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Abstract: Endotracheal challenge in mice with pingyangmycin (bleomycin A5, PYM) is a well-established model 

for acute lung injury resulting in pulmonary fibrosis. Immune hormesis induced by low-dose radiation has been 

proven effective in lymphocyte, macrophage, and natural killer cells. This study examines the effects of low-dose 

radiation on pingyangmycin-induced pulmonary fibrosis and the relationship between cytokine levels and 

pulmonary fibrosis induced by pingyangmycin. Kunming strain male mice were exposed to whole-body low-dose 

radiation (total dosage: 75 mGy). After 6 h, the mice were subjected to inhalation of PYM atomization at a 

concentration of 2 mg/mL. The effect of low-dose radiation on pulmonary damage was analyzed by observing HE 

slices under a light microscope and analyzing the cytokine levels (IL-6) in the bronchoalveolar lavage fluid using 

ELISA. TNF-α and TGF-β levels were detected by immunohistochemistry. During the early stage of 

pingyangmycin-induced lung injury, the experimental group had lower grade of alveolitis compared with the control 

group (P < 0.05). In addition, the IL-6 level in the experimental group was lower than that of the control group and 

was close to that of the blank group. The experimental group also had lower TGF-β and TNF-α expression compared 

with the control group (P < 0.05). Low-dose radiation (75 mGy) can reduce alveolitis grade, IL-6 secretion, and 

TGF-β and TNF-α expression. 
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1. Introduction 

The available information on hormesis has been 

significantly improved since it was first reported by 

Luckey in 1982 (Day et al., 2007; Ramola et al., 2010, 

2012; Rautela et al., 2012; Walsh and Kaiser, 2011). 

Epidemiology shows a decrease, rather than an 

increase, in the incidence of tumor in people working 

in high natural background radiation areas, victims 

receiving low-dose radiation from atomic bomb 

explosions and atomic accidents, medical staff in 

radiology departments, and patients receiving radiation 

treatment (Ramola et al., 2010, 2012; Rautela et al., 

2012). A number of studies showed that the immune 

function in such people was upregulated, consequently 

inhibiting tumor growth (Walsh and Kaiser, 2011; 

Little, 2009, 2010, 2012). Immune hormesis induced 

by low-dose radiation has been proven effective in 

lymphocyte, macrophage, and natural killer cells (Day 

et al., 2007; Day et al., 2006; Meng et al., 2012; 

Halliday and Rana, 2008). Endotracheal challenge in 

mice with bleomycin (BLM) is a well-established 

model of acute lung injury (ALI) resulting in 

pulmonary fibrosis, which resembles idiopathic 

pulmonary fibrosis (Cucoranu et al., 2005; Hagimoto et 

al., 2002). Pulmonary fibrosis occurs in three stages: 

alveolar epithelial cell death, inflammation, and 

enhanced collagen deposition with fibroblast and 

smooth muscle cell proliferation (Crystal et al., 2002; 

Leslie, 2005; Raghu et al., 2011). However, the effect 

of low-dose radiation on lung injury and the 

relationship between cytokine level and lung injury 

induced by bleomycin A5 (BLM-A5) has not been 

reported. This study aims to find theoretical evidence 

for the clinical use of low-dose radiation by exploring 

its effect on lung injury, IL-6 levels, and TNF-α and 

TGF-β expression. 

 

2. Materials and Methods 

2.1. Objects 

Kunming strain male mice were randomly 

divided into three groups: normal control group (20 

mice), low-dose radiation with BLM-A5 group (P + L) 

(20 mice), and BLM-A5 group (P) (20 mice). All mice 

were raised routinely and provided with unlimited 

water and food. This study was carried out in strict 

accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the 

National Institutes of Health. The animal use protocol 

has been reviewed and approved by the Institutional 

Animal Care and Use Committee (IACUC) of Qingdao 

University. 

2.2. Radiation conditions 

The mice were placed in a cardboard box. A 

cobalt-60 radiation machine was used to expose the 
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mice to 75 mGy of whole-body radiation at a 

source-to-surface distance of 212 cm and a dose ratio 

of 12.5 mGy/min. A water phantom of 30 cm was 

placed intermedially to filter the ray. 

2.3. Atomization inhalation conditions 

The mice in the P + L group were placed in a 

glass trough with a length of 40 cm and a width of 30 

cm. The contact nebulizer was inserted through a small 

blowhole on the plastic plate placed on the glass 

trough. BLM-A5 was mixed with physiological saline 

to form a solution with a concentration of 2 mg/mL. 

The duration of the atomization inhalation was 3 min. 

Similarly, the mice in the P group were subjected to 

atomization inhalation of BLM-A5, but they were not 

exposed to low-dose radiation. 

