.
In second optimization step, we convert VDM++
classes into its corresponding C++ classes.

4.1.1 Step1: Mapping of Data Types

VDM++ data types can be divided into two
categories i.e. Basic and Compound data types.
Mapping of Basic data types into its equivalent C++
data types is given in Table 2.

Table 2. Mapping of Basic Data Types
Data type in VDM++ Equivalent data type in C++
Boolean Boolean
nat1, nat, int Int
rat, real Float
Char Char
Quote Enum
Token Vector of type string

There are eight compound types in VDM++
i.e. Set, Sequence, Map, Product, Composite, Union
and Optional, and Function types (Meudec, 1998).
Mapping of compound data types can be performed
as:

 Set data type can be mapped in C++ as
compound data type set using Standard
Template Library (STL). We implemented
functions in C++ in STLSetAlgos.h

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 322

Standard template library for those operators
of Set data type in VDM++ whose
corresponding functions are not provided by
C++ e.g. Union, intersection, difference,
subset, proper subset.

 To map Sequence data type in C++, declare
list of the values of the same type as the
sequence elements. Then these elements
assigned to a vector type variable with the
same name as it is used in VDM++
specification. We implemented functions for
tail, elements, indexes, and concatenation
operators in C++ in STLSequenceAlgos.h
Standard template library. We extended STL
vector and Set libraries in C++ to implement
these operations.

 Map type can be mapped in C++ using map
type and we extended STL map and Set
libraries by implementing STLMapAlgos.h
Standard Template Library in C++ to
implement the operations provided by
VDM++ for Map data type.

 Product and Composite types in VDM++
can easily be mapped in C++ using struct
type. All operations of Product and
Composite types are same.

 Union and optional type is a bad practice
(Meudec, 1998), so tester can decompose
this type into those relevant C++ data types
for which this union and optional type
contains the elements after understanding
the specification. So no particular mapping
rule can be provided for union and optional
type. Its mapping in C++ is totally
depending on tester’s experience and his/her
specification understanding.

 Function type in VDM++ can be mapped in
C++ by implementing expression for the
body of the function type. Then result of this
expression is assigned to the variable of the
same name as the name of the variable of
this function type in specification and the
data type of this variable should be same as
the resultant type of this expression.

4.1.2 Step2: Mapping of Classes

Semantics of class header are same in C++
as VDM++, but syntax in C++ is different. Structural
mapping rules of VDM++ class body (optional) in
C++ can be performed as:

 A set of value definitions (constants) can be
transformed in C++ with const declaration
using same name and access specifier i.e.,
public or protected as specified in the
specification.

 A set of type definitions can be transformed
as discussed in section 4.1.1, but type
definition can be public or protected as
specified in the specification.

 Function definitions: Semantics of function
definitions are same in C++ as VDM++.
While transforming in C++ public, private,
and protected functions specified in VDM++
are mapped as public, private, and protected
respectively. Explicit, implicit, and extended
explicit definitions of functions in VDM++
specification can be transformed manually
in C++ after understanding the specification.
The difference between them is just the level
of abstraction of the input and output
parameter definitions. Pre-condition
expression can be implemented and ensured
in C++ before calling of this function. Post
condition expression can be implemented
and ensured in C++ at the end of the
specified function body. Polymorphic
functions in VDM++ specification can be
transformed in C++ using function
overloading. Higher order functions in
specification can be implemented in C++
using function recursion.

 A set of instance variable definitions can be
transformed in C++ by declaring these
variables public or protected as specified in
the specification at class level and if these
variables are initialized with some value
then initialization will be performed in class
constructor.

 A set of operation definitions that can act on
the internal state will be transformed in C++
by implementing class methods declaring
public.

 Transformation rules of the synchronization
and thread definitions will be presented in
future research.

 Semantics of inheritance are same in C++ as
in VDM++, but a little bit difference in
syntax is there. This can be implemented
using transformation rules, discussed in next
section.

 In C++, we implemented a method ‘inv()’
for the implementation of invariant. This
method returns true if invariant is true, and
false otherwise. We implemented class
‘error’ to deal with exception; if invariant
becomes false, exception will be thrown.
Before and after performing any operation
of the class, we have to check this invariant.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 323

4.2 Transformation
 Transformation is performed by providing

transformation rules to transform VDM++ statements
into its equivalent C++ statements and providing
predicate translation rules. Structural mapping
produces skeleton C++ code with structure
corresponding to that of the specification, while
predicate translation maps predicates to code. The
implementation of mapping and transformation rules
is illustrated using popular case study of triangle
problem, presented in coming section.

