Life Science Journal 2013;10(4)

http://www.lifesciencesite.com

A Fifth-order Numerical Convergence for Linear Volterra Integro-differential Equation

Ali FILIZ', Ali ISIK', Mehmet EKICT?

! Department of Mathematics, Adnan Menderes University, 09010 AYDIN-Turkey
* Department of Mathematics, Bozok University, 66100 Yozgat-Turkey

E-mail: afiliz@adu.edu.tr

Abstract: In this paper a new fifth-order numerical solution of linear Volterra integro-differential equation is
discussed. Example of this question has been solved numerically using the Runge-Kutta-Verner method for
Ordinary Differential Equation (ODE) part and Newton-Cotes formulae (quadrature rules) for integral parts. Finally,
a new fifth-order routine is devised for numerical solution of the linear Volterra integro-differential equation.

[FILIZ A, ISIK A, EKICI M. A Fifth-order Numerical Convergence for Linear Volterra Integro-differential
Equation. Life Sci J2013;10(4):302-309] (ISSN:1097-8135). http://www.lifesciencesite.com. 40

Keywords: A fifth-order accuracy; Lagrange polynomial interpolating; quadrature formulae; Runge-Kutta methods;

Volterra integro-differential equation.

1. Introduction

A functional equation in which the unknown
function appears in the form of it is a derivative as
well as under the integral sign is called an integro-
differential equation (see, filiz(2000a; 2013) and
Volterra(1931; 1959; 1957)). In this paper we will
consider the linear Volterra integro-differential
equation of the form (see, Asanov, 1978; Baker,
1978; Bellman, 1949; Cooke, 1966).

u'(t)=F(t,u(?), J.K(t, s)u(s)ds),
u(ty)=uy, t2t,

(1)

with the kernel K(¢,s) of equation (1) assumed to be
on [t),T] (t>t,, T a finite ) and
S={(t,s)e RxR:t<s<t<T}. In this paper we
consider in detail only one case, the question

continuous

t

Q) W)= y+ﬂu(t)+/1j1<(r,s)u(s)ds), (21,
)

with initial condition

() ulty)=u,.

Equation (1) can be solved numerically using
various methods (see, Baker et al., 1998; Filiz,
2000b; Baker et al., 2006, Filiz, 2000a; Filiz, 2013;
Linz, 1985). In this paper u(¢,) will denote the exact

value of u att, =t, +nh . We shall use u(f,) or
u, to denote a numerical solution u of at 7,.

However, in this paper we will construct fifth-order
numerical method for equation (1). Since the integral
cannot be determined explicitly, it may be
approximated using familiar numerical integration
methods. The Newton-Cotes integration formulae,
which include the 2-point closed Newton-Cotes
formula is called the trapezoidal rule, the 3-point rule
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is known as Simpson’s 1/3 rule, the 4-point closed
rule is Simpson’s 3/8 rule, the 5-point closed rule is
Boole’s rule (Bode’s rule), Weddle’s rule, higher
rules include the 6-point, 7-point and 8-point are well
suited here since they use nodes which were given in
(e.g., Wolfram, 2013; Filiz, 2000a; Abramowitz and
Stegun, 1972; Ueberhuber, 1972) and (see, Baker,
1978; Linz, 1985). In (Filiz, 2000b; Filiz, 2000a;
Filiz, 2013) we consider an elementary class of
formulae for the numerical solution of integro-
differential equation of first-order and second-order,
based upon the §— method (see Table 1).
2. The Numerical of Integro-differential
Equations
The functional equation (1) is a first-order Volterra
integro-differential equation; here, one usually looks
for a solution which satisfies the initial
conditionu(t,) =u, .
Definition 1. (Linear kernel) A Volterra integro-
differential equation is said to be linear if its kernel
has the form K(¢,s,u(s)) = K(¢,5)u(s).
Definition 2. (Convolution kernel) If the kernel of (1)
is a function of (¢ —s) only, that isK(¢,s)=k(t —s),

then K is said to be a difference (convolution)
kernel.