2.4. Specimen collection 

The operation was performed on the following 

days (d): d1, d7, d14, d21, and d28. 

After being injected with anesthesia, the mice 

were fixed on a cystosepiment using pins. The skin 

tissue was cut to expose the abdominal wall. Then, the 

sternum was cut to expose the double lungs. The left 

lung was ligated, and a needle of 17 order was ligated 

to the trachea. About 0.3 mL of physiological saline 

was injected slowly, and needle aspiration was 

performed three times to obtain 0.8 mL of alveolar 

lavage fluid. The fluid was then placed in a test tube 

and stored in a refrigerator at –20 °C. 

Right lungs were harvested and placed in 10% 

formalin solution to obtain the lung tissue specimens. 

2.5. ELISA  
Mice IL-6 kits were obtained from Beijing 

Jingmei Biological Engineering Co., Ltd. (China). Each 

kit contained standard substance, dilute specimens, 

concentrated biotinylated antibody, diluted biotinylated 

antibody, concentrated enzyme combination, diluted 

enzyme combination, concentrated cleaning solution, 

color development reagent, stop buffer, 

antibody-coated batten, and bakelized paper. 

The necessary battens were removed from the 

sealed bag and equilibrated to room temperature. About 

100 μL of standard substance was added to each hole 

except for the blank group. Then, the reaction holes 

were sealed using bakelized paper, and the battens were 

incubated at 37 °C for 90 min. The battens were 

washed four times. Then, 100 μL of biotinylated 

antibody operating fluid was added to each hole except 

for the blank group. The reaction holes were sealed 

using gummed paper, and the battens were incubated at 

37 °C for 60 min. The battens were washed four times 

before 100 μL of enzyme combination operating fluid 

was added to each hole except for the blank group. The 

reaction holes were again sealed using gummed paper, 

and the battens were incubated at 37 °C for 30 min. 

The battens were washed four times before 100 μL of 

color development reagent was added to each hole. The 

battens were kept in a dark place and were incubated at 

37 °C for 10 min to 20 min. Finally, 100 μL of stop 

solution was added to each hole), and OD450 was 

measured immediately after mixing. 

2.6. Detection of TGF-β and TNF-α 

The two-step patterning experimental process 

was performed as follows:  

(a) The specimens fixed by formalin were 

douched with lotic water. After 4 h, the specimens were 

dehydrated in an automatic machine, imbedded in 

paraffin, and serially cut to obtain slices with thickness 

of 1 μm to 2 μm. The slices were placed in a 60° 

temperature box overnight. 

(b) The slices were deparaffinized and 

hydrated by flushing with xylene every 5 min; with 

ethanol once, 95% ethanol twice, and 85% ethanol 

once for 2 min; and with water for 5 min. The slices 

were flushed with distilled water three times. 

(c) The antigen was repaired by submerging 

the slices into 0.01 M of folic acid salt buffer and 

placing them inside the microwave at 100 firepower for 

2.5 min and at 30 firepower for 7 min. This process 

was repeated three times, and then the slices were 

cooled naturally. Then, the slices were washed with 

phosphate buffered saline (PBS) four times for 1 min to 

2 min each time. The first set of antibodies (Beijing 

Zhongshan Jinqiao Biological Technology Co., Ltd., 

China) was added, and the slices were incubated in a 

bath box at 37 °C for 1 h. The slices were again washed 

with PBS four times for 1 min to 2 min each time. 

(d) The second set of antibodies (rabbit 

antibody, rat IgG produced by Beijing Zhongshan 

Jinqiao Biological Technology Co., Ltd., China) was 

added. Each slice was incubated in a bath box at 37 °C 

for 20 min and then washed with PBS four times for 1 

min to 2 min each time. Color modification was then 

performed using diaminobenzidine. Each slice was 

washed in distilled water, dyed with hematoxylin-eosin 

(HE), rendered transparent with xylene, and closed 

with neuter gum. 

2.7. Determination of results 

The slices were classified according to 

cytoplasm and cell membrane color as follows: (–) 

without color, (±) light-yellow, (+) buffy, (++) deep 

buffy, (+++) brown, and (+ – +++) positive expression. 

