On a Quadratic Functional Integral Equation with Deviated Arguments

Fatma M. Gaafar
Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
fatmagaafar2@yahoo.com

Abstract

In this paper, we study the existence of at least one positive solution for a quadratic functional integral equation of Fredholm type with deviated arguments by applying the technique of measure of noncompactness. [Gaafar F. On a Quadratic Functional Integral Equation with Deviated Arguments. Life Sci J 2013;10(3):22112217] (ISSN:1097-8135). http://www.lifesciencesite.com. 325

Keywords: Quadratic functional integral equation; Measure of noncompactness; Deviated arguments.

1. Introduction

The equation

$$
\mathrm{x}(\mathrm{t})=\mathrm{g}(\mathrm{t})+\mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t})) \int_{0}^{1} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \mathrm{h}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}
$$

with $t \in[0,1]$ appears very often in a lot of applications to real world problems. For example, some problems considered in vehicular traffic theory, biology and queuing theory lead to the quadratic integral equations of this type (cf. [24]). Moreover, such integral equations are also applied in the theory of radiative transfer and the theory of neutron transport as well in the kinetic theory of gases (cf. [15], [21], [22], [25], [27], among others).
In this paper, we are going to prove a theorem on the existence of at least one integrable solution for the quadratic functional integral equation

$$
\begin{align*}
\mathrm{x}(\mathrm{t}) & =\mathrm{g}(\mathrm{t})+\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right) \int_{0}^{1} \mathrm{k}_{2}(\mathrm{t}, \mathrm{~s}) \mathrm{f}_{2}\left(\mathrm{~s}, \mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right) \mathrm{ds} \\
& +\mathrm{f}_{2}\left(\mathrm{t}, \mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right) \int_{0}^{1} \mathrm{k}_{1}(\mathrm{t}, \mathrm{~s}) \mathrm{f}_{1}\left(\mathrm{~s}, \mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right) \mathrm{ds} \tag{1}
\end{align*}
$$

The integral equation in question has rather general form and contains as particular cases a lot of functional equations and nonlinear integral equations of Fredholm type. The main tool used in our consideration is the technique of measures of noncompactness and the fixed point theorem of Darbo [3].

Many authors have studied the existence of solutions for several classes of nonlinear quadratic integral equations (see [12]-[14], [17]-[20], [26], [28], and the references therein).

Some problems considered in the vehicular traffic theory, biology and queuing theory lead to the following nonlinear functional-integral equation (see [24]),

$$
\mathrm{x}(\mathrm{t})=\mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t})) \int_{0}^{1} \mathrm{~g}(\mathrm{t}, \mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{ds}
$$

Banaś et al. [8] considered quadratic integral equation,

$$
\mathrm{x}(\mathrm{t})=1+(\mathrm{Tx})(\mathrm{t}) \int_{0}^{1} \mathrm{k}(\mathrm{t}, \mathrm{~s}) \phi(\mathrm{s}) \mathrm{x}(\mathrm{~s}) \mathrm{ds}
$$

where $t \in[0,1]$ and T is an operator which maps $C([0,1])$ continuously into itself and satisfies the Darbo condition. They proved that under certain assumptions it is solvable in the space $C([0,1])$.

In this paper, we are going to study the solvability of a class of quadratic functional integral equations of Fredholm type (1). We prove the existence of at least one integrable solution $x \in L_{1}[0,1]$ of the quadratic integral Equation (1) by using the technique of noncompactness which is frequently used in several branches of nonlinear analysis (see [2], [9], [10], [24]), where the functions $\mathrm{f}_{\mathrm{i}}(\mathrm{t}, \mathrm{x}(\mathrm{t})), \mathrm{i}=1,2$ are L_{1}-Carathèodory functions.

2. Notation and auxiliary facts

Let $L_{1}=L_{1}(I), I=[0,1]$ denoted the space of Lebesgue integrable functions on I and the norm in $\mathrm{L}_{1}(\mathrm{I})$ is defined by

$$
\|\mathrm{x}\|_{\mathrm{L}_{1}}=\int_{0}^{1}|\mathrm{x}(\mathrm{t})| \mathrm{dt} .
$$

Assume that the function $\mathrm{f}: \mathrm{I} \times \mathrm{R} \rightarrow \mathrm{R}$ satisfies Carathèodory condition i.e., it is measurable in t for any x and continuous in x for almost all t. Then to every function $\mathrm{x}(\mathrm{t})$ being measurable on the interval I we may assign the function

$$
(\mathrm{Fx})(\mathrm{t})=\mathrm{f}(\mathrm{t}, \mathrm{x}(\mathrm{t})), \quad \mathrm{t} \in \mathrm{I} .
$$

The operator F defined in such a way is called the superposition operator. This operator is one of the simplest and most important operators investigated in nonlinear functional analysis. For this operator we have the following theorem due to Krasnosel'skii [4].

Theorem 1: The superposition operator F maps continuously the space L_{1} into itself if and only if

$$
|f(t, x)| \leq c(t)+k|x| \quad \text { for all } t \in I
$$

and $x \in R$, where $c(t)$ is a function from L_{1} and k is a nonnegative constant.

