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Abstract: Many real data in different disciplines follow a self-similar model that is based on the Hurst parameter. 
Self-similar models exhibits the long range dependence feature (LRD). Many simulation experiments rely on real 
LRD traces instead of assuming the traditional Poisson model. Such traces are not always available and can be 
difficult to obtain. Accordingly, there is a need for synthetic LRD data generators. In this work, we present a simple 
and fast LRD data generator based of the Haar wavelet transform. The generator is parametric where the only inputs 
needed are the mean, the variance, and the Hurst parameter of the target synthetic trace. We prove the goodness of 
our model through comprehensive simulation results.  
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1. Introduction 

Self-similarity has become the key model 
in describing numerous physical phenomenon 
including communication network traffic, flow rates 
in rivers (Hosking 1984), economical, geographical, 
and biological data (Mandelbrot 1967, Mandelbrot 
and Van Ness 1968, Wornell 1993).  The usual 
Poisson model has failed to capture the main features 
of such data (Paxson and Floyd 1995). For example, 
the average queue  size at a given network device 
was found to be higher than the expected one 
assuming Poisson arrival process (Shugong, Xinwei 
et al. 1998). The reason is that the Poisson model 
assumes that the data are uncorrelated while in most 
of these phenomenon the data exhibits an LRD nature 
(long term temporal correlation) (Karagiannis, Molle 
et al. 2004).  

Mathematical analysis of self-Similar 
processes is difficult and is intractable and 
accordingly, researchers depend on simulation for 
mining information from real data sequences that are 
not always available and can be costly or impossible 
to capture. In this paper we present a simple and fast 
algorithm to synthesis LRD time series.  
There are several methods for generating LRD 
synthetic traces. Some of these methods are very 
slow and need high processing powers to generate a 
moderate length trace (for example; the fractional 
ARIMA method (Hosking 1984) and the Mandelbrot 
method (Mandelbrot 1971)). Others are approximate 
methods (Lau, Erramilli et al. 1995). Our algorithm is 
based on some properties of the Haar Wavelet 
transform similar as in Riedi et al. method (Riedi, 
Crouse et al. 1999) that assumes the knowledge of 
the second moment of the wavelet coefficients at 
each scale, which our model does not require.  

The strength of our method lies in its 

simplicity where the inputs to our generator are only 
the mean, the variance, and the Hurst parameter of 
the target synthetic trace, which makes it a very 
simple model. Moreover, our algorithm is very fast 
where we could generate traces of more than million 
data points in less than a second and for this reason, 
we do not intend to compare the processing time of 
our algorithm with the others, but will prove the 
accuracy of our algorithm through comprehensive 
synthetic trace generation comparing the intended 
Hurst parameters of the generated traces with their 
estimated ones. 

The rest of the paper is organized as 
follows. Section 2 is a background about the self-
similar processes and the concept of LRD. We 
present our data generator in section 3. In section 4, 
we present some experimental results showing the 
goodness of our model. We conclude our paper in 
Section 5.  
 
2. Self-Similarity and LRD 

Informally, self-similarity refers to the 
degree of randomness where a non-self-similar 
sequence is totally random and a self-similar 
sequence exhibits a degree of non-randomness. This 
degree of non-randomness can be utilized towards 
better system prediction and management. 
Mathematically, a stationary sequence � =
	{�(�), �	 ≥ 1}  is called exactly/asymptotically self-
similar sequence if 

 �	
�

�
	�����(� ), 0.5 < � ≤ 1. 

                       
(1) 

holds for all m/as �	 → 	∞  where 
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(2) 

 
is the aggregated sequence of �  with level of 
aggregation m and H is a constant called the Hurst 
parameter. �  is also called exactly/asymptotically 
second-order self-similar sequence if the variance 
and the correlation function (ACF) of � is equal to 
the variance and the ACF of �����(� ) for all m/as 
� → ∞  (Taqqu, Teverovsky et al. 1997). The Self-
similarity manifests itself in several equivalent ways 
as shown in the subsequent sections. 
LRD describes the long term correlation in a 
sequence of data where the ACF slowly decays with 
the lag towards zero and may not reach the zero (non-
summable ACF). For Poisson processes, the ACF 
exponentially decays with the lag (short-Range 
Dependence (SRD)). 

