On the simplicial cohomology theory of algebra

Y. Gh. Gouda ${ }^{1}$, H. N. Alaa ${ }^{2}$
${ }^{1}$. Dept. of Mathematics, Faculty of Science, Aswan University, Egypt
E-mail: yasiengouda@yahoo.com
2. Dept. of Mathematics, Faculty of Science, Aswan University, Egypt ala2222000@yahoo.com

Abstract

In this article we study the Hochschild (simplicial), cohomology of Hochschild complex of A_{∞}-algebra with some homotopical properties. We study also The relation between the Hochschild cohomology of commutative A_{∞}-algebra and the set of twisted cochain $\mathrm{D}(\mathrm{A}, \mathrm{A})$ of this complex. We prove that the vanishing of Hochschild cohomology of special degree leads to vanish of $D(A, A)$. In the third part we get an extension of special case of A_{∞}-algebra. 2000 Mathematics Subject Classification: 55N35,16E4. [Y. Gh. Gouda, H. N. Alaa. On the simplicial cohomology theory of algebra. Life Sci J 2013; 10(3):2639-2644]. (ISSN: 1097-8135). http://www.lifesciencesite.com. 380

Key words : Hoschschild cohomology- twisted cochain- A_{∞}-algebra

1. Introduction

The concepts of A_{∞}-modules, A_{∞}-algebra and its related with simplicial (Hochschild) (co)homology has been studied in [2,4,6,7]. The relationship between a set of all A_{∞}-algebra structures on fixed differential graded algebra and the Hochschild cohomology of that algebra has been studied in [7]. The Hochschild cohomology complex for A_{∞}-modules over A_{∞} algebras has been studied in [5]. The triviality of the Hochschild cohomology of dimension ($n, 2-n$) A_{∞}-algebra is proved in [4]. In this article we are concerned by (Hochschild cohomology) of differential A_{∞}-algebra. For a given cochain Hochschild (simplicial) complex for differential A_{∞} - algebra with finite number of non trivial high multiplication π_{i} and differential A_{∞}-algebra A , we show that the Hochschild cohomology is trivial. We generalized the triviality of the Hochschild cohomology in [4].

2 Hochschild complex for differential A_{∞}-algebra

In this part we recall the requisites definitions and results relating to concepts of D_{∞} differential module and D_{∞} - differential algebra. The main references are [3], [4], [5],[7] and [9]. Note that all modules are defined on Z_{2}.

A differential module (X, d) is a module $X=\left\{x_{n}\right\}, \mathrm{n} \in \mathbb{Z}$ equipped with a morphism $d: X \rightarrow X$, called the differential of the module X , with degree (-1) such that $d^{2}=0$.
A mapping of differential modules
$f:(X, d) \rightarrow(Y, d)$ is a mapping of modules $f: X \rightarrow Y$ such that $d f=f d$.
A differential homotopy between mappings
$f, g:(X, d) \rightarrow(Y, d)$ of differential modules is a mapping of module $h: X \rightarrow Y$ module X , where the space $Z_{n}(X)=\operatorname{Ker}\left\{d_{n}: X_{n} \rightarrow X_{n-1}\right\} \quad$ is called a space n -dimensional cycles and spaces $B_{n}(X)=\operatorname{Im}\left\{d_{n+1}: X_{n+1} \rightarrow X_{n}\right\}$ are called spaces of n -dimensional boundaries. It is clear that $B_{n}(X) \subset Z_{n}(X)$ such that $d h+h d=f-g$.
It is easy to see that the homotopy relation is an equivalence relation.
The modules X and Y are called homotopy equivalent (denoted by $X \approx Y$), if there is a chain map
$f: X \rightarrow Y, g: Y \rightarrow Z$ such that $g \circ f \approx I d_{X}$,
$f \circ g \approx I d_{Y}$.
The module is called contractible, if it is homotopically equivalent to the zero. The factor space $H_{n}(X)=Z_{n}(X) / B_{n}(X)$ is called the homology of X.

