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Abstract: In deep excavation, diaphragm wall deflection is an important field measurement that directly affects 
construction performance, site/adjacent building safety and project risk management. This paper applies historical 
data to forecast diaphragm wall deflection and proposes a new methodology, the “Evolutionary Fuzzy Neural Wall 
Deflection Prediction System”, to predict deep excavation wall deformation. At the core of this system is the 
Evolutionary Fuzzy Neural Inference Model (EFNIM), which joins together Genetic Algorithms (GAs), Fuzzy 
Logic (FL) and Neural Networks (NNs). This research established a historical database of wall deflection statistics 
from prior projects. The FL reasoning process and NN learning mechanism were then used to generalize a fuzzy 
rule. Finally, GAs were applied to optimize both FL’s and NN’s parameters coincidence. By inputting monitored 
wall deflection data from preceding deep excavation stages, the system developed in this paper helps users predict 
wall deformation in the upcoming stage and determine whether maximum allowable deflection has been exceeded. 
Simulation results demonstrated that past project data and experience can be utilized to predict wall deformation 
with a high level of precision in new projects.  
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1. Introduction 

Braced diaphragm wall structures are 
commonly used in deep excavation projects to 
improve the safety and quality of construction. 
Therefore, how to use monitored data effectively to 
predict diaphragm wall deflection, ensure project 
safety and prevent costly damage represents a critical 
issue. Data on diaphragm wall deflection is regularly 
monitored to ensure construction quality and the 
safety of adjacent buildings - particularly in high 
density urban settings. However, the complexity of 
geotechnical parameters and variety of construction 
factors make the behavior of the soil/wall/prop 
structures difficult to determine. Peck (1969), 
Goldberg et al. (1976), Long (2001) have previously 
identified the key factors in deep excavation to 
include soil type and properties, excavation depth, and 
wall stiffness, among others. The first task for this 
study was to compile historical data from relevant and 
reliable deep excavation cases. Afterward, approaches 
to estimate retaining wall support system defection, 
e.g., finite element analysis, were evaluated and 
applied. 

Finite element analysis has previously been 
employed to simulate the braced diaphragm wall 
system (Clough and Hansen 1981; Powrie and Li 
1991). However, results are heavily dependent upon 
the constitutive behavior of soil. As model parameters 
are usually obtained from laboratory tests, they are 

unable to fully represent in-situ soil properties due to 
sample disturbance, in-situ environmental conditions, 
the diverse effects of construction, and so on. 
Feedback analysis is commonly applied to field 
measurements to determine soil parameters (Gioda 
and Sakurai 1987). Whitted et al. (1993) applied finite 
element analysis to model the top-down construction 
of a seven-story, underground parking garage at Post 
Office Square in Boston. By using optimization 
approaches, factors were modified to improve 
agreement with the measured data without recourse to 
parametric iteration. Ou and Tang (1994) proposed a 
nonlinear optimization technique to determine soil 
parameters for deep excavation finite element analysis 
and studied a hypothetical excavation case under a 
variety of ground conditions. Chi et al. (2001) 
obtained optimized parameters by applying an 
optimization technique for back-analysis that 
produced results in good agreement with field 
measurements. 

Neural Networks (NNs) represents an 
alternative numerical analysis procedure. Using 
compiled historical data and the selected significant 
parameters, NNs have proven a powerful tool for 
various modeling requirements, including 
geotechnical engineering applications. Civil 
engineering researches employ NNs to define 
complicated problems in which the governing 
equation is difficult to form (Flood and Kartam 1994a; 
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Flood and Kartam 1994b; Elkordy et al. 1993). In 
geotechnical engineering, Juang et al. (1999) used 
NNs to evaluate the liquefaction resistance of sandy 
soils; Neaupane and Adhikari (2006) used NNs to 
predict ground movement around tunnels; Nawari and 
Liang (2000) developed a system involving NNs and 
Fuzzy Logic (FL) to address uncertainties of pile 
foundations; Goh et al. (1995) demonstrated that NNs 
can capture the nonlinear interactions between 
variables and synthesize the finite element results in 
braced excavations; Hashash et al. (2003) developed 
an NNs-based constitutive model of soil with outputs 
defined as wall lateral deflection and ground surface 
settlement; Jan et al. (2002) applied NNs to eighteen 
historical deep excavation projects in metropolitan 
Taipei to predict diaphragm wall deflection; Chua and 
Goh (2005) used the hybrid evolutionary Bayesian 
back-propagation neural network and utilized genetic 
algorithms and the gradient descent method to 
determine optimal parameters for estimating wall 
deflection in deep excavation. 

