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Abstract: In mobile robotics, surface estimation and object recognition play vital role in navigation and control. 

This research presents a normal vector estimation method of a surface using Delaunay tessellation. The proposed 

strategy is an expansion of previously developed Continuous Nearest Neighbor Algorithm, underlining the trade-off 

between filtering and quality of input data. Initially, the 3D data points are segmented through a threshold process. 

The normal vectors are then determined based on an averaging method of centroids on Delaunay tessellation. 

Moreover, two similarity measures (vector angle and Euclidean distance) are considered for surface estimation of a 

pedestrian walk. Output from the Delaunay triangulation provides information for surface estimation. Results show 

that the proposed strategy has a great potential to be used for surface estimation in robotics. 
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1. Introduction 

Technological advancements in robotics 

and associated technologies have helped to bring 

about and corroborate the maturity of the field [1]. 

From a largely pre-eminent industrial focus, robotics 

has now expeditiously opened out into the challenges 

of human world. The up-coming era of robots 

presume safety and co-op in different application 

scenarios at homes, workplaces and communities, 

providing support in services, health care, 

manufacturing and assistance [2]. In robot design, 

there are associated key factors that involve several 

aspects to be integrated in various disciplines of 

robotics [3]. Among those factors, robot kinematics, 

signal analysis, 3D surface estimation and 

recognition play a vital role in realizing the overall 

system. 3D data handling from the sensors in Visual 

Servoing (VS) for object detection or surface 

recognition relies on analysis of sensor response [4]. 

 Challenges like navigation, Simultaneous 

Localization and Mapping (SLAM) and obstacle 

avoidance have been successfully addressed and 

overcome for structured indoor environment. 

However, more work needs to be done for outdoor 

environments to meet the challenges, raised due to 

crucial and sensitive nature of constraints imposed by 

such environments [5]. For this high-level task, 

object recognition, factual awareness and 

interpretation of objects in the environment serve as 

imperatives and prerequisites [6]. The problem that 

needs to be addressed is to develop techniques that 

can be used to design a robust algorithm enabling a 

mobile robot, or a wheelchair, to drive safely in 

outdoor environments [7]. There is no exaggeration 

in stating that surface estimation and obstacle 

avoidance are essential primitives in mobile robotics 

in general. Precisely, enabling a wheelchair based 

robot to operate in an outdoor environment is a non-

trivial and challenging task. It is required to make a 

wheelchair move around under its own power and 

function semi-autonomously. Thus it can be operated 

under all reasonable and challenging conditions 

without requiring resource allocation to a human 

operator, considering all operating safety regulations. 

The goal of this research is to estimate the 

pedestrian surface and analyze sensor response in 

outdoor environment, for surface estimation of a 

pedestrian walk. Range data is actually a prerequisite 

in object recognition, surface estimation and to have 

better understanding of environment [8]. To control 

the movement of a dynamic system for VS, it is 

required to use the information provided by a vision 

sensor [9]. The power wheelchair used in this 

research is equipped with Fotonic B70 3D Laser 

Range Finder (LRF), a laptop computer, and Xsens 

Inertial Measurement Unit (IMU). The LRF is used 

as a main navigation sensor for surface estimation 

and detection of a flat surface in front of the power 

wheelchair. Moreover, IMU package (in sensor 

fusion with the laser sensor), is used for dead 

reckoning and is needed for real-time estimation of 

Euler angles, acceleration (linear), velocity (angular, 

linear), rotation matrix etc. 
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The remaining of the paper is structured as follows: 

Section 2 explains mapping, segmentation and 

reconstruction of 3D range data from the LRF. 

Section 3 introduces two different methods for 

surface estimation used in this research. Section 4 

explains the coordinate transformation for updating 

the position of the wheelchair. Experimental results 

are discussed in Section 5 and finally Section 6 

comments on conclusion. 