For a module X , denote by \bar{X} the dual module of X , $\bar{X}=\left\{\bar{X}_{n}\right\}$, for which X_{-n} - conjugate to X_{-n}. The differentials $d_{n}: X_{n} \rightarrow X_{n-1}$ induce the differentials $\bar{d}_{n}: \bar{X}_{-n+1} \rightarrow \bar{X}_{-n}$. The homology of the dual complex \bar{X} is called cohomology of X and denoted
by
$H^{*}(X)=\left\{H^{n}(X), H^{n}(X)=H_{-n}(\bar{X})\right.$.
Definition 2.2:
A D_{∞}-differential module $\left(X, d^{i}\right)$ is a an arbitrary Banach module X with a family of homeomorphisms $\quad\left\{d^{i}: X \rightarrow X, i \geq 0\right\}$ such that the following relations holds for each integer $k \geq 0_{k}, \sum_{i+j=k} d^{i} d^{j}=0$.
If $i=0, d^{0} d^{0}=0$ and $\left(X, d^{0}\right)$ is an ordinary differential module, if $i=1$ we have $d^{1} d^{0}+d^{0} d^{1}=0$, that is the mappings d^{0} and d^{1} are anticommuting maps. This means that the composition $d^{1} d^{1}: X \rightarrow X$ is an endomorphism of the differential module $\left(X, d^{0}\right)$. For $k=2$, we obtain $d^{2} d^{0}+d^{0} d^{2}=0-d^{1} d^{1}$.This means that the mapping $d^{2}: X \rightarrow X$ is a differential homotopy between the zero map and the mapp $d^{1} d^{1}:\left(X, d^{0}\right) \rightarrow\left(X, d^{0}\right)$ of differential modules. Therefore, the mapping $d^{1}: X \rightarrow X$ is a differential within a homotopy.

Definition 2.3:

A differential algebra (A, d, π) is a differential module (A, d) over algebra with the multiplication $\pi: A \otimes A \rightarrow A$ such that the associate law $(\pi \otimes 1) \pi=(1 \otimes \pi) \pi$ holds.
Definition 2.4 :
Let A be algebra. The triple $\left(A, d, \pi_{i}\right)$ is called A_{∞}-algebra, where (A, d) is graded module over algebra such that:

$$
\begin{align*}
& \sum_{i=0}^{n}(-1)^{\varepsilon} \pi_{i}\left(1 \otimes \ldots \otimes \pi_{n-i} \otimes \ldots \otimes 1\right)=0 \tag{1}\\
& \quad \varepsilon=n k+i k+n+k
\end{align*}
$$

The morphism between A_{∞}-algebras $\mathrm{A}, \mathrm{A}^{\prime}$ is a family of homeomorphism $f=\left\{f_{i}: A^{\otimes i} \rightarrow A^{\prime}\right\}$ such that $\left.f_{i}\left(\left(A^{i}\right)\right)_{q} \in A_{q+i-1}^{\prime} \rightarrow A^{\prime}\right\}$ and

$$
\begin{array}{r}
\sum_{j} f_{i-j+1}\left(1 \otimes \ldots \otimes 1 \otimes \pi_{j} \otimes \ldots \otimes 1\right)= \tag{2}\\
\sum \pi_{\ell}^{\prime}\left(f_{k_{1}} \otimes f_{k_{2}} \otimes \ldots \otimes f_{k_{\ell}}\right)
\end{array}
$$

The summation in (1) and (2) are given in all possible place of m_{j} and the right hand side of (2) we can put:
$i=k_{1}+k_{2}++\ldots+k_{\ell}$. The forms (1) and (2) are called stasheff relation for A_{∞}-algebra [7].

Definition 2.5 :

A differential algebra A_{∞}-algebra is D_{∞} - module A tog- ether with a set operations $\pi_{n}: A^{\otimes n+2} \rightarrow A, \mathrm{n} \geq 0$, with the following identity:

$$
\begin{gathered}
d\left(\pi_{n+1}\right)=\sum_{i=0}^{n}(-1)^{\varepsilon} \pi_{i}\left(1 \otimes \ldots \otimes \pi_{n-i} \otimes \ldots \otimes 1\right) \\
\varepsilon=n k+i k+n+k
\end{gathered}
$$