Since a nonlinear Volterra integro-
differential equations is characterized by two
functions, namely, F(¢,u(t),z(¢t)) (differential part)
and K(¢,s,u(s)) (integral part) a corresponding
existence and uniqueness theorem is an extension of
the analogous for initial value problem (IVP) for
first-order ordinary differential equations and for
Volterra integral equation of the second kind.
Theorem 1. (Existence and uniqueness) In equation
(1) suppose that F(¢,u(?),z(¢)) and K(¢,s,u(s)) are,
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respectively, continuous for ¢ €[¢,,7] and (¢,5) € S,

and let the following (uniform) Lipschitz condition
hold:

(i) |[Fu0),2()) = F(tuy (0, 2(0)| S Ly jug (1) = ua (1)),

(i)  [F@u@),20) = Ftu@),20)| <L|20) - 20,
(iti)  [K (s, (0) = K(t,5,up(6)| < Ly fuy (0) —u (1),
for all telty,T] , (t,5) €S, and

|ul-(t)| < o0, |zl- (t)|<oo (i=L2). Then each u,
there exist exactly one solution u(t) € C ! ([ty,T] of

equation (1) satisfying u(¢,) =u, .
Proof. (See (Linz, 1985)).

In general formulae for the numerical solution of
integro-differential equations rely upon formulae for
the underlying Ordinary Differential Equation
(ODE), combined with auxiliary quadrature rules
approximation of

n t,
@) Z,)=hY. 0, ki, 1)) W) = .[k(t —5) u(s) ds.
=0

0}

For equation (1), we adapted the #-method in
filiz (2000a; 2013) and method convergence O(h) and

O(h*) respectively.
Of course, wherecas we have defined
approximations Z(¢,) in terms of quadrature rules

that reflect the underlying ODE method, it is in
principle possible to “mix and match”. The
combinations of formulae can be chosen on the basis
of order of convergence. There are two directions in
which #— method can be generalized. The first
involves adapting Linear Multistep Method (LMM)
for ODE’s and second involves adapting Runge-
Kutta methods. In each case, we will require to
approximate integral terms (4) at selected values at t.
Equation (1) can be solved various methods. In this
paper we shall focus on fifth-order numerical method
for equation (1). The integral term cannot be
determined explicitly; it may be approximated using
familiar numerical integration methods. The Newton-
Cotes integration formulae, which include left and
right rectangle rules, the trapezoidal rule, Simpson’s
1/3 rule and Simpson’s 3/8 rule are well suited here
since they used nodes which were previously
calculated:

20, =hY o, ki, 1)) ;) ~ j k(t —s) u(s) ds,
j=0

)

where w, ; are the appropriate coefficients for the

composite  integration  schemes chosen. A
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combination of integration method may be used.
Simpson’s 1/3 rule requires that 7 , the number of
subintervals dividing [¢,,¢,], be even. Therefore,

Simpson’s 1/3 rule cannot be used at each step. When
n is odd, one method is to use Simpson’s 1/3 rule on

[ty,t,_;], and trapezoidal rule on[¢,_,t,], , adding
the results to approximate the integral on [¢,,7,].
Another method is to use the trapezoidal rule [z,,1],

and Simpson’s 1/3 rule thereafter.
3. Convergence and Order of Convergence
If we use time discretization in (2), we get

ﬁ(thrl ) = ﬁ(tn ) +h (ﬂ + ﬂ ﬁ(tn )

+/1hi @, ; k(t, —t;) u(t;)).

Jj=0

©)

Given an interval [#,,1'] introduce h=(T—1t,)/n
for some n € N over mesh-points

t, =ty +nh,n=0,1,2,3,...n
For the integro-differential equation with the unique
solution u(¢) supposeu(t;),1=0,1,2,3, - -, nare
computed by some approximation scheme. We have
convergence of order p for mesh-points in [¢,,T]
using step-size h

sup |L7(ti) —u(t )|:

to<t;<T
as h—>0. Consider the set of values
e, =u(t,)—u(t,), t; =ty +ih, i=12,3,...,n,

which is called discretization error of the

approximate solution (¢;) at the mesh-points {;}.
Definition 3. (Convergence) A method of the form
(5) is said to be convergent on [¢,,7] if