 

2. 3D Data Mapping 

The 3D range data obtained from LRF is 

mapped to correspond with the set of 3D values of 

the surface in real world [10]. 3D range data permit 

to recognize objects and to estimate surfaces in 

indoor as well as in outdoor environments. 

 

3D Range Data: Considering set of n 

points to examine the surface having 

points  within one scan which 

further needs to be represented in data matrix 

 where represents 

3D coordinates of a point. Moreover, it is required to 

estimate normal vector from its 

nearest neighbourhood  and 

, which contain all points in 

neighborhood of the point  [8]. 

 

Segmentation of Range Data: Scientific 

literature reports various methods for range data 

segmentation [11, 12]. Examining the 3D response 

from LRF, it is required to segment the data set [13]. 

So the portion containing the error points needs to be 

segmented out from the whole scan. For this purpose, 

we proposed and implemented a technique that works 

on depth component (z) of the range data. The 

original z-component of the image gives the 

segmented image of the pedestrian walk of the image 

[14]. All the points where  is less than  

are considered for the new segmented image. Thus, 

from here we get the segmented surface points 

denoted by PS that are free from error with coordinate 

. Figure 1(a) and (b) shows the 

real image from an ordinary camera and the active 

brightness image from the laser sensor respectively. 

Figure 1(c) illustrates 3D depth data from the sensor 

where the error points in scan and edge between 

pedestrian walk and road are depicted. The point 

cloud response of laser sensor is shown in Figure 1(d). 

Figure 2 presents the segmented pedestrian surface 

[15, 16]. 

 

 

 
(a) (b) 

 
 

(c) (d) 

Figure 1. Pedestrian surface (a) Ordinary camera image 

(b) Active brightness image with pedestrian walk 

curbstone marked (c) Depth image  

(d) Point cloud where also no detects and noisy points are 

visible to the upper left 

 

 
Figure 2. Distance image where 

distances are mapped to colors 
 

Reconstruction of Range Data: After 

segmentation of 3D data, it is required to reconstruct 

it considering three coordinates x, y, and z. Figure 3 

shows point cloud of the reconstructed 3D surface.  
 

 
Figure 3. 3D point cloud 

 

The reconstructed surface segmented data 

is presented in Figure 4 (a) while (b) shows the 3D 

point cloud. The single scan in Fig. 4 (c) contains 

outliers in the data points and needs to be rectified 
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before finding neighborhood  and . Fig. 5 (a) 

and (c) illustrate two surfaces before filtration. As 

shown, the surfaces are not uniform and thus are not 

suitable for normal vector estimation thereby 

requiring filtration of the surface data [17]. The 3D 

data obtained is filtered with a median filter. It helps 

to get rid of uneven distribution of points on the 

surface. Figure 5 (b) and (d) shows the corresponding 

filtered 3D surfaces. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Outlier Points in 3D Scan  

(a) 3D surface showing outlier (b) 3D point cloud  

(c) XY view of single scan showing outlier 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 5. Surface 1 and 2:  

(a) and (c) before filtration  

 (b) and (d) after filtration 

 

3. Surface Estimation 

In the present work, following two  

techniques have been adopted for surface estimation: 

 Normal vector estimation (Delaunay 

triangulation). 

 Agglomerative hierarchical clustering of 3D 

points (Mahalanobis distance). 

 

Delaunay Triangulation: From set of 3D 

segmented data points, the Delaunay triangulation 

has been created, where circumcircle associated with 

each triangle contains no other points in its interior 

[18]. Consider the Delaunay triangulation  of the 

segmented points  with 

triangulation , where 

 is a set of 3D coordinates of 

triangle vertices. Figure 6 shows the result of 

Delaunay triangulation experiment. 

 

 
(a) 

 
(b) 

Figure 6. Delaunay triangulation with sensor at  

(a) With normal vectors  

(b) Without normal vectors 



Life Science Journal 2013;10(3)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com             lifesciencej@gmail.com  1700 

  The 3D triangulation coordinates  are 

used to find the center of the triangles formed from 

Delaunay triangulation . Assume that the  

coordinates of the vertices of a triangle denoted as 

,   

and  are used to find the 

center of the triangle. The normal vectors can now be 

estimated on the center points of the triangles. These 

will be further used as the normal vectors on point . 