For example if $n=0$, then
$d\left(\pi_{1}\right)=\pi_{0}\left(-\pi_{0} \otimes 1+1 \otimes \pi_{0}\right)$, this is associated homotopy relation.
If $n=1$ then

$$
\begin{aligned}
d\left(\pi_{2}\right)= & \pi_{0}\left(\pi_{1} \otimes 1+1 \otimes \pi_{1}\right)+ \\
& \pi_{1}\left(\pi_{0} \otimes 1 \otimes 1-1 \otimes \pi_{0} \otimes 1+1 \otimes 1 \otimes \pi_{0}\right)
\end{aligned}
$$

this means that there is a homotopy relation between π_{0} and π_{1}.

Definition 2.6 :

The module A is called differential coalgebra, if there is a specified operation $\nabla_{n}: A \rightarrow A^{\otimes n+2}$ of dimensions $n \geq 0$, satisfying the relations:

$$
\begin{aligned}
d\left(\nabla_{n+1}\right) & =\sum_{i=0}^{n}(-1)^{\varepsilon}\left(1 \otimes \ldots \otimes \nabla_{n-i} \otimes \ldots \otimes 1\right) \nabla_{i} \\
\varepsilon & =n k+i k+n i+i+k+1
\end{aligned}
$$

from [4] the Hochschild complex $C^{*}(A, A)$ for algebras A is a A-module over Z_{2} with the multiplication $\pi: \mathrm{A} \otimes A \rightarrow A$ with the associate law $(\pi \otimes 1) \pi=(1 \otimes \pi) \pi$.
The cochain Hochschild complex is given by $\left(C^{*}(A, A), \delta\right)$ such that

$$
\begin{aligned}
& \left.C^{*}(A, A)=\sum C^{n}(A, A), \delta\right), \\
& C^{*}(A, A)=\operatorname{Hom}\left(A^{n}, A\right) \\
& \delta: C^{n}(A, A) \rightarrow A^{n+1}(A, A) .
\end{aligned}
$$

The relation between operators δ and π is given by: $\delta f=\pi(1 \otimes f)+\sum f(1 \otimes \ldots \otimes \pi \otimes \ldots \otimes 1)+\pi(f \otimes 1)$ The homology of $\left(C^{*}(A, A), \delta\right)$ is Hochschild cohomology and defined by $H^{*}(A, A)$.
Definition 2.7 :
For differential A_{∞}-algebra A we can define the coalgebra $B A$ which is called B -construction over A. Consider the tensor algebra $T A=\sum_{n \geq 1} A^{\otimes n}$ such that: $\operatorname{deg}\left(a_{1} \otimes \ldots \otimes a_{k}\right)=\operatorname{deg}\left(a_{1}\right)+\ldots \operatorname{deg}\left(a_{k}\right)+k$. The tensor algebra $T X$ with the following differential $d: B A_{i} \rightarrow A_{i-1}$, such that

$$
\begin{aligned}
& d\left(a_{1} \otimes \ldots \otimes a_{2}\right)= \\
& \quad \sum_{k, j} a_{1} \otimes \ldots \otimes \pi_{k}\left(a_{j} \otimes \ldots \otimes a_{j+k)} \otimes \ldots \otimes a_{n}\right.
\end{aligned}
$$

is called B-construction over A and denoted by $B A$.
We consider the differential A_{∞}-algebra A with finite integer nontrivial exterior multiplication π_{i}, then there is A_{∞}-algebra such that for , $n \in Z, \pi_{i}=0$, for $i>n$.

Consider

$\operatorname{Hom}(B A, A)$ then
$\operatorname{Hom}^{n}(B A, A)=\left[f: B A_{i} \rightarrow A_{i+n}\right]$.
Note that $f \in \operatorname{Hom}^{n}(B A, A)$, then there is $\left\{f_{i}\right\}$, $f_{i}:\left(A^{i}\right)_{q} \rightarrow A_{q+i+n}$. The identity map is $I d_{l}=d$, $I d_{k}=0$ for $\mathrm{k}>1$.
Define the differential
$\delta: \operatorname{Hom}^{n}(B A, A) \rightarrow \operatorname{Hom}^{n-1}(B A, A)$ such that

$$
\begin{array}{r}
\delta f=\sum_{i} f\left(1 \otimes \ldots \otimes 1 \otimes \pi_{i} \otimes 1 \otimes \ldots \otimes\right)+ \\
\sum_{i} \pi_{i}(1 \otimes \ldots \otimes f \otimes \ldots \otimes 1) \tag{3}
\end{array}
$$