Now let E be a Banach space with zero element θ and let X be a nonempty bounded subset of E.
Moreover denote by $\mathrm{B}_{\mathrm{r}}=\mathrm{B}(\theta, \mathrm{r})$ the closed ball in E centered at θ and with radius r. For X being a nonempty subset of E we denote by \bar{X}, Conv X the closure and the convex closure of X , (Conv X is defined as the smallest convex closed set containing X), respectively. Further we denoted by M_{E} the family of nonempty and bounded subsets of E and by N_{E} its sub family consisting of all relatively compact and nonempty subset of E.

Definition 1: (See [3]) A function $\mu: \mathrm{M}_{\mathrm{E}} \rightarrow[0, \infty)$ is said to be a measure of noncompactness in the space E if it satisfies the following conditions,

1. the family $\operatorname{ker} \mu=\mathrm{X} \in \mathrm{M}_{\mathrm{E}}: \mu(\mathrm{X})=0 \quad$ is nonempty and $\operatorname{ker} \mu \subset \mathrm{N}_{\mathrm{E}}$;
2. $\quad X \subset Y \Rightarrow \mu(X) \leq \mu(Y) ;$
3. $\mu(\bar{X})=\mu(\operatorname{Conv} X)=\mu(X)$;
4. $\mu(\lambda \mathrm{X}+(1-\lambda) \mathrm{Y}) \leq \lambda \mu(\mathrm{X})+(1-\lambda) \mu(\mathrm{Y})$, for $\lambda \in[0,1]$;
5. If X_{n} is a sequence of closed sets from M_{E} such that $X_{n+1} \subset X_{n}$, for $\mathrm{n}=1,2,3, \ldots$, and if $\lim _{\mathrm{n} \rightarrow \infty} \mu\left(\mathrm{X}_{\mathrm{n}}\right)=0$, then

$$
\mathrm{X}_{\infty}=\bigcap_{\mathrm{n}=1}^{\infty} \mathrm{X}_{\mathrm{n}} \text { is not empty. }
$$

The family $\operatorname{ker} \mu$ described above is called the kernel of the measure of noncompactness μ.

For further details concerning measures of noncompactness and their properties may be found in [3]. In the sequel we shall need some criteria for compactness in measure; the complete description of compactness in measure was given by Fre'chet [4], but the following sufficient condition will be more convenient for our purposes (see[4]).

Theorem 2: Let X be a bounded subset of L_{1}. Assume that there is a family of subsets $\left(\Omega_{\mathrm{c}}\right)_{0 \leq \mathrm{c} \leq \mathrm{b}-\mathrm{a}}$ of the interval (a, b) such that meas $\Omega_{c}=c$ for every $c \in[0, b-a]$, and for every
$\mathrm{x} \in \mathrm{X}, \mathrm{x}\left(\mathrm{t}_{1}\right) \leq \mathrm{x}\left(\mathrm{t}_{2}\right),\left(\mathrm{t}_{1} \in \Omega_{\mathrm{c}}, \mathrm{t}_{2} \notin \Omega_{\mathrm{c}}\right)$, then the set X is compact in measure.

The measure of weak noncompactness defined by De Blasi ([1] and [23]) is given by,

$$
\beta(\mathrm{X})=\inf (\mathrm{r}>0: \text { there exists a weakly compact }
$$

$$
\text { subset } \left.Y \text { of } E \text { such that } X \subset Y+K_{r}\right)
$$

The function $\beta(\mathrm{X})$ possesses several useful properties which may be found in [23].

The convenient formula for the function $\beta(\mathrm{X})$ in L_{1} was given by Appel and De Pascale (see [1], [3])

$$
\begin{gathered}
\beta(X)=\lim _{\varepsilon \rightarrow 0}\left(\operatorname { s u p } _ { x \in X } \left(\operatorname { s u p } \left[\int_{D}|x(t)| d t: D \subset[a, b],\right.\right.\right. \\
\operatorname{meas} D \leq \varepsilon])),
\end{gathered}
$$

where the symbol meas D stands for Lebesgue measure of the set D.

Next, we shall also use the notion of the Hausdorff measure of noncompactness χ (see [4]) defined by

$$
\begin{gathered}
\chi(\mathrm{X})=\inf (\mathrm{r}>0 \\
\text { such that } \left.\mathrm{X} \subset \mathrm{Y}+\mathrm{K}_{\mathrm{r}}\right) .
\end{gathered}
$$

In the case when the set X is compact in measure, the Hausdoff and De Blasi measures of noncompactness will be identical. Namely we have (see [1] and [23]).

Theorem 3: Let X be an arbitrary nonempty bounded subset of L_{1}. If X is compact in measure then $\beta(X)=\chi(X)$.

Finally, we will recall the fixed point theorem due to

Darbo [3].
Theorem 4: Let Q be a nonempty, bounded, closed and convex subset of E and let $\mathrm{H}: \mathrm{Q} \rightarrow \mathrm{Q}$ be a continuous transformation which is a contraction with respect to the Hausdorff measure of noncompactness χ, i.e., there exists a constant $\alpha \in[0,1)$ such that $\chi(\mathrm{H} \mathrm{X}) \leq \alpha \chi(\mathrm{X})$ for any nonempty subset X of Q . Then H has at least one fixed point in the set Q .