Fig. 7(a) and (b) present the 2D and 3D views of 

normal vector estimation on the center of the 

Delaunay triangles respectively, where the portions 

highlighted are the edges joined with the points 

showing neighbors of point P1. Edge attachment 

technique has been then adopted, where every query 

point  in the triangulation and its neighbors are 

examined based on edges in the triangulation. The 

vertices of the edges which represent the vertex 

coordinates of the triangles are the neighbors of the 

query point. As shown in Fig. 7(a), that the edges 

attached with the point  connects it to neighboring 

points , ,  and . Moreover, the method to 

find normal vector on the query point is to average 

normal vectors to the triangles formed by the 

combination of its neighbors.  

 
(a) 

 
(b) 

Figure 7. Delaunay triangulation  

(a) 2D view (b) 3D view 

Two measures have been considered for an 

estimated normal vector . These include angle 

between the normal vectors ( ) and Euclidean 

distance measure . The next step after the vector 

estimation is to find the angle between the vectors 

which helps to understand the similarity of the 

normal vectors. The angle between the vectors can be 

found using (1). 

 

 
(1) 

 

The second measure, Euclidean similarity 

gives the distance between points  and  

belonging to same set of 3D points. Equation (2) 

gives this measured distance. 

 

 (2) 

 

Agglomerative Hierarchical Clustering: 

Mahalanobis distance is another measure used for 

surface estimation [19] and robot navigation in 

outdoor environment [20]. Based on 3D information 

from Laser sensor and points ,…,  of 

, the distance between the points is 

determined using ward linkage method [5] to obtain 

the clustered data. To compute the measure of 

similarity between two surfaces  and  belonging 

to same data set of 3D points, Mahalanobis distance 

between two points is determined by (3) 

 

 
(3) 

 

Where S is the covariance matrix of 3D points and 

can be given as (4). Figure 8(a) and (b) shows the 

clustered data set of all 3D points from Mahalanobis 

distance. 

 
(4) 

 

Where  is a matrix composed from coordinates of 

the points of a single scan. 

 

 
(a) 
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(b) 

Figure 8. Clustered 3D points of estimated surface  

(a) Actual view (b) 2D view 

 

4. Coordinate Transformation 

The transformation of the coordinate 

system is one of the essential steps that helps to 

update the position of a wheelchair based on the 

transformation between the pose of the wheelchair 

and the Laser range measurements. Apart from 

surface estimation, localization of the wheelchair data 

association is another important step that affirms the 

validity of the extracted data to associate it with 

known features in world coordinates. To represent the 

position and orientation of the wheelchair, it is 

required to define the coordinate system with respect 

to LRF. For this purpose, transformation of IMU and 

the wheelchair coordinates need to be carried out for 

getting the orientation of the wheelchair with respect 

to LRF. The overall transformation of coordinate 

frames is shown in Figure 9 where the Xsens IMU 

and wheelchair coordinates are transformed into LRF 

coordinate system to finally perceive it in world 

coordinate system. Transformation of IMU to LRF is 

shown in Figure 10(a) while (b) shows the 

transformation of wheelchair coordinates into LRF 

coordinates. 
 

IMU Coordinate 

Frame

Wheelchair 

Coordinate Frame

LRF Coordinate 

Frame
World Coordinate 

Frame

 
 

Figure 9. Coordinate transformation 
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(b) 

Figure 10. Coordinate transformation: 

(a) Xsens IMU to LRF (b) Wheelchair to LRF  

 

5. Experimental Results 

To access the efficiency of the presented 

estimation methods, two different scenarios involving 

multiple data sets have been taken. These are: 

 Moving down along a pedestrian walk. 

 Moving up along a pedestrian walk. 