The complex $\operatorname{Hom}(B A, A)$ with differential δ (defined in relation (3)) is called the Hochschild complex for A_{∞}-algebra and denoted by $C_{\infty}(A, A)$. Consider the following operations in Hochschild complex $\mathrm{C}(\mathrm{A}, \mathrm{A})$ from [4]:

$$
f \cup g=\pi(f \otimes g)
$$

$f \cup_{1} g=\sum_{k} f(1 \otimes \ldots \otimes 1 \otimes g \otimes \ldots \otimes 1) \quad$ where
and

$$
f \in C^{m}(A, A), g \in C^{n}(A, A) .
$$ the Hochschild complex $C_{\infty}(A, A)$ as follows :

$$
\cup:\left(C_{\infty}(A, M) \otimes C_{\infty}(A, A)\right)^{i} \rightarrow\left(C_{\infty}(A, M)\right)^{i}
$$

) $f \cup g=f(1 \otimes \ldots \otimes 1 \otimes g)$,

$$
\begin{align*}
& \cup_{1}:\left(C_{\infty}(A, A) \otimes C_{\infty}(A, A)\right)^{i} \rightarrow C_{\infty}^{i+1}(A, A) \tag{5}\\
& f \cup_{1} g=\sum f(1 \otimes \ldots \otimes 1 \otimes g \otimes \ldots \otimes 1)
\end{align*}
$$

where $f, g \in C_{\infty}(A, A)$.
For some $\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ we can generalize the operation \cup_{1} in relation (5) to be $\cup_{i}^{k}:\left(C_{\infty}(A, A)^{\otimes k+1}\right)^{i} \rightarrow C_{\infty}^{i+k}(A, A)$, $f \cup_{1}^{k}\left(g_{1}, g_{2}, \ldots, g_{k}\right)=$ $\sum f\left(1 \otimes \ldots \otimes 1 \otimes g_{1} \otimes 1 \otimes \ldots\right.$ $\left.\ldots \otimes 1 \otimes g_{2} \otimes 1 \otimes \ldots \otimes 1 \otimes g_{k} \otimes 1 \otimes \ldots \otimes 1\right)$,
$f, g \in C_{\infty}(A, A)$ and the summation will be in all place of elements $g_{1}, g_{2}, \ldots, g_{k}$.

The relation between operators \cup_{1}, δ and π is given by:

$$
\delta f=f \cup_{1} \pi+\pi \cup_{1} f
$$

From relation (3), (4), (5), (6) we get :

$$
\begin{gather*}
\delta\left(f \cup_{1}^{k}\left(g_{1}, g_{2}, \ldots, g_{k}\right)\right)=\delta f \cup_{1}^{k}\left(g_{1}, g_{2}, \ldots, g_{k}\right)+ \\
+\sum_{i=1}^{k} f \cup_{1}^{k}\left(g_{1}, g_{2}, \ldots, g_{k}\right)+ \\
+\sum_{i=2}^{k} \sum_{s=1}^{k-2} f \cup_{1}^{k-i+1}\left(g_{1}, \ldots, \pi \cup_{1}^{i}\left(g_{s}, \ldots, g_{s+i}\right), \ldots, g_{k}\right)+ \\
+\sum_{i=0}^{k-1} \sum_{s=1}^{k-2} \pi \cup_{1}^{k-i+1}\left(g_{1}, \ldots, f \cup_{1}^{i}\left(g_{s}, \ldots, g_{s+i}\right), \ldots, g_{k}\right) . \tag{7}
\end{gather*}
$$

The relation (7), when $\mathrm{k}=1$, can be written in the form:
$\delta\left(f \cup_{1} g\right)=(\delta f) \cup_{1} g+f \cup_{1}(\delta g)+f \cup g+g \cup f$, if we put $\cup_{1}^{1}=\cup$ and $\pi \cup_{1}^{2}(f, g)=f \cup g$ in (7) and $f \cup_{1}^{0}=f$ in (5)

3- Twisted cochain Hochschild complex for A_{∞} algebra and related cohomology.