4.3 Expected Result Generator

To implement Expected Result Generator to
produce expected results using C++ code generated
from specifications written in VDM++, we
implemented ‘driver’ class. Test cases are provided
to Expected Result Generator to produce expected
results.

4.4 Comparator

To implement comparator, we implement a
method with name ‘comparator’ in ‘driver’ class to
compare the actual and expected results. If actual and
expected results match this method returns true and
false otherwise.

4.5 Test Oracle Manager

Test Oracle Manager manages the test cases,
actual and expected results and their comparison
results. Tester will provide a template to Test Oracle
Manager to manage this information.

4.6 Limitations of the Proposed Technique

In this proposed technique concurrency is
not addressed. We are working on the automation of
our proposed technique to automate the whole
process of test oracle generation. We are also
working in this direction that how can we minimize
the human intervention in this process. It will be the
responsibility of the tester to implement driver class
to deal with expected result generator.

5. Case Study Validation

To illustrate our proposed technique, we use
modified version of Mayer’s VDM-SL specification
of Triangle problem written in VDM++, presented in
Table 3 (Meudec, 1998). In this specification a
‘Triangle’ class is specified, in which three sides of a
triangle are taken to judge that the triangle taken by
user is equilateral, isosceles, scalene, or an invalid.
The measurement of triangle sides is taken using a
sequence ‘Triangle_sides’ of integer type as specified
in specification using N*.

Class invariant is specified in which two
properties of a triangle are ensured. First property is
that the sides of triangle must be three. Second
property is that the perimeter of the triangle must be
greater than the double of its any side. To find
perimeter of the triangle sum of the triangle sides is
required. To find sum of the triangle sides a function
with name ‘sum’ is specified which takes a sequence
of natural numbers and return a natural value.

To check whether the triangle is equilateral,
isosceles, or scalene, a function is specified with
name ‘variety’ which takes a sequence
‘Triangle_sides’ and returns ‘Triangle_type’.
‘Triangle_type’ is a quote type specified globally in
the specification. Now to check whether triangle is
valid or invalid another method is specified with
name ‘classify’ which takes a sequence of natural
numbers and returns ‘Triangle_type’.

Now we generate test oracle using our
proposed technique. In the first step of our technique,
optimization of data types and classes is performed.
In second step, we transformed VDM++ statements
and predicate translation is performed. Then to
accommodate this test oracle with testing
environment a test oracle driver is written.

5.1 Optimization

In this step, we rearrange the specification to
simplify translation to an implementation language.
For ‘Triangle_type’ which is a quote type will
convert to enumerated type in C++. For
‘Triangle_sides’, which is a sequence of natural
numbers will convert to a vector of int type.
Optimization for class ‘Triangle’ is to convert it in
C++ with name ‘Oracle_Triangle’. Methods of
‘Triangle’ class in specification are mapped to
‘Oracle_Triangle’ class in C++ with same name as in
specification. Method ‘sum’ in specification accepts
sequence of natural numbers and returns natural
number. Now it is mapped in C++ in this way that it
will accept vector of int type and return int. Method
‘variety’ in specification accepts sequence
‘Triangle_sides’ of natural numbers and returns
‘Triangle_type’ which is quote type. Now it is
mapped in C++ in this way that it will accept vector
with name ‘Triangle_sides’ of int type and return
enumerated type ‘Triangle_type’. Method ‘classify’
in specification accepts sequence of natural numbers
and returns ‘Triangle_type’ which is quote type. Now
it is mapped in C++ in this way that it will accept
vector of int type and return enumerated type
‘Triangle_type’. Class invariant is specified with
keyword ‘inv’ in specification is implemented as a
method in test oracle with name ‘inv’.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 324

Table 3. VDM++ Specification of Triangle Problem
triangle_type = INVALID | EQUILATERAL | ISOSCELES | SCALENE
Class Triangle
private triangle_sides = N*
Inv Triangle (sides) = = len sides = 3 let perim = sum (sides) in i elems sides.2*i < perim
functions

private sum : N* N
sum (seq) = = if seq = [] then 0 else hd seq + sum (tl seq)

private variety : Triangle_sides Triangle_type
variety (sides) = = cases card (elems sides) of

1 EQUILATERAL
2 ISOSCELES
3 SCALENE
end
public classify : N* Triangle_type

classify (sides) = = if is_Triangle (sides) then variety (sides) else INVALID
End Triangle

The class invariant accepts a sequence of

natural numbers in specification and invariant always
returns Boolean value. While mapping in C++, ‘inv’
method of ‘Oracle_Triangle’ class accepts vector of
int type and returns Boolean value. Declarations of
‘Oracle_Triangle’ class is presented in Table 4.