3. Existence of solutions

Let the integral operator H_{i} be defined as

$$
\left(\mathrm{H}_{\mathrm{i}} \mathrm{x}\right)(\mathrm{t})=\int_{0}^{1} \mathrm{k}_{\mathrm{i}}(\mathrm{t}, \mathrm{~s}) \mathrm{f}_{\mathrm{i}}\left(\mathrm{~s}, \mathrm{x}\left(\phi_{\mathrm{i}}(\mathrm{~s})\right)\right) \mathrm{ds}, \quad \mathrm{i}=1,2
$$

Then equation (1) may be written in operator form as:

$$
(\mathrm{Ax})(\mathrm{t})=\mathrm{g}+\left(\mathrm{F}_{1} \mathrm{x}\right)(\mathrm{t}) \cdot\left(\mathrm{H}_{2} \mathrm{x}\right)(\mathrm{t})+\left(\mathrm{F}_{2} \mathrm{x}\right)(\mathrm{t}) \cdot\left(\mathrm{H}_{1} \mathrm{x}\right)(\mathrm{t}),
$$

where $\left(\mathrm{F}_{\mathrm{i}} \mathrm{x}\right)(\mathrm{t})=\mathrm{f}_{\mathrm{i}}\left(\mathrm{s}, \mathrm{x}\left(\phi_{\mathrm{i}}(\mathrm{s})\right)\right) \mathrm{ds}, \quad \mathrm{i}=1,2$.
Consider the quadratic equation (1), under the following assumptions:
(i) $g \in L_{1}$ and is a.e. nondecreasing and positive on the interval I ;
(ii) $f_{i}: I \times R_{+} \rightarrow R_{+}$satisfy Carathèodory condition (i.e. measurable in t for all $x \in R_{+}$and continuous in x for all $\mathrm{t} \in[0,1]$) and there exist two functions $\mathrm{a}_{\mathrm{i}} \in \mathrm{L}_{1}$ and two constants $\mathrm{b}_{\mathrm{i}} \geq 0, \quad \mathrm{i}=1,2$ such that
$\mathrm{f}_{\mathrm{i}}(\mathrm{t}, \mathrm{x}) \leq \mathrm{a}_{\mathrm{i}}(\mathrm{t})+\mathrm{b}_{\mathrm{i}}|\mathrm{x}| \quad \forall(\mathrm{t}, \mathrm{x}) \in \mathrm{I} \times \mathrm{R}_{+}$.
Moreover, $f_{i}(t, x), i=1,2$ are a.e. nondecreasing with respect to each of both variables;
(iii) $\phi_{i}: I \rightarrow I$ is increasing, absolutely continuous on I and there exists a constant $\mathrm{M}_{\mathrm{i}}>0$ such that $\phi_{\mathrm{i}}^{\prime}(\mathrm{t})>\mathrm{M}_{\mathrm{i}}$ on I ;
(iv) $\mathrm{k}_{\mathrm{i}}: \mathrm{I} \times \mathrm{I} \rightarrow \mathrm{R}_{+}, \mathrm{i}=1,2$ are continuous and
$\mathrm{k}_{\mathrm{i}}(\mathrm{t}, \mathrm{x})$ is nondecreasing with respect to each
variables t and x, separately. And there exist positive constants N_{i}, such that $\mathrm{k}_{\mathrm{i}}(\mathrm{t}, \mathrm{x}) \leq \mathrm{N}_{\mathrm{i}}$.
(v) Let $\mathrm{d}>2 \sqrt{\mathrm{c}\left(\|\mathrm{g}\|+\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\|\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\right)}$,
where

$$
\mathrm{d}=1-\frac{\left(\mathrm{b}_{2} \mathrm{M}_{1}\left\|\mathrm{a}_{1}\right\|+\mathrm{b}_{1} \mathrm{M}_{2}\left\|\mathrm{a}_{2}\right\|\right)\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)}{\mathrm{M}_{1} \mathrm{M}_{2}}
$$

and $\mathrm{c}=\frac{\mathrm{b}_{1} \mathrm{~b}_{2}\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)}{\mathrm{M}_{1} \mathrm{M}_{2}}$.
Let r be a positive root of the equation

$$
\mathrm{cr}^{2}-\mathrm{dr}+\left(\|\mathrm{g}\|+\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\|\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\right) \mathrm{M}_{1} \mathrm{M}_{2}=0
$$

and define the set

$$
\mathrm{B}_{\mathrm{r}}=\left\{\mathrm{x} \in \mathrm{~L}_{1}:\|\mathrm{x}\| \leq \mathrm{r}\right\} .
$$

For the existence of at least one L_{1} - positive solution of the quadratic integral equation (1) we have the following theorem.