The slices were observed using 20× or 40× 

microscopes (Japan OLYMPUS BH-2). After the 

positive regional location was measured, the extracted 

image by color kinescope was inputted into the Video 

Pro 32 color image analysis system. Then, the positive 

regions were subdivided accurately, and the gray values 

(Grey) were measured. The data were analyzed using 

statistical methods. The HE slices were observed under 

a light microscope. The classification and scoring 

standards of the HE slices based on alveolitis grade 

according to the Szapriel method are as follows: (–): no 
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alveolitis, grade 0; (+): mild alveolitis–monocytes 

infiltrating the alveolar septum 450 (www.springerlink. 

com/content/1613-9089), which becomes wider, 

localizing and approaching the pleura, and less than 

20% of the whole lung and the structure of pulmonary 

alveoli are normal, grade 1; (++): moderate 

alveolitis–the proportion of the lung close to the pleura 

ranges from 20% to 50%, grade 2; (+++): severe 

alveolitis, the affected proportion of the lung exceeds 

50%, grade 3. 

2.8. Statistical analysis 

SPSS 11.5 was used for statistical analysis. 

Quantitative data were expressed by mean ± standard 

deviation. Comparison between means was achieved 

by a q-test. Semi-quantitative data were analyzed by 

ridit scoring. 

 

3. Results 

3.1. IL-6 

Results revealed that the IL-6 level in each 

group was statistically significant. The maximum IL-6 

level was found in the P group, followed by the P + L 

group and the blank group, in which IL-6 level was the 

lowest. IL-6 levels on d1 and d7 in the P+L and the P 

groups were statistically significant. By contrast, IL-6 

levels on d14, d21, and d28 in the P+L and the P 

groups were not statistically significant, indicating that 

IL-6 secretion can be decreased by low-dose radiation. 

However, IL-6 levels during the late stage of chemical 

lung injury in the two groups were not statistically 

significant (Figure 1A). 

3.2. TGF-β and TNF-α 

Semi-quantitative analysis revealed that 

TGF-β and TNF-α expression on d1, d14, and d28 were 

not statistically significant (P > 0.05). However, 

compared with the blank group, TGF-β and TNF-α 

expression in the P + L and the P groups were 

statistically significant (P < 0.05). Analysis of the 

detection results of TGF-β and TNF-α gray value 

indicate that the quantitative analysis results of TGF-β 

and TNF-α on d1, d14, and d28 were statistically 

significant (P < 0.05, Figures 1B and 1C). 

3.3. Alveolitis grade 

The P and the P + L groups had a higher 

alveolitis grade than the control group (P < 0.01). The 

P + L group had a lower alveolitis grade than the P 

group (P < 0.05 on d1 and d7; P > 0.05 on d14, d21, 

and d28; Figure 1D). 

 
Figure 1 A: Testing results of IL-6: The IL-6 level was the highest in Group P, took the second place in Group P + L, 

the lowest was in the blank group. IL-6 levels on the first day and the seventh day between Group P+L and Group P 

were of statistical significance, meanwhile, IL-6 levels on the d14, the d21 and the d28 between Group P+L and 

Group P were of none statistical significance. B: Chart testing results of TGF-β Value: The semiquantitative analysis 

results of TGF-β on the first day, the fourteenth day and the twenty-eighth day were of none statistical significance 

(P > 0.05). But Group P + L and Group P compare with the blank group respectively were of statistical significance 

(P < 0.05). The analysis on detection results of TGF-β gray value is that the quantitative analysis results of TGF-β 

on the first day, the fourteenth day and the twenty-eighth day were of statistical significance (P < 0.05). C: Chart 

http://www.springerlink/
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testing results of TNF-α gray value: The semiquantitative analysis results of TNF-α on the first day, the fourteenth 

day and the twenty-eighth day were of none statistical significance (P > 0.05). But Group P + L and Group P 

compare with the blank group respectively were of statistical significance (P < 0.05). The analysis on detection 

results of TNF-α gray value is that the quantitative analysis results of TNF-α on the first day, the fourteenth day and 

the twenty-eighth day were of statistical significance (P < 0.05). D: The alveolitis grades score: The alveolitis grades 

score in group P was higher than that in control group (P < 0.01), the alveolitis grades score in group P+L was 

higher than that in control group (P < 0.01) too. The alveolitis grades score in group P+L was lower than that in 

group P (P < 0.05 at Day1 and Day 7, P > 0.05 at Day14, Day21 and Day 28). 

 
4. Discussion 

The disease course of ALI is characterized by 

three phases: exudative, proliferative, and fibrotic. 

However, the inflammatory and repair mechanisms 

occur in parallel, rather than in series (Frutos-Viva et 

al., 2004; MacCallum and Evans, 2005). The exudative 

phase encompasses the first seven days after injury, 

whereas the proliferative phase spans days 7 to 21. The 

fibrotic phase occurs two to four weeks after the initial 

pulmonary injury (Frutos-Viva et al., 2004; MacCallum 

and Evans, 2005). 