1im( max [ii (¢,) — u(t; )|j =0.
h—0\ 1;el1y,1]

Definition 4. (Order of convergence) If, for all h,
there exists a number M < oo, independent of h, such
that if

max |L7(ti)—u(ti)| <Mhn?,
0<i<n

and if p is the largest number for which such an
inequality holds, then p is called the order of
convergence of the method.
4. The Fifth-order Numerical Routine for
Linear Volterra Integro-differential Equation
Now consider the non-dimensional problem (1). In
order to solve (1) numerically, we purpose the use of
two methods familiar to most mathematicians. We
consider methods which approximate the solution the
initial value problem (IVP)

u'(0) = f(tu(®)), ulty)=uy,
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at time ¢, =t,+nh , n=0, 1, 2, 3, ..., where

h=t,—t, is the constant nodal step-size and, in
the Example 1,

F(t,u(t), '[k(t—s) u(s) ds) =

ty

y+,3u(t)+,1jk(t—s) u(s) ds.
0

For example, the explicit Euler method approximates
the solution to Example 1 at ¢,

t

Boy=i, +h | g+ B, +2 j e y(s) ds |
0

The explicit finite difference method given in
(Filiz,2013) as applied to equation (1) easily
extended to more accurate predictor-corrector
method. The predictor step uses

(il =1, +h( F(,,i,,2(,))))

to obtain * , , which is followed by the corrector step,

n+l >
which uses higher order trapezoidal method

tn b HI’l b E(tn ))
©) u,,=u,+h |=F 1 e~ ,
! 2 + EF(thrl’unJrl ’Z(tn+1)

where
zy =0,

- _h S -
() 2, =2 ke, =)y +h Yk, ~1))E,

J=1
h ~
+5k(tn -t u,,n=123,...

This procedure is sometimes referred to as
modified Euler method (second order Runge-Kutta-
RK2) and is one order magnitude more accurate than
the explicit Euler method.

Theorem 2. (Second order convergence) If
conditions (3), Theorem 1-(i) and Theorem 1-(iii) are
satisfied, and if in addition F and K are twice
continuously differentiable with respect to all
arguments, then approximate solution defined by (6)
and (7) converges to the true solution of (7) with
order two.

Proof. (See (Linz, 1985)).

At each step the equation (6) was solved by
the trapezoidal method. The results are shown in
Table 3. The apparent order of convergence is two,
which is not surprising because of the use trapezoidal
method.

Higher order methods can be constructed
along similar lines. The 5-point extended closed rule
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is Boole's method may be devised on [f,,7,] as

following:
Ifn=0, z, =0,
If n=1, use
~ h ~ h -
Z :Ek(tl — 1)U +Ek(t1 — 1)y,
If n=2, use
~ h ~ ~ -
Z, = g(k(tz —tg g +4k(t, =t +k(t, —t5)u,),
Ifn=3

Z3 =%(k(f3 —to g +3k(ty — 1))ty +3k(t3 — 1),
+hk(t3 —t3)u3 ),

Ifn=4
~ 2h ~ ~ ~
z, =E(7k(t4 —to g +32k(t, —t))u; +12k(t, —1t,)u,

+32k(ty —t3)uy +Tk(t, —t,)uy),

If n>4,then

=B 2 TGy =10y + 32k, 1))

(8) +12k(t, 5 —t,)uy +32k(t,_ | —1t3)il;
+7k(t, —ty)iy) ,n=4,5,6,7, ..

Ny

The fourth order classical Runge-Kutta
method (RK4) can also be adapted to the numerical
solution of equation (1) (see Table 3). Stepping from
u, with step-size h to obtainu,,;, the RK4 method
as applied to this problem in filiz(2000a; 2013).