In this part we are concerned with the commutative A_{∞}-algebra and triviality of the Hochschild cohomology in [4]. We define a new concept of twisted cochain on Hochschild complex $C_{\infty}(A, A)$ for A_{∞}-algebra and get the theorems (2.4) and (2.5) analog to theorems of kadishfili in [4].
Firstly we recall the definition of commutative A_{∞} algebra and its related cohomology, we also define the twisted cochain and its propereties on Hochschild complex from [1], [4] and [7].
Definition 3.1.
The twisted cochain is an element
$a=a^{3,-1}+a^{4,-2}+\ldots+a^{i, 2-i}+\ldots \quad$ where $a^{i, 2-i} \in C^{i, 2-i}(A, A)$, such that $\delta a=a \cup_{1} a$, since \cup_{1} is multiplication in the Hochschild complex for algebra A . The set of twisted cochains is denoted by $T W(A, A)$.

Definition 3.2.

Two twisted cochain a and a^{\prime} are equivalent $\left(a \sim a^{\prime}\right)$ if there exist an element $p=p^{2,-1}+p^{3,-2}+\ldots+p^{i, 1-i}$, $p^{i, 1-i} \in C^{i, 1-i}(A, A)$ such that:

$$
\begin{array}{r}
a-a^{\prime}=\delta p+p \cup_{1} a+a^{\prime} \cup_{1}(p \otimes p)+ \\
a^{\prime} \cup_{1}(p \otimes p \otimes p)+\ldots
\end{array}
$$

The set $T W(A, A) / \sim$, where \sim is an equivalent relation, is denoted by $D(A, A)$.
In the following we define the A_{∞}-algebra commutative case and its related cohomology.
Definition: A_{∞}-algebra A is commutative algebra if $\sum_{\sigma}(-1)^{\varepsilon} m_{n} \sigma(i, n-i)=0$, where the summation is got on the perturbation σ.
Definition : If A is commutative algebra, then it's Hochschild complex $C^{*}((A, A), \delta) \quad$ is called Harresona complex.

Definition 3.3 .

The cohomology of the complex $C^{*}((A, A), \delta)$ is called Harresona cohomology of commutative algebra A and denoted by, then it's Hochschild complex $\left.\operatorname{Harr}\left(C^{*}(A, A), \delta\right)\right)$ is called Harresona complex.
In the following we define a new concept of twisted cochain on Hochschild complex $C_{\infty}(A, A)$ for $\mathrm{A}_{\infty^{-}}$ algebra.
Definition 3.4.

Any element $g \in C_{\infty}^{-2}(A, A)$ is called twisted cochain if the following hold:

1. $g_{i}=0$, if $i<n+1$
2. $\delta g=g \cup_{1} g$

The set of all twisted cochain in Hochschild complex $C_{\infty}(A, A)$ is denoted $T W\left(C_{\infty}(A, A)\right)$.
Definition 3.5.
Two twisted cochains g and g^{\prime} are equivalent and denoted by:

$$
g \sim g^{\prime} \text { if there is } f \in C_{\infty}^{-1}(A, A), \text { such that: }
$$

$$
\begin{align*}
& 1-f_{1}=i d \\
& 2-\delta f+\sum_{i=2} \pi \cup_{1}^{i}(f, \ldots, f)+f \cup_{1} g^{\prime}+ \\
& \qquad \sum_{i=1} g \cup_{1}^{i}(f, \ldots, f)=0 \tag{9}
\end{align*}
$$

Where \cup_{1} and \cup_{1}^{i} are defined by formula (5), (6).
Suppose that $D(A, A)=T W\left(C_{\infty}(A, A) / \sim\right)$ where \sim is an equivalent relation, then the following holds.

Theorem 3.6.