The Hurst effect describes the degree of 
perseverance of a second order statistic of the self-
similar sequence across different time scales. This 
effect has different representations. For example, the 
variance of the aggregated self-similar sequence can 
be described as a function of the Hurst parameter as 
follows: 

 ���[�� (�)]~ 	���(���). 
                       

(3) 
Another representation of the Hurst effect 

describes the relationship between the variance of the 
wavelet coefficients of the Haar Wavelet transform at 
a given scale j and the Hurst parameter as follows: 

 ������� = �2�(����).       
                    

(4) 
where Wj is the wavelet coefficients 

sequence at scale j, and c is a constant value. The 
Hurst effect as described by equations (3) and (4) 
indicates whether the sequence exhibits SRD (H ≤ 
0.5) or LRD (H > 0.5). 
 
3. Synthetic Data Generator 

Our sequence generator is based on the Haar 
Wavelet transform. The idea behind the wavelet 
transform is to express a discrete sequence by an 
approximated version (scale coefficients) and a detail 
(wavelet coefficients). The approximation process is 
repeated at various scales by expressing the 
approximated version of the sequence at scale j by a 
coarser approximation and a detail at a scale j+1. 
Assuming that a scale j = 0 represents the original 
sequence and the sequence length is a multiple of 2, 
then the scale coefficients at a given scale are 
computed as a function of the scale and the Wavelet 
coefficients at the higher scale as follows:  

 

 ��,�� =
����,� + ����,� 	

√2
, (5) 

 
��,���� =

����,� − ����,� 	

√2
, �

= 0, 1, 2, …  

(6) 

 
Where Uj,2k and Uj,2k+1 are the two 

computed scale coefficients at scale j from one scale 
coefficient (Uj+1,k) and one Wavelet coefficient (Wj+1,k) 
at scale j+1 as illustrated in figure 1. 
 

The data generation process of our model is 
a function of three parameters, the target mean (μ), 
variance (σ2), and the target Hurst parameter (H). To 
generate a sequence of length N, we need to have 
�����  scales. We start by a single value (at scale 
�� = ����� − 1), which is the approximation of the 
signal at the highest  scale jh.  

From the definition of the Haar Wavelet 
transform, the expected value of the scale coefficient 
at a scale jh (the scale coefficient at the highest scale) 
is computed as follows (assuming that we deal with a 
sequence xi, i=0,1,…): 
 
 

������ =
∑ ��

���
���

�
2�� �√2�

�� 

 

 

 

=	

∑ ��
���
���

�

2�
��
�

 

 

 

 = 	�2��/� 
 

(7) 

Accordingly, this single scale coefficient at 
the highest scale jh is taken as the single value that 
we start with. 

The Wavelet coefficients at a given scale 
can be modeled as normally distributed random 
numbers with mean 0 and variance equal to ���(��) 

(defined in equation (4)). The constant value c is 
computed as follows: 
 Since E[Wj] = 0, the second moment of the wavelet 
coefficient at scale j is defined as: 
 
 ����

�� = ������� = �2�(����) (8) 
 

And accordingly, 
 

 ����
�� = �2(����) (9) 

And the c value is computed as: 
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From the Haar Wavelet transform definition, 
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(11) 

And accordingly, 
 

� =
��(1 − ��)

2(����)  (12) 

 
Where ��  represents the ACF of the 

sequence x at lag equal to 1. Although any model can 
be assumed for ��, we use the model of exactly self-
similar process for  ��, which was found to be equal 

to 2(����) − 1  (Beran, Sherman et al. 1995). 
Accordingly, Var[Wj] is computed as: 

 
 

������� =
2���1 − 2(����)�

2(����) 2�(����) 

 

= ���1 − 2(����)�2�(����)����� (13) 
 

In summary, the parameters of the model 
are the target mean, the target variance, and the target 
Hurst parameter. Equation (7) is used to compute a 
single value, the scale coefficient at the highest scale 
(jh). Equation (13) is used to compute the variance of 
the Wavelet coefficients at each scale starting from 
scale jh down to scale 1. Knowing the variance and 
the mean (zero mean) of the wavelet coefficients, the 
Wavelet coefficients can be generated as normally 
distributed random numbers and the synthesis 
process (of scale coefficients) can proceed using 
equations (5) and (6) (Figure 1). 
 