5.2 Transformation
In this step, statements of the VDM++ are
transformed into C++ statements and predicate
translation is also performed according to the
transformation rules. After applying transformation
rules, our ‘Oracle_Triangle’ class is presented in
Table 5.

5.3 Incorporating the Derived Oracle in Testing
Framework

To accommodate our test oracle in the
complete testing framework, tester will have to write
oracle driver. It is the responsibility of the tester to
implement oracle driver class to set an environment
to test the actual behavior of component under test
and results are compared with the expected results
generated by the test oracle. We implemented an
oracle driver class with name ‘driver’ and its
declaration is presented in Table 6.

Table 4. Declarations for Oracle_Triangle
enum triangle_type {INVALID,

EQUILATERAL,ISOSCELES, SCALENE};
class Oracle_Triangle {
private: vector<int> triangle_sides;
 triangle_type t;
 bool inv(vector<int> sides);

Table 5. Oracle_Triangle implementation
else return hd(seq,1)+sum(tl(seq));}

 bool perim(vector<int> sides) {
 vector<int>::iterator iter;
 iter=sides.begin();
 while(iter!=sides.end()) {

 if(*iter*2<sum(sides)) iter++;
else return false; }

 return true; }
 triangle_type variety(vector<int> sides) {
 switch((elems(sides,1).size())) {
 case 1:cout<<"\nEQUILATERAL"; return 1;
 case 2: cout<<"\nISOSCELES"; return 2;
 case 3: cout<<"\nSCALENE"; return 3; } }
 public:
 triangle_type classify(vector<int> sides) {

if (inv(sides)) variety(sides);
else {cout<<"\n INVALID"; return 0;

Table 6. Oracle Driver Class Declaration
class driver {
 public:
 bool comparator(vector<int> sides);
 private:
Oracle_Triangle oracle;
Triangle iut; };

Table 7. Driver Class implementation
class driver {
 public: bool comparator(vector<int> sides) {
 if(ot.classify(sides)==t.classify(sides))
return true;
return false; }
 private: Oracle_Triangle ot;
 Triangle t; };

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 325

Table 8. Test cases and their corresponding results generated by our Test Oracle and Meudec (1998)

ID. Test Input Result
Comparator

Result ID. Test Input Result
Comparator

Result

1 [0,0,0] Invalid True 19 [2,3] Invalid True

2 [0,1,1] Invalid True 20 [4,4,4,4] Invalid True

3 [1,0,1] Invalid True 21 [M,M,1] Isosceles True

4 [1,1,0] Invalid True 22 [M,M,M] Equilateral True

5 [3,1,2] Invalid True 23 [M+1,M-1,M] Scalene or Invalid True

6 [1,3,2] Invalid True 24 [1,1,1] Equilateral True

7 [2,1,3] Invalid True 25 [1,2,2] Isosceles True

8 [1,2,5] Invalid True 26 [2,1,2] Isosceles True

9 [5,2,1] Invalid True 27 [2,2,1] Isosceles True

10 [2,5,1] Invalid True 28 [3,2,2] Isosceles True

11 [5,1,1] Invalid True 29 [2,3,2] Isosceles True

12 [1,5,1] Invalid True 30 [2,2,3] Isosceles True

13 [1,1,5] Invalid True 31 [2,3,4] Scalene True

14 [1,2,-6] Invalid True 32 [3,2,4] Scalene True

15 [-2,-2,-2] Invalid True 33 [3,4,2] Scalene True

16 [2,2.3,2] Invalid True 34 [4,3,2] Scalene True

17 ['A',2,3] Invalid True 35 [4,2,3] Scalene True

18 ['A','A','A'] Invalid True 36 [2,4,3] Scalene True

At this moment, we suppose that the
programmer implemented this class Triangle
specified in the specification with the same name. To
test Triangle class, test cases required only a
sequence of integer type and results are in a Triangle
type which is an enumerated type. In driver class, we
implemented a method ‘comparator’ to compare the
actual results generated by the implementation under
test with expected results generated by the test oracle.
‘Comparator’ method takes vector of integer type
(test case) and returns Boolean value. If actual and
expected results match, ‘comparator’ will return true
and false otherwise. If result is false then there is a
possibility of error in implementation under test. The
complete code of our ‘driver’ class is presented in
Table 7.