 This study applied the Evolutionary Fuzzy 
Neural Inference Model (EFNIM) (Chen and Ko 
2003), which joins together Genetic Algorithms 
(GAs), Fuzzy Logic (FL) and Neural Networks (NNs) 
to predict deep excavation diaphragm wall deflection. 
Within the EFNIM, GAs optimize the 
topology/weightings of NNs and distribute FL 
membership functions (MFs) (Jagielska et al. 1999); 
FL is used as the fuzzy inference mechanism to 
describe inputs/outputs (Gorzalczany and Gradzki 
2000); and NNs are applied to tune the shapes of MFs 
and to extract the fuzzy rules from training data 
(Ghezelayagh and Lee 1999). This study applied 
diaphragm wall deflection data previously compiled 
from 18 metropolitan Taipei projects to the EFNIM to 
improve prediction result accuracy relative to that 
achieved by the methodology of Jan et al. (2002), 
which employed only NNs. 
2. The Evolutionary Fuzzy Neural Inference Model 
(EFNIM)  

Knowledge and experience helps us 
overcome uncertainty, learn and adapt in order to deal 
with complex problems. Artificial Intelligence (AI), 
an approach to data management that allows 
computers to execute tasks normally done by humans, 
is frequently applied to the resolution of geotechnical 
engineering problems that have numerous 
uncertainties inherent in their parameters. GAs, FL 
and NNs, all popular methods applied to various kinds 
of problems, each present distinct advantages and 
drawbacks, and complement the effectiveness of the 
others. This paper applied EFNIM (a model that fuses 
GAs, FL and NNs) to predict deep excavation 
diaphragm wall deflection and prevent the occurrence 

of illegal and sub-optimal solutions, which usually 
occur when only NNs are employed. 

 Although FL can be effectively employed to 
describe highly complex, ill-defined or difficult-to-
analyze subjects, MF distribution and composition 
operators are difficult to define. Therefore, NNs are 
employed to infuse self-learning capabilities for 
solving non-linear and ill-structured problems. Using 
a Fuzzy Neural Network more effectively imitates the 
human brain’s decision-making processes than using 
FL alone. In order to meet global optimization, GAs 
should be used to determine optimal MF distribution 
and NN parameters necessary to evolve the model 
toward an ideal adaptation. EFNIM architecture is 
shown in Figure 1. 

 
Figure 1. EFNIM Architecture 
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Figure 2. EFNIM Adaptation Process 
 

Figure 2 illustrates the EFNIM adaptation 
process, where P(t) is used to represent ξ individuals 
in generation t; PO(t) means that performing 
crossover ξ individuals yield σ individuals; and PM(t) 
denotes a mutation population of τ individuals. 
Initially (t=0), a population of ξ individuals, is 
randomly generated. Each solution encodes model 
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variables (such as distributions of MFs, NN topology, 
interconnections, synaptic weights, etc.) into a binary 
string that simulates a natural chromosome. EFNIM 
then evaluates chromosome fitness. 
3. EFNIM for Predicting Diaphragm Wall 
Deflection  

Diaphragm wall systems are widely used in 
deep excavation, and significant amounts of data are 
collected to monitor their safety. As such large 
amounts of data have been accumulated, how to use 
such to improve the safety of current and future 
projects represents an important area of potential 
development. The EFNIM has been adopted to solve 
this problem, employing historical data to predict 
diaphragm wall deflection during excavation. The key 
initial issue faced is how to configure data into a 
useable format. In Figure 3, W represents diaphragm 
wall thickness; D the temporary depth of excavation; 
Ri the observation point factor where 18 segments are 
set; and He the final depth of excavation. Embedment 
depth is typically set as 0.8 He. However, in cases 
where embedment depth is less than 0.8 He, deflection 
between the bottom of the diaphragm wall and 19th 
observation point is assigned as linear and converges 
to zero and the total depth of diaphragm wall is set as 
1.8 He. Referring to Jan et al. (2002), seven important 
factors were selected as inputs and one output was set. 
Each observation point can be regarded as an 
individual case, with related parameters illustrated as 
follows: 