The fifth-order Runge-Kutta-Fehlberg (see
Table 2) and sixth order Runge-Kutta-Verner
methods (see Table 1) may be used but not readily
(see, (Burden and Faires, 1997)), since the intranodal
evaluation  points are  uniformly  spaced.
Consequently, the integrals needed during the
intermediate calculations to step from ¢, to ¢,,, may
require the trapezoidal rule or Lagrange polynomial
interpolating integration on a non-uniform partition
[tn H tn+1]'

Other high-order finite difference methods
which may be used here include the Adam-Basforth
multistep methods. One such fourth order method is
described in (see, (Burden and Faires, 1997)). It uses
the RK4 method to obtain the starting values
uy,u;, U,. Thereafter, the method uses the fourth
order explicit Adam-Basforth method as a predictor
and fourth-order implicit Adam-Moulton method
corrector to step from ¢, tof,,; .

Runge-Kutta-Verner method (RKV) can also
be adapted to the numerical solution of (1). Stepping
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the RKV
method as applied to this problem may be written as:
= hF(t,,u,,2(t,) ),

ky

Upiye =Upy T—

6

ky =hE(t,,1/65U,01/65Zns1/6 )

from u, with step-size h to obtainu,,,,

h -
k, —hF[ pi1/65Uns1/65 2, + IZ[M" +”na+1/6Uv
4k, 16k
9) =i, +— o —2,
( ) n+4/15 75 75

b
ky =hE(t,, 415Uy 415 Znsans

N 4h
ks :hF[tn+4/15=u:+4/15’Zn T35 [” +”:+4/15U
. _ Sk, 8k, Sk,
HCy =i, + -2y 23
n+2/3 n 6 3 2

ky=hE(t, /3:U,2/35Z02/5 )s

QML .
ky —hF[ pi235t2/30 2, 5 [”n +un+2/3D’

—a _ 165k, 55k, 425k; 85k,
Uyys/6 =U, + + - + s
64 6 64 96
ks = hF (t,,5/6-1 s /652 nes06 )
5h
~d ~d
ks = hF[ ni5/65Unss/69 2y T B [” +un+5/6D
- - 12k 4015k 11k 88k
Ul =i, +—>—8k, + 3 4,
15 612 36 255
_hF(tﬂ+1’ U524 )’
h
k6 _hF( n+l> n+l’Zn +- 2 [u +un+l]j
- - 8263k 124k, 643Ky Blk, 2484k
u: =u - - .
w15 = U T e000 T s 680 250 10625
k7 :hF(thrl/lS’ah/:rl/IS’EnJrl/lS )
~ - hilo ~;
k; ZhF[thrl/lS’uh/Jrl/lS’Zn +%[“n +1/’;111/15]}
~ ~ 3501k, 300 297275k, 319k,
uf, =u, +———-—k, -
1720 43 52632 2322
N 24068k s 3850/{7
84065 26703
k _hF(tﬂ+1’ n+1’Zn+1 )
h
kg —hF( wets s 2y + > [” +”n+1D
http://www.lifesciencesite.com
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~ - 13k S5k 12ks 3k
(10 u,,, =u, y—L 2375 3 + 4 > —6,
160 5984 16 85 44
and
~ ~ 3k 875 23k,  264ks
un+l :un 3 + +
(1 40 2244 72 1955
125k, N 43k
11592 616

In this example, the trapezoidal rule is used to
t

approximate z(t,) = jk(t —s)u(s)ds on [t,,t,,1/6],

fy
Unstyeans]s nstuias]s Wntusisls (st ]
[t,sthin1s])s [Lpst,n] in calculating, k,, ks, k,, ks,
kg, k, and kg respectively. If desired, the trapezoidal
rule may be used on [t,,f,] (gives second order

accuracy); the trapezoidal rule and Simpson’s 1/3 rule
(giving third order accuracy, see Table 3) may be used

on [#,¢,].
In order to get fifth order accuracy the integral term
must be evaluated more accurately on [f,,f,.,,],

[tn:thrl] ’
[ty thans]s [tyst,4] in caleoulating, &, , ks, ky, ks,
kg, k; and kg, as shown in (12) ——(18) below.