Theorem 5: Let the assumptions (i)-(v) are satisfied. If $\mathrm{rc}<1$; then the quadratic integral equation (1) has at least one solution $x \in L_{1}$ which is positive and a.e. nondecreasing on I.
Proof. Take an arbitrary $x \in L_{1}$ then, we get

$$
\begin{aligned}
&|(A x)(t)| \leq|g(t)|+\left(a_{1}(t)+b_{1} \mid\right.\left.x\left(\phi_{1}(t)\right) \mid\right) \int_{0}^{1} k_{2}(t, s)\left(a_{2}(s)\right. \\
&\left.+b_{2}\left|x\left(\phi_{2}(s)\right)\right|\right) d s \\
&+\left(a_{2}(t)+b_{2}\left|x\left(\phi_{2}(t)\right)\right|\right) \int_{0}^{1} k_{1}(t, s)\left(a_{1}(s)\right. \\
&+\left.b_{1}\left|x\left(\phi_{1}(s)\right)\right|\right) d s
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \|(\mathrm{Ax})(\mathrm{t})\|=\int_{0}^{1}|(\mathrm{Ax})(\mathrm{t})| \mathrm{dt} \\
& \leq \int_{0}^{1}|\mathrm{~g}(\mathrm{t})| \mathrm{dt}+\int_{0}^{1} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{k}_{2}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{2} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{t})\left(\int_{0}^{1}\left|\mathrm{k}_{2}(\mathrm{t}, \mathrm{~s})\right|\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds}\right) \mathrm{dt} \\
& +\mathrm{b}_{1} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \int_{0}^{1}\left|\mathrm{k}_{2}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} \mathrm{dt} \\
& +b_{1} b_{2} \int_{0}^{1}\left|x\left(\phi_{1}(t)\right)\right|\left(\int_{0}^{1}\left|k_{2}(t, s)\right| \mid x\left(\phi_{2}(s) \mid d s\right) d t\right. \\
& +\int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t})\left(\int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right|\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \mathrm{ds}\right) \mathrm{dt} \\
& +\mathrm{b}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \mathrm{dt} \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right|\left(\int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mid \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{ds}\right) \mathrm{dt},\right. \\
& \leq\|g\|+N_{2} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1} \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} d t \\
& +\mathrm{b}_{2} \mathrm{~N}_{2} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{1} \mathrm{~N}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \int_{0}^{1} \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \int_{0}^{1} \mid \mathrm{x}\left(\phi_{2}(\mathrm{~s}) \mid \mathrm{ds} \mathrm{dt}\right. \\
& +\mathrm{N}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d \mathrm{t} \\
& +\mathrm{b}_{1} \mathrm{~N}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{2} \mathrm{~N}_{1} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d t \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1} \mid \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{ds} d \mathrm{dt},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|g\|+N_{2} \int_{0}^{1} a_{1}(t) d t \int_{0}^{1} a_{2}(s) d s \\
& +\mathrm{b}_{2} \mathrm{~N}_{2} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{t}) \mathrm{dt} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds} \\
& +\mathrm{b}_{1} \mathrm{~N}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \mathrm{dt} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \mathrm{dt} \int_{0}^{1} \mid \mathrm{x}\left(\phi_{2}(\mathrm{~s}) \mid d \mathrm{~d}\right. \\
& +\mathrm{N}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \mathrm{dt} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \\
& +\mathrm{N}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \mathrm{dt} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \\
& +\mathrm{b}_{1} \mathrm{~N}_{1} \int_{0}^{1} \mathrm{a}_{2}(\mathrm{t}) \mathrm{dt} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \mathrm{ds} \\
& +\mathrm{b}_{2} \mathrm{~N}_{1} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \mathrm{dt} \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \\
& +b_{1} b_{2} N_{1} \int_{0}^{1}\left|x\left(\phi_{2}(\mathrm{t})\right)\right| d t \int_{0}^{1} \mid x\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{ds},\right. \\
& \leq\|g\|+\mathrm{N}_{2}\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\| \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{2}\left\|\mathrm{a}_{1}\right\|}{\mathrm{M}_{2}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \phi_{2}^{\prime}(\mathrm{s}) \mathrm{ds} \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{2}\left\|\mathrm{a}_{2}\right\|}{\mathrm{M}_{1}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \phi_{1}^{\prime}(\mathrm{t}) \mathrm{dt} \\
& \left.+\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \phi_{1}^{\prime}(\mathrm{t}) \mathrm{dt} \int_{0}^{1} \right\rvert\, \mathrm{x}\left(\phi_{2}(\mathrm{~s}) \mid \phi_{2}^{\prime}(\mathrm{s}) \mathrm{ds}\right. \\
& +\mathrm{N}_{1}\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\| \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{1}\left\|\mathrm{a}_{2}\right\|}{\mathrm{M}_{1}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \phi_{1}^{\prime}(\mathrm{s}) \mathrm{ds} \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{1}\left\|\mathrm{a}_{1}\right\|}{\mathrm{M}_{2}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \phi_{2}^{\prime}(\mathrm{t}) \mathrm{dt} \\
& \left.+\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \phi_{2}^{\prime}(\mathrm{t}) \mathrm{dt} \int_{0}^{1} \right\rvert\, \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \phi_{1}^{\prime}(\mathrm{s}) \mathrm{ds},\right. \\
& \leq\|\mathrm{g}\|+\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\| \\
& +\frac{b_{2} N_{2}\left\|a_{1}\right\|}{M_{2}} \int_{\phi_{2}(0)}^{\phi_{2}(1)}|x(u)| d u \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{2}\left\|\mathrm{a}_{2}\right\|}{\mathrm{M}_{1}} \int_{\phi_{1}(0)}^{\phi_{1}(1)}|x(u)| d u \\
& +\frac{b_{1} b_{2} N_{2}}{M_{1} M_{2}} \int_{\phi_{1}(0)}^{\phi_{1}(1)}|x(u)| d u \int_{\phi_{2}(0)}^{\phi_{2}(1)}|x(u)| d u
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b_{1} N_{1}\left\|a_{2}\right\|}{M_{1}} \int_{\phi_{1}(0)}^{\phi_{1}(1)}|x(u)| d u \\
& +\frac{b_{2} N_{1}\left\|a_{1}\right\|}{M_{2}} \int_{\phi_{2}(0)}^{\phi_{2}(1)}|x(u)| d u \\
& +\frac{b_{1} b_{2} N_{1}}{M_{1} M_{2}} \int_{\phi_{2}(0)}^{\phi_{2}(1)}|x(u)| d u \int_{\phi_{1}(0)}^{\phi_{1}(1)}|x(u)| d u, \\
& \leq\|g\|+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|\left\|a_{2}\right\| \\
& +\frac{b_{2} N_{2}\left\|a_{1}\right\|}{M_{2}} \int_{0}^{1}|x(u)| d u \\
& +\frac{b_{1} N_{2}\left\|a_{2}\right\|}{M_{1}} \int_{0}^{1}|x(u)| d u \\
& +\frac{b_{1} b_{2} N_{2}}{M_{1} M_{2}} \int_{0}^{1}|x(u)| d u \int_{0}^{1}|x(u)| d u \\
& +\frac{b_{1} N_{1}\left\|a_{2}\right\|}{M_{1}} \int_{0}^{1}|x(u)| d u \\
& +\frac{b_{2} N_{1}\left\|a_{1}\right\|}{M_{2}} \int_{0}^{1}|x(u)| d u \\
& +\frac{b_{1} b_{2} N_{1}}{M_{1} M_{2}} \int_{0}^{1}|x(u)| d u \int_{0}^{1}|x(u)| d u \\
& \leq\|g\|+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|\left\|a_{2}\right\| \\
& +\left(\frac{b_{2} N_{2}\left\|a_{1}\right\|}{M_{2}}+\frac{b_{1} N_{2}\left\|a_{2}\right\|}{M_{1}}+\frac{b_{1} N_{1}\left\|a_{2}\right\|}{M_{1}}\right. \\
& +c\|x\|^{2} \leq r . \\
& \left.+\frac{b_{2} N_{1}\left\|a_{1}\right\|}{M_{2}}\right)\|x\|+c\|x\|^{2} \\
& \leq\|g\|+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|\left\|a_{2}\right\| \\
& +\frac{\left(b_{2} M_{1}\left\|a_{1}\right\|+b_{1} M_{2}\left\|a_{2}\right\|\right)\left(N_{1}+N_{2}\right)}{M_{1} M_{2}}\|x\|
\end{aligned}
$$