 

Experimental Setup and Data Collection: 

A Commercial off the shelf power wheelchair 

(Permobil C350), on which all the equipment has 

been mounted was used to record data. The 

equipment includes a laser range camera (Fotonic 

B70), an IMU (XSens MTi-G) and a dedicated laptop 

and a computer USB interface to the power 

wheelchair. The IMU package provides orientation of 

the wheelchair along with acceleration, Euler angles 

(roll, pitch and yaw) and rotation matrix. Figure 11 

shows the wheelchair equipped with LRF. Data 

recorded with LRF and IMU fused together in a 

single data structure. 
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Figure 11. Permobil C350 Wheelchair 

 

Laser Sensor Data: The first experiment 

has been carried out by placing the laser sensor at an 

angle of  with respect to the base of the 

wheelchair. For second experiment, the sensor 

placement has been changed to 45°. Results have 

demonstrated that placing the sensor at 45° helps to 

achieve more useful data (surface) and reduced 

unnecessary data (environment) in contrast with 

sensor placement at 90°. Figures 12 and 13 

respectively show corresponding data with 90° and 

45° angles taken from the sensor with their clustered 

data, point cloud, surface diagram and single scan. 

The reconstructed segmented surface with 45° sensor 

angle also gives less error points and outliers present 

in the scan. 

 

Surface Estimation: Clustering through 

Mahalanobis distances permits surface estimation as 

illustrated in Figures 12 (d) and 13 (c). Figures 12 (a) 

and 13 (a) show the simple 2D point cloud for 90° 

and 45° cases respectively while Figures 12 (c) and 

13 (c) present the corresponding 2D view of surfaces 

after the clustering process. The cluster boundaries 

can assist in providing the boundaries of the surface 

on which the wheelchair can drive safely.  

 

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Figure 12. Laser sensor adjustment at 90 

(a) 2D view point cloud (b) 3D view point cloud  

(c) 2D view data clustering (d) 3D view data clustering  

(e) 2D view single scan (f) 3D view of surface 

 

  

(a) (b) 

  
(c) (d) 

        
(e) (f) 

Figure 13. Laser sensor adjustment at 45 

(a) 2D view point cloud (b) 3D view point cloud  

(c) 2D view data clustering (d) 3D view data clustering  

(e) 3D view single scan (f) 2D view of surface 
 

Moreover, Euclidean similarity (  and 

angular similarity (  (Section 3) between the 

vectors are other indicators of surface estimation as 

shown in Figure 14. Implementation of the proposed 

approach on the real wheel chair based robot has 

demonstrated the successful estimation of a 

pedestrian surface. Results of Delaunay triangulation 
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method ( ) provide estimation of the pedestrian 

walk as illustrated in Figure 15. 

 

 
 

Figure 14. Euclidean  and Angular  

 

 
 

Figure 15. Surface vectors  

 

5. Conclusion 

This research proposes strategy for surface 

estimation of a pedestrian walk to assist mobility of a 

power wheel chair based robot semi-autonomously in 

an outdoor environment using 3D Laser data. The 

designed algorithm is based on normal vector 

estimation and Mahalanobis distance. The quality of 

surface estimation depends on different factors like 

quality of 3D data and orientation of the laser sensor 

which affects the number of data points for surface 

estimation.  

 

6. Future Work 

Considering the information from surface 

estimation and data clustering, continuous sequence 

of cluster boundaries can be used in designing the 

suitable controller to navigate through drivable path. 

Landmarks can also be used for localization. The 

LRF data becomes the basis of design of the 

navigation loop. Velocity and steering angle 

information from IMU help to estimate its position 

and orientation in world coordinate frame. The 

presented algorithmic technique can successfully be 

tested using a real platform, and expected to have 

potential in robotics. Related research which would 

certainly be beneficial for people having reduced 

mobility includes integration of wheelchair with a 

robotic hand exoskeleton [21-27] and control of 

wheelchair using brain signals [28]. 
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