If we interpolating on #,_,, U, (special

formulae required for the first three steps, for example
we can use (9)) Lagrange’s formula for points t=-2, -1,
0, 1/6 gives

U= (=2t =) s

Ensturans] > [pstuias] 5 [Estuisiel s

nl’ no

+gt (t—%)(t+2h)u,l -
3(t+h)(t+2h)(¢ —%)uo

+%t(r+h)(t+2h)ul/6 )

If we integrate the expression between 0 and h/6, we

get

hl6

ju(s)ds~h(l g+

~ 1/6 u_,

a2 16 5184

25 469 v,

18144 "7 518410
Similarly, we can find t=t=-2, -1, 0, 4/15
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8

— U
10125 *

4h/15 (5)ds ~ h( 34
u(s)ds ~ h(—uy s +
.[ 255 U4

0 1024 1538
- u*l + u0)>
192375 10125
and find t=t=-2, -1, 0, 2/3
2h/3
4
u(s)ds ~ h(E
(14) o
IR
205" g1 0
and find t=t=-2, -1, 0, 5/6
Shi6

Im@wszi

Usjg +
4

(13)

Uy +TU

81

125

5184 2

(15)
3185

3625
- u+ ug),
28512 5184

and find t=t=-2, -1, 0, 1
h

3 1 5 19
16 j ds s H >y +—u_y ——u_ +—up |
(16) OU(S) S [8”1 24”72 24”71 24”0j

and find t=t=-2, -1, 0, 1/15
h/15

31
J' u(s)ds = h(go

1

+—u,2
81000

(17)

61 2791
- U+ ug),
648000 81000

and finally find t=t=-2, -1, 0, 1

5 19
——u_ +—ug |

24 24
Therefore the Runge-Kutta-Verner formulae become
n >4 (for starting values we can use equation (9) )

kl :hF(tn’an’E(tn) ) H
. - K

Uy = Uy +Z’

h
3 1
(18) .([u(s)ds ~ h[gul +au,2

ky =hE(,,1/65U,01/65Zns1/6 )

13 - 1
k, =hF(t Mpi/622n +h Ul +——
2 (n+1/6 +1/GZ ( 168 +1/6 5184
25 - 469
- z'tn—l n))
18144 5184
4k, 16k
i ~ 2
=u, 42
Uyia/1s 75 75

~b ~
(19) ks =hE(t,a015-Uy1a/155Znsans )
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ky = hF(t Al E (s ——
3 (thsa/15:UprasissZn ( 285 Upia/1s 10125

1024 - 1538
- Uy, l n))

192375 10125
e ﬁ+i_8k2+5k3

Uni/3 6 _3 _2 >

—_— 5 ¢ =
ky=hF(t,3:U,2/352002/3 )s

- 5 4 _ 1 -
k, =hF(t Upinj3sZy th(—Uy 53 +—U,_
4 (n+2/3 n+2/3 (15 +2/3 81 2
28 . 37
—— U, +—U,)),
405 " 81 2
- 165k k, 425k k
u$y6=%,+651+552— 53+854’

64 6 64 96
ks = hF(tn+5/6ﬂand+5/69§n+5/6 )s
ks :hF(n+5/6’L7nd+5/6’En
B e
264 "6 T 5184 2
3625 - 3185 -
n 1+ un))’
28512 5184
- 12k, N 4015k, 3 11k,
" 15 612 36
kg = hE(t
k6 _hF(thrl’ n+1’En

3. 1
Uyt +—

+ h(

, 88ks
T 255

~e _
un+

n+l» n+l’Zn+1 b

T~ +2,)
| 8263k, 124k,

15000 75
2484k

10625 °

+h(

Upigs =Uy

8l
250

643k,
680

_ f
kg = hF (15,1, 1155 Zns1ts )

k7 :hF(tn+1/1577/N’,'1/;rl/1575n
3oy 1
960 “"*1'5 T 31000
61 - 2791
- unfl n))
648000 81000
- 3501k, 300
U, =u, + Y
1720 43
_319k4+24068k5 3850k,
2322 84065 26703

kg = hF(thrl > ﬁ,,il ’ E”Hl ) ’
kg._hﬁrt

+h( U, ,

297275k,
52632

)+

n+l> n+1’ n

L L 1 -
n+1 24

5 ~
unl
24

19 -

+h( 210

Uy_o—
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and the sixth-order method
~ ~ 3k 875
Upy =Uy T—— +
20) 40 2244
264k N 125k, 43k

" 1955 11592+ 616
estimate the error in the fifth-order method
13k, N 2375
160 5984
ke [12ks | Ske

16 85 44

We can construct an algorithm similar to the
Runge-Kutta-Fehlberg method and we can repeat
Example 1 using this new method (see Table 2).