From this estimate we show that the operator A maps the ball B_{r} into itself with

$$
r=\frac{d-\sqrt{d^{2}-4 c\left(\|g\|+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|\left\|a_{2}\right\|\right)}}{2 c}
$$

From assumption (v) we have

$$
0<\mathrm{d}^{2}-4 \mathrm{c}\left(\|\mathrm{~g}\|+\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\|\right)<\mathrm{d}^{2}
$$

which implies that

$$
0<\sqrt{\mathrm{d}^{2}-4 \mathrm{c}\left(\|\mathrm{~g}\|+\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\left\|\mathrm{a}_{1}\right\|\left\|\mathrm{a}_{2}\right\|\right)}<\mathrm{d}
$$

Then d is positive which implies that r is a positive constant.
Now, let Q_{r} denote the subset of $\mathrm{B}_{\mathrm{r}} \in \mathrm{L}_{1}$ consisting of all functions which are a.e. nondecreasing on I .
The set Q_{r} is nonempty, bounded, convex and closed (see Banaś [4] pp. 780). Moreover this set is compact in measure (see Lemma 2 in [7] pp. 63).

From assumption (ii) we deduce that the operator A maps Q_{r} into itself. Since the operator $\left(\mathrm{F}_{\mathrm{i}} \mathrm{x}\right)(\mathrm{t})=\mathrm{f}_{\mathrm{i}}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$ is continuous (Theorem 1 in section 2), then the operator H_{i} is continuous and hence the product $\mathrm{F}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$ is continuous. Thus the operator A is continuous on Q_{r}.
Let X be a nonempty subset of Q_{r}. Fix $\varepsilon>0$ and take a measurable subset $D \subset I$ such that meas $\mathrm{D} \leq \varepsilon$. Then, for any $\mathrm{x} \in \mathrm{X}$ using the same reasoning as in [4] and [7], we get