 
Figure 1. The generation process. 

 
4. Experimental Results  

To test our generator, we first use an LRD 
real trace that we try to mimic through its sample 
mean, variance, and the Hurst parameter. This is a 
public trace that contains of a million packet arrivals 
seen on an Ethernet network at the Bellcore 
Morristown Research and Engineering facility 
(Leland, Taqqu et al. 1994).  The data set contains 
two columns, the first column is the time stamp in 
seconds of the packet arrival and the second column 
is the number of bytes in each packet. From this data 
set, we extracted a sequence of the number of bytes 
seen every 10 milliseconds. Table 1 shows some 
statistics computed over this sequence including the 
Hurst parameter. There are several methods to 
estimate the Hurst parameter (Karagiannis, Faloutsos 
et al. 2003). We use the Abry-Veitch method (Abry 
and Veitch 1998) . 
 

Table 1: Basic statistics of the BELCORE trace 
Sample Mean  Sample St. Deviation Estimated H 

1381.9 2227 0.81 

 
Using our generator, we generated 50 data sets with 
H equals to 0.81 and with the same mean and 
variance as the Bellcore trace. Figure 2 shows the 
average ACF of the generated traces compared to the 
ACF of the Bellcore trace. They both exhibit similar 
LRD behavior. 

 
Figure 2: The ACF of the BELCORE trace compared 

to the ACF of the Synthetic traces 
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Now we test our generator further by 
generating several traces with Hurst parameters 
ranges from 0.6 to 0.9. For each value of the target 
Hurst parameter, we generated 50 traces and 
estimated the H value and took the average. Table 2 
shows the estimations of the Hurst parameters of 
these traces. From Table 2, it is clear that our 
generator can accurately generate synthetic traces 
with any arbitrary Hurst parameter. 
 

Table 2: The Hurst parameters estimation for the 
synthetic traces  
Target H Sample mean 95% Confidence Interval 

0.6 0.6002 [0.5972, 0.6032] 
0.65 0.6455 [0.6412, 0.6497] 
0.7 0.6995 [0.6961, 0.7029] 
0.75 0.7493 [0.7459, 0.7527] 
0.8 0.7994 [0.7958, 0.8030] 
0.85 0.8495 [0.8464, 0.8527] 
0.9 0.8955 [0.8919, 0.8990] 

 
It worth mentioning that this generator 

produces positive and negative data and there are so 
many applications, especially in network traffic 
modeling, where we need positive data. A simple way 
is to replace all negative data by zeros. Table 3 shows 
the Application of this simple method to the above 
experiment. Although this simple method produce 
traces with slightly deviated Hurst parameters from 
the target ones, it still gives a very good accuracy.  
 

Table 3: The Hurst parameters estimation for the 
synthetic positive traces 

Target H Sample mean 95% Confidence interval 
0.6 0.5943 [0.5910, 0.5977] 
0.65 0.6412 [0.6382, 0.6442]  
0.7 0.6916 [0.6874, 0.6957] 
0.75 0.7389 [0.7365, 0.7414] 
0.8 0.7899 [0.8772, 0.7927] 
0.85 0.8336 [0.8300, 0.8372] 
0.9 0.8864 [0.8830, 0.8899] 

 
4. Conclusions  

In this paper, we developed a simple self-
similar data generator that is based on a few number 
of parameters, the mean and the variance of the 
modeled data, and the needed Hurst parameter H. We 
showed some numerical results that prove the 
goodness of our generator based on the measured 
Hurst parameter and correlation structure of the 
generated synthetic traces. The generated traces were 
normally distributed and for a future work, we need 
to find a way to generate data with different 
distributions.  
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