Table 1 shows the fifth order accuracy
obtained with this formula. In Example 1, we have
used Runge-Kutta-Verner methods and numerical
quadrature, trapezoidal rule, the 3-point rule is known
as Simpson’s 1/3 rule, the 4-point closed rule is
Simpson’s 3/8 rule, the 5-point closed rule is Boole’s
rule (Bode’s rule), Weddle’s rule, higher rules
include the 6-point, 7-point and 8-point and their
combinations.
Example 1: Consider a first order Linear Volterra
integro-differential equation of the form

23k,

72 is used to

3

Uy = Uy

Q1) S,

3

(o) VO =+ P +2 ! e 09 y(s) ds, t>0;

u(0) =u,.

If the kernel of
(K(t,s) =k(t—s)),

convolution  type

and .[ | k(o) | do, we can solve (22), with suitable

0
initial
conditions, by Laplace transforms (see (Cooke,
1966)).
Equation (22) has the analytical solution.

*L(‘;*\/M) L(6+\/m)
u(t)=(e 2 (—2¢2 5 u
+\(B+6) +44+

B
e 2 (uy(BS+A)P-+\(f+0) +41)+

(=5(f + 8) =24+ (f+5)? +42) 1)+

Lip+2J(B+8)? +42)
2N RSy (B+o+
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J(B+6) +40)+
23
( )(2,1+5(ﬂ+5+,/(ﬂ+5)2 +42) u)))

[(2(BS+A)+~(B+5)> +41).
In solution (23):

Case (): If we choose
p=0,1=-1,6=0, u=0 and u(0)=u,, we
obtain u(t) =u, cos(f).

Case (i1): If we choose
p=-1,1=-1,0=1, u=0 and u(0)=u,, we
obtain u(t) =u, e cos(t).

Case (1ii): If we choose
f=0,1=-1,6=0, u=1 and u(0)=u,, we
obtain u(t) =u, cos(t)+sin(¢).

Case (iv): If we choose

p=0,1=1=0, u=1 and u(0) =u,, we obtain
u(t) = u, cosh(¢)+sinh(r).

Case v): If
p=0,1=-1,06=1, 4=0 and
obtain

we choose
u(0)=u,, we

u(t)=u, % (cos{g t} + sin(g t}}

Case (vi): If we choose f=-1/2, 1=-1,
0=-1, u=-1/2 and u(0)=u,, we obtain

u(t)= % (eZ (T(uy —1) cos(?t} -

V7 Gug +1) sin(%t}) +7).

Case (vii): If
p=-1/2,A=10=-],

p#=-1/2 and u(0) =u,, we obtain

we choose

o (5t
u(t) =el_5 (e 2 (Bug—1)-5e" +12u, + 6}

The errors found are given Table 1, where
error=|true value — approximate value|. Unless
otherwise indicated, in this paper, error means
absolute error. Table 1 is consistent with the property

that the order of the error isO(4°) .
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Table 1: Errors in the Solutions (22) for RKV
method B=0,1=-1,06=0, u=1u,=0,

foa =1 givesO(h°) .

t E}Z o f} 2';’;" Error2 with h=0.0125 i’: 3.70’6”;’5”
0.1] 7.7134c-10 24116011 7.5501c-13
02| 7.6308¢-10 2383911 7.47460-13
03| 7.4661c-10 23305011 73169¢-13
0.4] 7.2210e-10 22518¢-11 7.0810c-13
05| 6.8980c-10 2.1488c-11 6.7685¢-13
0.6] 6.50060-10 2.0224c-11 6.3793c-13
0.7] 6.0328¢-10 1.8740¢-11 5.9230c-13
0.8] 5.4997¢-10 1.7050¢-11 53990c-13
0.9 4.9069¢-10 15174011 4813913
10| 4.2606¢-10 13129-11 4.17440-13

The fifth order Runge-Kutta-Verner method (RKV)
and numerical quadrature rules (gives error O(°)).