6. Evaluation of the Proposed Technique

In order to evaluate the efficiency and
effectiveness of our proposed technique, we adopted
test cases generated by Meudec (1998) from
specifications for North’s Triangle problem written in
VDM-SL and followed structured approach. We
modified this VDM-SL specification of North’s
Triangle problem in VDM++ and followed object-
oriented approach.
We used same test cases generated by Meudec (1998)
to evaluate the efficiency and effectiveness of our
proposed technique because Meudec proof that this
test set is adequate for this problem. Remember that

test case generation is not a part of our research.
Meudec generated thirty six test cases for this
problem. This test set is applied to the test oracle
produced using our proposed technique to generate
expected results. Test cases and their result
generated by Meudec for the North’s Triangle
problem and results produced by our test oracle are
presented in Table 8. All the results are same as the
results generated by Meudec (1998). Results shows
that all the results produced by the test oracle
generated using our proposed technique are correct.
This evaluation shows that our technique can be
applied to generate test oracle for specification-based
software testing.

Our proposed technique to generate test
oracle from VDM++ specifications is notation
dependent and follows completeness. Completeness
means our technique supports all three phases of
oracle generation process i.e., function generation,
expected result generation, and comparator. Our
technique supports object orientation while most the
techniques presented in the survey do not support
object orientation. Our proposed technique provides
support to test the intended behavior of class methods
as well as interactions between them. Most of the
techniques presented in the survey focus on the
intended behavior of the functional components in
the structural paradigm. Thus our technique provides
complete specification coverage.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 326

7. Conclusion and Future Work
In this research, we proposed a technique to

generate test oracle from VDM++ specifications for
specification-based software testing. We used
VDM++ formal language because it is widely used in
the industry. Test oracle is generated in C++. Most of
the test oracle generation techniques in the literature
do not support object oriented paradigm and all the
phases of test oracle generation process i.e., function
generator, expected result generator, and comparator.
Our proposed technique supports object oriented
paradigm and all the phases of test oracle generation
process. Test oracle generated using our proposed
technique can also be used in parallel with
implementation under test to compare the actual and
expected results. This will reduce the testing time and
effort.

Future work includes the implementation of
concurrency and the complete automation of our
proposed technique. Ignorable human intervention
will be required after the completion of the
automation of this technique. More experimental
evaluation is also required to gain high confidence in
the software testing using our proposed technique.

Corresponding Author:
Dr. M. Rizwan Jameel Qureshi
Department of Information Technology
Faculty of Computing & Information Technology,
King Abdulaziz University
Jeddah 21589, Saudi Arabia
E-mail: rmuhammd@kau.edu.sa

References
1. Binder RV. Testing Object-Oriented Systems:

Models, Patterns, and Tools. Addison-Wesley,
2002.

2. Peters DK, Parnas DL. Using Test Oracles
Generated from Program Documentation: IEEE
Transactions on Software Engineering
1998;24(3):161-173.

3. Takahashi J. An Automated Oracle for
Verifying GUI Objects: Software Engineering
Notes 2001;26(4):83.

4. Richardson JD. TAOS: Testing with Analysis
and Oracle Support: in Proc. of the ACM
SIGSOFT international symposium on Software
testing and analysis, Washington, USA, 1994,
138-152.

5. Dillon LK, Ramakrishna YS. Generating Oracles
from Your Favorite Temporal Logic Specifications:
in Proc. of the 4th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, San
Francisco, USA, 1996, 106-117.

6. Carrington D, MacColl I, McDonald J, Murray
L, Strooper P. From Object-Z Specifications to
ClassBench Test Suites: Journal on Software
Testing, Verification and Reliability
2000;10(2):111-137.

7. Boyapati C, Khurshid S, Marinov D. Korat:
Automated Testing Based on Java Predicates: in
Proc. ACM SIGSOFT Int. Symp. Software
testing and analysis, USA, 2002:123-133.

8. Stocks P, Carrington D. A framework for
specification-based testing: IEEE Transactions
on Software Engineering 1996;22(11):777-793.

9. Doong RK, Frankl P G. Case studies on testing
object-oriented programs: in Proc. of the 4th
Symp. Software Testing Analysis and
Verification. Victoria British Columbia, Canada
1991:165-167.

10. Hagar J, Bieman JM. Using Formal
Specifications as Test Oracles for System-
Critical Software: ACM SIGAda Ada Letters
1996;XVI(6):55-72.

11. Horcher HM. Improving software tests using Z
specifications: in Proc. the 9th Int. Conf. Z
Users, Limerick, Ireland 1995:152-166.

12. Blackburn M, Busser R. T-VEC: A tool for
developing critical systems: in Proc. of the
Annual Conference on Computer Assurance,
Gaithersburg, MD 1996:237-249.

13. Meudec C. Automatic Generation of Software
Test Cases from Formal Specifications, Ph. D.
thesis, The Queen’s University of Belfast, 1998.

9/26/2013