Let $g \in T W\left(C_{\infty}(A, A)\right) \quad$ be an arbitrary twisted cochain and $f \in C_{\infty}^{-1}(A, A)$, such that $f_{1}=i d, f_{i}=0$ for $i>n+1$, then there exist Twisted cochain \bar{g} such that:

1. $g_{i}=\bar{g}_{i}, i<k+1, k>n$;
2. $\bar{g}_{k+1}=g_{k+1}+(\delta f)_{k+1}$,
3. $\overline{\mathrm{g}} \sim \mathrm{g}$
4. Proof. We use the method of constructing element $\overline{\mathrm{g}} \sim \mathrm{g}$. Note that, to use the condition of the theorem 2.4 we have the relation $(\delta f)_{n+1}=\delta\left(f_{n}\right)$. For every element f in definition 3.3 , which make the equivalent relation $\overline{\mathrm{g}} \sim \mathrm{g}$, we consider it as an element satisfies condition of theorem 2.4. Define $\bar{g}_{i}, i<k+1$ from condition 1 of theorem 2.4. For elements g and \bar{g}, the first nontrivial elements in right hand side of relation (9) is given in ($\mathrm{k}+1$)dimension, such that $\delta f+f_{1}(g)+f_{1}(\bar{g})=0$, this relation is true if $f_{1}=i d$ (all remain $f_{i}=0$, for $1<i<k+1$).

Theorem 3.7.

If Let $H^{-2}\left(C_{\infty}(A, A)\right)=0, \quad$ then $D(A, A)=0$.
Proof: we must prove that the arbitrary twisted cochain, given condition, is equal zero. The formula (8), for element g , in ($\mathrm{n}+1$)-dimension has the form $\delta g=0$, that is g is acyclic. By considering the condition $H^{-2}\left(C_{\infty}(A, A)\right)=0$ there exist f^{1} such that $g_{n+1}=\left(\delta f^{1}\right)_{n+1}$ or $g-0=\delta f$. Following theorem 3.6 we can get a twisted cochain g^{1} such that $g_{n+1}^{1}=0$ and $g \sim g^{1}$. Hence the formula (8) in $(\mathrm{n}+2)$-dimension, for element g^{1}, is given by $\delta g^{1}=0$, that is g^{1} is acyclic. since $H^{-2}\left(C_{\infty}(A, A)\right)=0$, then there is f^{2} such that $g_{n+1}=\left(\delta f^{1}\right)_{n+1} \quad$ or $\quad g^{1}-0=\delta f^{2} \quad$ and so on. Repeating this process we get a sequence of twisted cochain such that $g_{n+k}^{i}=0, k<i+1$. The extension of this process to infinity get trivial twisted cochain with the element f with components $f_{1}=0$ and $f_{i}=0$, for

$$
i<n+1, f_{i}=f_{i}^{n-i}, i>n
$$

4- Extension of A_{∞}-algebra and cohomology of Hochschild of $\mathbf{C}_{\infty}(A, A)$ for A_{∞}-algebra

Definition (4.1) .
Let A be A_{∞}-algebra $\left(A, \pi_{i}\right)$ with nontrivial
finite number of the multiplication π_{i} i.e. ($\pi_{i} \neq 0,0 \leq i \leq n,, \pi_{i}=0, i>n$.
The extension of A_{∞}-algebra is an A_{∞}-algebra $\overline{\mathrm{A}}$ such that A and $\overline{\mathrm{A}}$ coincided and the high multiplication $\bar{\pi}_{i}=\pi_{i}$, for $i<n+1$.
In [4] is proved that there is a bijection between the set of structure A_{∞}-algebra on fixed graded algebra, such that $\pi_{1}=0, \pi_{2}=\pi, \pi$ is multiplication in algebra, denoted by $(A, \pi)(\infty)$ and the set of twisted cochains Hochschild complex factored by the equivalent relation \sim.
Here we give an extension of this fact between the set of all extension of a fixed A_{∞}-algebra, denoted by $\left(A, \pi_{i}\right)(\infty)$, where π_{i} is the structure on a fixed A_{∞}-algebra A , and the set of twisted cochains