$$
\begin{aligned}
& \|(A x)(t)\|_{L_{1}(D)}=\int_{D}|(A x)(t)| d t \\
& \leq \int_{D}|g(t)| d t+\int_{D} a_{1}(t) \int_{0}^{1}\left|k_{2}(t, s)\right| a_{2}(s) d s d t \\
& +\mathrm{b}_{2} \int_{\mathrm{D}} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{k}_{2}(\mathrm{t}, \mathrm{~s})\right|\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds} \mathrm{dt} \\
& +\mathrm{b}_{1} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \int_{0}^{1}\left|\mathrm{k}_{2}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +b_{1} b_{2} \int_{D}\left|x\left(\phi_{1}(t)\right)\right|\left(\int_{0}^{1}\left|k_{2}(t, s)\right| \mid x\left(\phi_{2}(s) \mid d s\right) d t\right. \\
& +\int_{\mathrm{D}} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{1} \int_{\mathrm{D}} \mathrm{a}_{2}(\mathrm{t})\left(\int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right|\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \mathrm{ds}\right) \mathrm{dt} \\
& +\mathrm{b}_{2} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +b_{1} b_{2} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right|\left(\int_{0}^{1}\left|\mathrm{k}_{1}(\mathrm{t}, \mathrm{~s})\right| \mid \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{ds}\right) \mathrm{dt},\right. \\
& \leq\|g\|_{L_{1}(D)}+N_{2} \int_{D} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1} \mathrm{a}_{2}(\mathrm{~s}) \mathrm{ds} d t \\
& +\mathrm{b}_{2} \mathrm{~N}_{2} \int_{\mathrm{D}} \mathrm{a}_{1}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds} d \mathrm{dt} \\
& +b_{1} N_{2} \int_{D}\left|x\left(\phi_{1}(t)\right)\right| \int_{0}^{1} a_{2}(s) d s d t \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \int_{0}^{1} \mid \mathrm{x}\left(\phi_{2}(\mathrm{~s}) \mid \mathrm{ds} d t\right. \\
& +\mathrm{N}_{1} \int_{\mathrm{D}} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{dsdt} \\
& +\mathrm{b}_{1} \mathrm{~N}_{1} \int_{\mathrm{D}} \mathrm{a}_{2}(\mathrm{t}) \int_{0}^{1}\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \mathrm{ds} d t \\
& +\mathrm{b}_{2} \mathrm{~N}_{1} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} d \mathrm{dt} \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \int_{0}^{1} \mid \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{dsdt},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|g\|_{L_{1}(D)}+N_{2} \int_{D} a_{1}(t) d t \int_{D} a_{2}(s) d s \\
& +\mathrm{b}_{2} \mathrm{~N}_{2} \int_{\mathrm{D}} \mathrm{a}_{1}(\mathrm{t}) \mathrm{dt} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \mathrm{ds} \\
& +b_{1} N_{2} \int_{D}\left|x\left(\phi_{1}(t)\right)\right| d t \int_{D} a_{2}(s) d s \\
& +b_{1} b_{2} N_{2} \int_{D}\left|x\left(\phi_{1}(t)\right)\right| d t \int_{D} \mid x\left(\phi_{2}(s) \mid d s\right. \\
& +\mathrm{N}_{1} \int_{\mathrm{D}} \mathrm{a}_{2}(\mathrm{t}) \mathrm{dt} \int_{\mathrm{D}} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \\
& +b_{1} N_{1} \int_{D} a_{2}(t) d t \int_{D}\left|x\left(\phi_{1}(s)\right)\right| d s \\
& +\mathrm{b}_{2} \mathrm{~N}_{1} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \mathrm{dt} \int_{\mathrm{D}} \mathrm{a}_{1}(\mathrm{~s}) \mathrm{ds} \\
& +\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \mathrm{dt} \int_{\mathrm{D}} \mid \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \mathrm{ds},\right. \\
& \leq\|\mathrm{g}\|_{\mathrm{L}_{1}(\mathrm{D})}+\mathrm{N}_{2}\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})} \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{2}\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{2}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{~s})\right)\right| \phi_{2}^{\prime}(\mathrm{s}) \mathrm{ds} \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{2}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{1}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \phi_{1}^{\prime}(\mathrm{t}) \mathrm{dt} \\
& \left.+\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{1}(\mathrm{t})\right)\right| \phi_{1}^{\prime}(\mathrm{t}) \mathrm{dt} \int_{\mathrm{D}} \right\rvert\, \mathrm{x}\left(\phi_{2}(\mathrm{~s}) \mid \phi_{2}^{\prime}(\mathrm{s}) \mathrm{ds}\right. \\
& +\mathrm{N}_{1}\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})} \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{1}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{1}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{1}(\mathrm{~s})\right)\right| \phi_{1}^{\prime}(\mathrm{s}) \mathrm{ds} \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{1}\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{2}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \phi_{2}^{\prime}(\mathrm{t}) \mathrm{dt} \\
& \left.+\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{\mathrm{D}}\left|\mathrm{x}\left(\phi_{2}(\mathrm{t})\right)\right| \phi_{2}^{\prime}(\mathrm{t}) \mathrm{dt} \int_{\mathrm{D}} \right\rvert\, \mathrm{x}\left(\phi_{1}(\mathrm{~s}) \mid \phi_{1}^{\prime}(\mathrm{s}) \mathrm{ds},\right. \\
& \leq\|\mathrm{g}\|_{\mathrm{L}_{1}(\mathrm{D})}+\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})} \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{2}\left\|\mathrm{a}_{1}\right\|_{L_{1}(\mathrm{D})}}{\mathrm{M}_{2}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{2}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{1}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \\
& +\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{2}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \int_{\mathrm{D}}|x(u)| d u \\
& +\frac{\mathrm{b}_{1} \mathrm{~N}_{1}\left\|\mathrm{a}_{2}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{1}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \\
& +\frac{\mathrm{b}_{2} \mathrm{~N}_{1}\left\|\mathrm{a}_{1}\right\|_{\mathrm{L}_{1}(\mathrm{D})}}{\mathrm{M}_{2}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \\
& +\frac{\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~N}_{1}}{\mathrm{M}_{1} \mathrm{M}_{2}} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du} \int_{\mathrm{D}}|\mathrm{x}(\mathrm{u})| \mathrm{du}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|g\|_{L_{1}(D)}+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|_{L_{1}(D)}\left\|a_{2}\right\|_{L_{1}(D)} \\
& +\left(\frac{b_{2} N_{2}\left\|a_{1}\right\|_{L_{1}(D)}}{M_{2}}+\frac{b_{1} N_{2}\left\|a_{2}\right\|_{L_{1}(D)}}{M_{1}}\right. \\
& \left.+\frac{b_{1} N_{1}\left\|a_{2}\right\|_{L_{1}(D)}}{M_{1}}+\frac{b_{2} N_{1}\left\|a_{1}\right\|_{L_{1}(D)}}{M_{2}}\right)\|x\|_{L_{1}(D)} \\
& \quad+c\|x\|_{L_{1}(D)}\|x\|_{L_{1}(D)} \\
& \leq\|g\|_{L_{1}(D)}+\left(N_{1}+N_{2}\right)\left\|a_{1}\right\|_{L_{1}(D)}\left\|a_{2}\right\|_{L_{1}(D)} \\
& +\frac{\left(b_{2} M_{1}\left\|a_{1}\right\|_{L_{1}(D)}+b_{1} M_{2}\left\|a_{2}\right\|_{L_{1}(D)}\right)\left(N_{1}+N_{2}\right)}{M_{1} M_{2}}\|x\|_{L_{1}(D)} \\
& +r c\|x\|_{L_{1}(D)} .
\end{aligned}
$$