 
Figure 3. Representation of the Diaphragm Wall 
Structure 
 
Seven Inputs: 
(1)Diaphragm wall thickness: W. 
(2)Excavation depth: H. 

(3)The equivalent SPT-N value between H+0.25He 
and H-0.25He: . 
(4)The factor of an observation point factor linearly 
interpolated by the depth: R. 
(5)The deflection of the observation point in the last 
stage, i.e., the (i-1)-th stage in the current i stage in 
excavation: Di-1. 
(6)The deflection of the observation point in the (i-2)-
th stage: Di-2. 
(7)The deflection of the observation point in the (i-3)-
th stage: Di-3. 
One Output: 
(1)The deflection of the observation point in i-th 
stage: Di.  

 To prevent the absence of fifth to seventh 
inputs, i has to be greater than or equal to three. When 
i=3, the Di-3 is set as zero. 

Eighteen historical cases from metropolitan 
Taipei, Taiwan were collected. These cases are listed 
in Table 1, which provide information on the number 
of excavation stages, excavation depth and 
construction method used (top-down or bottom-up). 
The number of stages in these cases varied from four 
to seven. As each stage was treated individually, these 
cases comprised 93 stages in total. Excluding the first 
and second stages of construction, 57 stages of 
valuable data were collected. The first seventeen 
construction cases, including 52 stages total, were 
used for training. The remaining five stages of the 
18th case were employed in testing. Nineteen 
observation points were set, although excavation 
depths were not uniform. Therefore, 19 sets of data 
were collected in each stage. Based on the above, 
52×19 = 988 training data sets and 5×19 = 95 testing 
data sets were collected. 

 
Table 1. 18 Historical Excavation Projects in 

Metropolitan Taipei. 

No. Stages Depth 
(m) 

Construction 
method 

No. Stages Depth 
(m) 

Construction 
method 

1 5 12.30 Top-down 10 6 14.05 Top-down 

2 4 13.90 Bottom-up 11 4 13.60 Top-down 

3 6 16.00 Top-down 12 5 17.35 Bottom-up 

4 5 12.60 Top-down 13 5 13.15 Top-down 

5 5 12.30 Top-down 14 5 23.85 Top-down 

6 5 12.25 Top-down 15 6 19.40 Top-down 

7 4 10.00 Top-down 16 6 19.40 Top-down 

8 6 18.95 Top-down 17 5 13.70 Top-down 

9 4 9.30 Top-down 18 7 19.70 Bottom-up 

4. Comparison of Results 
Training data (988 sets from 52 excavation 

stages) and testing data (95 sets from 5 excavation 
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stages) were used to develop the EFNIM diaphragm 
wall deflection prediction system. The crossover rate 
was adopted as 0.9 and the mutation rate as 0.025. 
After training 11,000 generations, network 
interconnections numbered 31 and the RMSE equaled 
3.794%. In Figure 4, the accuracy of maximum 
diaphragm wall displacements is demonstrated by 
comparing results with actual measurements and the 
average correlated coefficient (ACC) between the 
maximum predicted wall displacement and the 
maximum measured wall displacement (average of 
[predicted/measured]). ACCtraining equals 1.0077 and 
ACCtesting equals 0.7943. Among the 52 training 
excavation stages, there were 28 cases with relative 
errors less than 10%; 13 cases with relative errors 
between 10% and 20%; and 11 cases with relative 
errors exceeding 20%. If we define the criterion of 
failed prediction as an error of maximum predicted 
displacement that exceeds 20%, then 10 of 52 can be 
considered to have failed in prediction, i.e., the 
accuracy of diaphragm wall deflection prediction 
using this model is 80.77%. The data of project No. 
18 (the project reserved for use in testing data) and its 
5 stages with 5×19=95 sets of testing data were 
calculated and, while the same criterion was taken, 
only 3 of the 5 were qualified. This gives an accuracy 
of prediction of 60%. While this result is still 
applicable, it is certainly not ideal. To sum up training 
and testing data results, 12 of 57 sets of results fail to 
meet the criterion, i.e. the model achieves an accuracy 
of 78.94%. This result is an improvement one than 
done by Jan et al., which used NNs only. In the 
following section, improvements will be applied to the 
prediction model to improve results even further. 