Table 2: Errors in the Solutions (22) for RKF
Method
A: ((u=0,=0,4=-1,06=0, uy,=0, 1, =1

gives O(h").

B: ((u=14=0,2=-16=0, uy=0, 1, =1
gives O(°) .

t Errorl with h=0.0250 Error2 with h=0.0125

Method A Method B Method A Method B

0.1 | 4.8696e-08 7.7084e-10 | 3.0410e-09 | 2.4070e-11
0.2 | 4.8142e-08 7.6159e-10 | 3.0009¢-09 | 2.3731e-11
0.3 | 4.7108e-08 7.4415e-10 | 2.9308e-09 | 2.3137e-11
0.4 | 4.5603e-08 7.1872e-10 | 2.8315e-09 | 2.2295e-11
0.5 | 4.3643e-08 6.8557e-10 | 2.7039e-09 | 2.1213e-11
0.6 | 4.1247e-08 6.4505e-10 | 2.5492e-09 | 1.9903e-11
0.7 | 3.8439e-08 5.9760e-10 | 2.3691e-09 | 1.8379¢-11
0.8 | 3.5248e-08 5.4373e-10 | 2.1653e-09 | 1.6657e-11
0.9 | 3.1705e-08 4.8402e-10 | 1.9400e-09 | 1.4756e-11
1.0 | 2.7845e-08 4.1910e-10 | 1.6952e-09 | 1.2697e-11

The fifth order (RKF) and numerical quadrature
rules (gives error O(h*) and O(k°)).

5. Conclusion

The results are shown in Table 1. The apparent
order of convergence is five, which is not surprising
because of the use equation (22). After above

calculation we are expecting order of O(h’). In

view, it seems to be true because of the truncation
error for Runge-Kutta-Verner and Boole’s rule are
O(h®). Numerical order of convergence is also
calculated:

Ord= (In( Error,) - In( Errory) ) / In(2).

We expected that Ord=5. Obtained theoretical results
are confirmed by numerical experiment. The seventh-
order Runge-Kutta and eighth-order Runge-Kutta
methods can also be adapted to the numerical
solution of equation of equation (22).
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Appendix

Various numerical solution of equation (22).
Table 3: Errors in the solution of (22) with;

15.

16.

17.

Volterra, V. Sulle equazioni integro-differenziali
della teoria dell’clastica, Atti della Reale
Accademia dei Lincei 18 (1909), Reprinted in
Vito Volterra, Opera Mathematiche; Memorie e
Note Vol. 3., Accademia dei Lincei, Rome,
1957.
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Wolfram. Newton-cotes
http://mathworld.wolfram.com/
newtoncotesformulas.html, 2013.

Formulas,

Errors in the Solutions (22) for Various Methods =0, A=-1, § =0, u=1u, =0, t,,, =1