Since,
$\lim _{\varepsilon \rightarrow 0}\left\{\sup \left\{\int_{D}\left|\mathrm{a}_{\mathrm{i}}(\mathrm{t})\right| \mathrm{dt}: \mathrm{D} \subset \mathrm{I}, \operatorname{meas} \mathrm{D} \leq \varepsilon\right\}\right\}=0$,
and

$$
\lim _{\varepsilon \rightarrow 0}\left\{\sup \left\{\int_{D}|g(t)| d t: D \subset I, \text { meas } D \leq \varepsilon\right\}\right\}=0,
$$

We obtain

$$
\beta(\operatorname{Ax}(\mathrm{t})) \leq \operatorname{rc} \beta(\mathrm{x}(\mathrm{t})),
$$

this implies

$$
\begin{equation*}
\beta(\mathrm{AX}) \leq \operatorname{rc} \beta(\mathrm{X}), \tag{2}
\end{equation*}
$$

where β is the De Blasi measure of week noncompactness, and by Theorem 2 we can write (2) in the form

$$
\chi(\mathrm{AX}) \leq \operatorname{rc} \chi(\mathrm{X}),
$$

where χ is the Hausedorff measure of noncompactness. Since $\mathrm{rc}<1$, then from Theorem 4 it follows that A is contraction with respect to the measure of noncompactness χ. Thus A has at least one fixed point in Q_{r} which is a solution of the quadratic integral equation (1).

4. Quadratic equations with deviated argument

Let the assumptions of Theorem 5 are satisfied:
(i) Let $\phi_{i}(t)=\beta_{i} t, \beta_{i} \in(0,1)$, then equation (1) can be written as:

$$
\begin{aligned}
x(t)= & g(t)+f_{1}\left(t, x\left(\beta_{1} t\right)\right) \int_{0}^{1} k_{2}(t, s) f_{2}\left(s, x\left(\beta_{2} t\right)\right) d s \\
& +f_{2}\left(t, x\left(\beta_{2} t\right)\right) \int_{0}^{1} k_{1}(t, s) f_{1}\left(s, x\left(\beta_{1} t\right)\right) d s
\end{aligned}
$$

where $\phi_{\mathrm{i}}(\mathrm{t})=\beta_{\mathrm{i}} \mathrm{t}: \mathrm{I} \rightarrow \mathrm{I}$ is increasing, absolutely continuous on I with $M_{i}=1$. Then the quadratic integral equation has at least one solution $x \in L_{1}$ which is positive and a.e. nondecreasing on I.
(ii) Let $\phi_{i}(\mathrm{t})=\mathrm{t}^{\beta_{i}}, \beta_{\mathrm{i}} \in(0,1)$, then equation (1) can be written as:

$$
\begin{aligned}
x(t)=g(t) & +f_{1}\left(t, x\left(t^{\beta_{1}}\right)\right) \int_{0}^{1} k_{2}(t, s) f_{2}\left(s, x\left(t^{\beta_{2}}\right)\right) d s \\
& +f_{2}\left(t, x\left(t^{\beta_{2}}\right)\right) \int_{0}^{1} k_{1}(t, s) f_{1}\left(s, x\left(t^{\beta_{1}}\right)\right) d s
\end{aligned}
$$

where $\phi_{\mathrm{i}}(\mathrm{t})=\mathrm{t}^{\beta_{\mathrm{i}}}: \mathrm{I} \rightarrow \mathrm{I}$, is increasing, absolutely continuous on I with $\mathrm{M}_{\mathrm{i}}=1$. Then the quadratic integral equation has at least one solution $x \in L_{1}$ which is positive and a.e. nondecreasing on I.