Hochschild complex factored by the equivalent relation $\sim(D(A, A))$.
The following theorem is the main result in this part.
Theorem (4.2): There is a bijection between sets $\left(A, \pi_{i}\right)(\infty)$ and $D(A, A)$.
Proof: For $A \in\left(A, \pi_{i}\right)(\infty)$ consider the stasheff relation (1) as follow:

$$
\begin{align*}
& \sum_{i=1, j=1}^{n} \pi_{i}\left(1 \otimes \ldots \otimes 1 \otimes \pi_{j} \otimes 1 \otimes \ldots \otimes 1\right)+ \\
& +\sum_{i=1, j=n+1}^{n} \pi_{i}\left(1 \otimes \ldots \otimes 1 \otimes \pi_{j} \otimes 1 \otimes \ldots \otimes 1\right)+ \\
& +\sum_{i=n+1, j=1}^{n} \pi_{i}\left(1 \otimes \ldots \otimes 1 \otimes \pi_{j} \otimes 1 \otimes \ldots \otimes 1\right)+ \\
& +\sum_{i, j=n+1}^{n} \pi_{i}\left(1 \otimes \ldots \otimes 1 \otimes \pi_{j} \otimes 1 \otimes \ldots \otimes 1\right)=0 \tag{10}
\end{align*}
$$

Clearly that the first term of (10) is equal zero, following stasheff relation for fixed algebra A. The second and third terms of (10), following (5), (6) can be written in the form δg. The fourth term in form $g \cup_{1} g \quad$ where $\quad g_{i}=0, i<n+1 \quad$ and $g_{i}=\pi_{i}, i>n$.

Therefore the stasheff relation (1) takes the form $\delta g+g \cup_{1} g$, and hence g is twisted cochain.

Thus every A_{∞}-structure from $\left(A, \pi_{i}\right)(\infty)$ defines a twisted cochain for Hochscihld complex C_{∞} (A, A). The inverse is true that is every twisted cochain defines A_{∞}-structure.

To complete the proof we must show that any two extension of A_{∞}-algebra are equivalent if and only if every equivalent result coincide with its twisted cochain.
From theorem 4.2 and definition 3.3 we get the following assertion.

Theorem (4.3):

If $\mathrm{H}^{-2}\left(\mathrm{C}_{\infty}(\mathrm{A}, \mathrm{A})\right)=0$, then any structure of extension of a fixed A_{∞}-algebra is trivial.

Corresponding Author:

Alaa Hassan Noreldeen (H. N., Alaa)
Dept. of Mathematics, Faculty of Science ,Aswan University, Egypt.
E-mail: alla2220000@yahoo.com

References:

1. Braun E., " Twisted tensor product", Ann. Of Math. (1959), Vol.69, 223-246.
2. Gouda Y. Gh., "Homotopy Invariance of Perturbation of $D \infty$ - differential Module", Int. Journal of Nonlinear Science, (2012), Vol.13, No.3,pp.284-289.
3. Gouda Y. Gh., \& Nasser A " E_{∞}-coalgebra with Filtration and Chain Complex of Simplicial Set", International Journal of Algebra, (2012), Vol. 6, , no. 31, 1483 - 1490.
4. Kadeishvili T. V. , "The A_{∞}-algebra structure and the Hochschild and Harrison cohomologies", Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, (1988), 91 19-27.
5. Ladoshkin M. V., " A_{∞}-modules over A_{∞} algebra and the Hochschild cohomology complex
for modules over algebras", Mat. Zametki, (2006), 79 , no.5, 717-728. (in Russian).
6. Lapin S. V., " Multiplicative A_{∞}-structure in term of spectral sequences", Fundamentalnaya I prikladnia matematika, (2008), Vol. 14 , no.6, pp. 141-175. (in Russian).
7. Smirnov V. A," A_{∞}-structures and the functor D ", Izv. Ross. Akad. Nauk Ser. Mat., (2000), 64 no. 5, 145-162.
8. Smirnov V. A, "Homology of B-contracture and co-B-contracture", Ezvestia RAN, seria matematica, (1994), Vol 58,No. 4, 80-96.
9. Stasheff J.D., "Homotopy associatively of Hspace", 1, 2 // transfer. Math. Soc., (1963), V.108, N.2, P.275-313.