Exact (A) Explicit (B) Implicit

(C) RK4 and SimpTrap

(D) RK4 and Simp II

t

Solution  h=0.025 h=0.0125

h=0.025 h=0.0125 h=0.025

h=0.0125 h=0.025 h=0.0125

0.1

0.0998334 5.7228e-05 2.9907e-05 6.7538e-05

3.2485e-05

3.9424¢-09

5.5109e-10 7.3484e-10 3.3681e-11

0.2

0.1986693 2.3829¢-04 1.2166e-04 2.5828e-04

1.2666e-04

1.7562e-08

2.3103e-09 1.0650e-09 5.4422e-11

0.3

0.2955202 5.3976e-04 2.7348e-04 5.6822e-04

2.8059¢-04

4.0594e-08

5.2430e-09 1.3730e-09 7.3910e-11

0.4

0.3894183 9.5579¢-04 4.8236e-04 9.9091e-04

4.9114e-04

7.2586e-08

9.2908e-09 1.6503e-09 9.1611e-11

0.5

0.4794255 1.4782e-03 7.4414e-04 1.5176e-03

7.5399¢-04

1.1290e-07

1.4373e-08 1.8888e-09 1.0702e-10

0.6

0.5646425 2.0965e-03 1.0535e-03 2.1375e-03

1.0638e-03

1.6073e-07

2.0385e-08 2.0813e-09 1.1967e-10

0.7

0.6442177 2.7983e-03 1.4043e-03 2.8375e-03

1.4141e-03

2.1509e-07

2.7207e-08 2.2209e-09 1.2913e-10

0.8

0.7173561 3.5692e-03 3.6030e-03 4.0738e-06

1.7975e-03

2.7488e-07

3.4696e-08 2.3018e-09 1.3503e-10

0.9

0.7833269 4.3930e-03 2.1999e-03 4.4178e-03

2.2061e-03

3.3884e-07

4.2695e-08 2.3191e-09 1.3705e-10

1.0

0.8414710 5.2524e-03 2.6280e-03 5.2641e-03

2.6309e-03

4.0562e-07

5.1034e-08 2.2691e-09 1.3496e-10

Exact (E) RK2 and Trap

(F) RK4 and Trap

(G) RK4 and TrapSimp

(H) RK4 and Simp I

t

Solution  h=0.025 h=0.0125 h=0.025

h=0.0125 h=0.025

h=0.0125 h=0.025 h=0.0125

0.1

0.0998334 5.1818e-06 1.2955e-06 7.1956e-09

1.9741e-09

2.3161e-09

2.4629¢-10 7.3484e-10 3.3686e-11

0.2

0.1986693 1.0208e-05 2.5522e-06 6.2993e-08

1.6502¢-08

7.8435e-09

8.9431e-10 1.0657¢-09 5.4461e-11

0.3

0.2955202 1.4926e-05 3.7317e-06 2.1827e-07

5.6291e-08

1.6477e-08

1.9315e-09 1.3753e-09 7.4015e-11

0.4

0.3894183 1.9187e-05 4.7971e-06 5.2191e-07

1.3354e-07

2.8050e-08

3.3373e-09 1.6552e-09 9.181le-11

0.5

0.4794255 2.2852e-05 5.7133e-06 1.0198e-06

2.5971e-07

4.2334e-08

5.0837e-09 1.8973e-09 1.0734e-10

0.6

0.5646425 2.5790e-05 6.4478e-06 1.7539e-06

4.4524e-07

5.9044¢-08

7.1356e-09 2.0941e-09 1.2014e-10

0.7

0.6442177 2.7883e-05 6.9711e-06 2.7614e-06

6.9939¢-07

7.7842¢-08

9.4512e-09 2.2388e-09 1.2976e-10

0.8

0.7173561 2.9027e-05 7.2572e-06 4.0738e-06

1.0300e-06

9.8344e-08

1.1983e-08 2.3255e-09 1.3585e-10

0.9

0.7833269 2.9136e-05 7.2844e-06 5.7162e-06

1.4432e-06

1.2012e-07

1.4677e-08 2.3491e-09 1.3808e-10

1.0

0.8414710 2.8139¢-05 7.0351e-06 7.7067e-06

1.9437e-06

1.4271e-07

1.7477e-08 2.3057¢-09 1.3619¢-10

(A) The explicit (€ =0 ) method and the trapezoidal rule (gives error O(h));
(B) The implicit (6 = 1) method and the trapezoidal rule (gives error O(h));
(C) The RK4 and Simpson’s 1/3 rule and the trapezoidal rule (gives error O(h3) );

(D) The fourth order Runge-Kutta methodu(RK4) and Simpson’s method II (gives error 0(h4) );

(E) The second order Runge-Kutta methodu(RK2) and the trapezoidal rule (gives error O(hz) );

(F) The fourth order Runge-Kutta method (RK4) and the trapezoidal rule (gives error O(hz) );

(G) The RK4 and the trapezoidal rule and Simpson’s 1/3 rule (gives error 0(h3) );

(H) The fourth order Runge-Kutta method (RK4) and Simpson’s method I (gives error O(h4)
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