4. Discussions

Necessary conditions for the existence of at least one solution $x \in L_{1}$ for the quadratic functional integral equation Eq. (1) which is positive and a.e. nondecreasing are proposed in this paper by using the method of measure of noncompactness. As a special cases, the existence results for quadratic functional integral equation with deviated argument can be obtained by taking $\phi_{i}(\mathrm{t})=\beta_{\mathrm{i}} \mathrm{t}, \quad \phi_{\mathrm{i}}(\mathrm{t})=\mathrm{t}^{\beta_{i}}, \beta_{\mathrm{i}} \in(0,1)$.

Corresponding Author:

Dr. Fatma M. Gaafar
Department of Mathematics
Faculty of Science, Damanhour University
Damanhour, Egypt
E-mail: fatmagaafar2@yahoo.com

References

1. Appell J., De Pascale E. Su alcuni parameteri connesi con la misuradi non compacttezza di Hausdorff in spazi di functioni misurablili, Boll. Union Mat. Ital. 1984; 6(3):497-515.
2. Banaś J., Goebel K. Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980.
3. Banaś J., Goebel K. Measure of noncompactness in Banach space, Lecture Note in Pure and Appl. Math., 60. Dekker, New York 1980.
4. Banaś J. On the superposition operator and integrable solutions of some functional equations, Nonlinear Analysis T.M.A. 1988; 12: 777-784.
5. Banaś J., Lecko M., El-Sayed W.G. Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 1998; 222:276-285.
6. Banaś J., Lecko M., El-Sayed W. G. Existence theorems of some quadratic integral equation, J. Math. Anal. Appl. 1998; 227:276-279.
7. Banaś J. Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. (Series A) 1989; 46:61-68.
8. Banaś J., Olszowy L. Measures of noncompactness related to monotonicity, Comment. Math. 2001; 417:13-23.
9. Banaś J., Sadarangani K. Solvability of VolterraStieltjes operator-integral equations and their applications, Comput. Math. Applie. 2001; 41(12):1535-1544.
10. Banaś J., Martinon A. Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 2004; 47(2-3):271-279.
11. Banaś J., Martin J. R., Sadarangani K. On the solution of a quadratic integral equation of Hammerstein type, Mathematical and Computer Modelling 2006; 43:97-104.
12. Banaś J., Rzepka B. Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 2007; 332:1370-1378.
13. Banaś J., O’Regan D. On existence and local attractivity of solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 2008; 345:573-582.
14. Banaś J., Rzepka B. Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput. Model. 2009; 49(3-4):488-496.
15. Busbridge L.W. The mathematics of radiative transfer, Cambridge University Press, Cambridge, MA 1960.
16. Burton T. A. Volterra integral and differential equations, Academic Press, New York, 1983.
17. Caballero J., O'Regan D., Sadarangani K. On solutions of an integral equation related to traffic flow on unbounded domains, Arch. Math. (Basel) 2004; 82(6):551-563.
18. Caballero J., Lopez B., Sadarangani K. On monotonic solutions of an integral equation of

Volterra type with supremum, J. Math. Anal. Appl. 2005; 305(1):304-315.
19. Caballero J., Rocha J. Sadarangani K. On monotonic solutions of an integral equation of Volterra type, J. Comput. Appl. Math. 2005; 174(1):119-133.
20. Caballero J., Lopez B., Sadarangani K. Existence of nondecreasing and continuous solutions for a nonlinear integral equation with supremum in the kernel, Z. Anal. Anwend. 2007; 26(2):195-205.
21. Cahlon B., Eskin M. Existence theorems for an integral equation of the Chandrasekhar H equation with perturbation, J. Math. Anal. Appl. 1981; 83:159-171.
22. Chandrasekhar S. Radiative transfer, Oxford University Press, London 1950.
23. De Blasi F. S. On a property of the unit sphere in Banach spaces, Math. Soc. Sci. Math. R.S. Roum. 1977; 21(3-4):259-262.
24. Deimling K. Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
25. Hu S., Khavanin M., Zhuang W. Integral equations arising in the kinetic theory of gases, Appl. Anal. 1989; 34:261-266.
26. Hu X., Yan J. The global attractivity and asymptotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl. 2006; 321(1):147-156.
27. Kelly C.T. Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equations 1982; 4:221-237.
28. Liu Z., Kang S. Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type, Rocky Mountain J. Math. 2007; 37(6):1971-1980.
29. O'Regan D., Meehan M. Existence theory for nonlinear integral and integro-differential equations, Kluwer Academic, Dordrecht 1998.