The typical deep excavation project has 
many stages and the deflection observed in any given 
stage is highly correlated to deflection parameters in 
previous stages. Therefore, diaphragm wall deflection 
data from prior stages are important inputs to help 
predict the values of deflection variables in 
succeeding stages of an excavation project. As 
diaphragm deflections accumulate during an 
excavation, data from previous stages can be 
employed to predict deflection in the following stage 
with improved accuracy. Based on the above, project 
No. 18 data shown in Table 1 are treated as a new 
excavation project. In this project, the depth of the 
diaphragm wall is 35 meters and the total excavation 
depth is 19.7 meters. Seven excavation stages are 
adopted as follows: 1st stage: 2.8 meters; 2nd stage: 
4.9 m; 3rd stage: 8.6 m; 4th stage: 11.8 m; 5th stage: 
15.2 m; 6th stage: 17.3 m and 7th stage: 19.7 m. 
Monitored data from preceding stages can be adding 
into the training data as a new excavation project 
progresses from stage to stage. As long as the initial 
model had been trained, the mutation rate is reduced 

from 0.025 to 0.001, and 5000 iterations are adopted 
(reduced from 11,000) to economize on computational 
time.  

For each excavation stage after the 2nd, data 
compiled from previous stages were added into the 
training data to present the individual characteristics 
of this particular project instantaneously. As shown in 
Table 2, errors have been greatly reduced and 
accuracy improved by this modified process. The 
modified process significantly improved ACCtesting 
compared to the previous result (from 0.7943 to 
0.9277). Detailed results on wall deflection at every 
stage are shown in Figure 5. According to the results, 
the improvement works due to the adding of previous 
stages’ data from the current project. Such data may 
be highly related with the prediction target based on a 
project’s discrete characteristics. 
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Figure 4. Measured vs. Predicted Maximum 
Diaphragm Wall Displacements 

 
Table 2. Taxonomic distribution of species (G, Genus; 

S, Species) 

Excavation 
stage 

Measured 
Max. 

displacement 
(mm) 

Predicted 
Max. 

displacement 
(mm) 

Original 
Error ( 

% ) 

Modified 
Max. 

displacement 
(mm) 

Modified 
Error( % ) 

3rd 43.44 35.23 18.90% 51.16 17.77% 
4th 64.34 55.26 14.11% 59.77 7.10% 
5th 79.57 70.23 11.74% 68.19 14.30% 
6th 99.64 73.33 26.41% 76.89 22.83% 
7th 105.72 72.23 31.68% 95.47 9.70% 
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Figure 5. Wall Deflection Prediction Using the 
Modified Process 
4. Discussions  

In the EFNIM, FL handles soil parameter 
uncertainties; NNs form the complicated mapping 
relationships; and GAs handle global optimization for 
FL and NN parameters. As useful information is 
hidden within monitored data, the EFNIM may be 
employed to extract the critical effects of diaphragm 
wall deflection. Diaphragm wall deflection predictions 
not only employ historical case data, but also the data 
of previous stages in the training sets in order to 
reflect in-situ particularities. By applying EFNIM, a 
strict understanding of parameters or their effects is 
not required. The magnitude of deflection and the 
position where the maximum displacement occurs in 
deep excavation diaphragm walls can, therefore, be 
predicted to ensure safety during the construction 
process. Deflection in the embedded position can also 
be performed. This permits engineers to make highly 
accurate appraisals of the diaphragm wall structure 
prior to starting the next excavation stage. 
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