Elevated TNF-α and IL-6 levels were found in 

the BLM-treated rats. TNF-α and IL-6 have multiple 

effects on acute inflammation and infiltration by 

neutrophils and lymphocytes (Frutos-Vivar et al., 2004; 

MacCallum and Evans, 2005). TNF-α also contributes 

to the pathophysiology of interstitial lung disease by 

inducing the apoptosis of epithelial cells and the 

sequential release of TGF-β, IL-1β, and IL-1 receptor 

antagonist (Janes et al., 2006). In addition, the 

production of reactive oxygen and nitrogen species is 

related to apoptosis in alveolar epithelial cells (Kuwano 

et al., 2003), TGF-β release from pulmonary epithelial 

cells (Gharaee-Kermani et al., 2009), and TGF-β1 

activation through the disruption of its interaction with 

latency-associated peptide (Hagimoto et al., 2002). 

TNF-α is an important factor that causes 

fibrosis and promotes inflammatory reaction. TNF can 

initiate the synthesis and release of cytokines such as 

IL-1, IL-6, and MCP creating a “water fall effect” of 

the cytokines. Thus, proinflammatory cytokines such as 

TNF and IL-1 play a key role in the pathogenesis of 

radiation pneumonitis. Atamas and other experts 

(Atamas et al., 2002; Atamas and White, 2003)
 

observed that IL-6 and TNF-α are released by alveolar 

macrophages during pulmonary fibrosis in rats, and 

that the IL-6 level was significantly higher in the 

groups treated with BLM than in the control group. The 

IL-6 level peaked on d7 and decreased afterward. 

However, it still remained on a high level, indicating 

that IL-6 participates in the early stage of alveolitis and 

the later stage of pulmonary fibrosis. Homer and other 

experts (Homer et al., 2011; Pechkovsky et al., 2010)
 

found that mine dust, quartz dust, and asbestos dust 

induce macrophages to secrete TNF-α and IL-6. 

Studies (Wynn, 2011; Todd et al., 2012) showed that 

the TNF-α acceptor and IL-6 levels in the blood plasma 

of macrophages are much higher than that of the 

control group. Results indicate that the TNF-α acceptor 

and IL-6 levels in blood plasma are relevant to the 

fibrosis of pneumonoconiosis. TGF-β promotes the 

division, growth, maturation, and differentiation of 

fibroblasts. Fibroblasts synthesize a great quantity of 

type I, III, and IV collagen proteins, particularly type 

IV, to increase the collagen of lung mesenchymal cells. 

Meanwhile, TGF-β can inhibit the synthesis of 

collagenase and plasminogen activator. Moreover, 

TGF- β can increase the formation of protease 

inhibitors to decrease mesochymal EMC degradation, 

resulting in regulation imbalance. TGF-β also plays an 

important role in pulmonary fibrosis by promoting the 

synthesis and release of PDGF, IGFs, TNF, IL-1, and 

IL-6 by phagocytes and mononuclear macrophages, 

thereby increasing their bioactivity. TGF-β1 plays an 

important role in lung radiation damage (Bonner, 2004). 

Research results indicate that the cell can secrete 

numerous kinds of cytokines. The biological effects of 

different cytokines on reciprocal chiasmata overlap and 

affect one another, constructing a complex lung 

cytokine network (Ihn, 2002; Biernacka et al., 2011). 

The experiment results show that the IL-6 

level was highest in the P group, followed by the P + L 

group and the blank group, in which IL-6 was the 

lowest. IL-6 levels in the P+ L and the P groups on d1 

and d7 were statistically significant. By contrast, IL-6 

levels in the P+ L and the P groups on d14, d21, and 

d28 were not statistically significant. This result 

indicates that the IL-6 levels in Group P + L and Group 

P in the early stage of chemical pulmonary injury are 

statistically significant. Low-dose radiation can 

decrease IL-6 secretion. However, IL-6 levels in both 

groups during the later stage of chemical pulmonary 

injury were not statistically significant. 

Immunohistochemistry results indicate that the 

semi-quantitative analysis results of TGF-β and TNF-α 

on d1, d14, and d28 were not statistically significant 

(P > 0.05). However, compared with the blank group, 

TGF-β and TNF-α expression in the P + L and the P 

groups were statistically significant (P < 0.05). 

Analysis of the detection results of TGF-β and TNF-α 

gray value indicate that the quantitative analysis results 

of TGF-β and TNF-α on d1, d14, and d28 were 

statistically significant (P < 0.05). 

The experiment indicates that BLM-A5 can 
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cause pulmonary injury in mice. During the early stage, 

low-dose radiation (75 mGy) can decrease the secretion 

of IL-6 and the generation of TGF-β and TNF-α, 

indicating that low-dose radiation can mitigate 

pulmonary injury induced by BLM-A5 in mice. 
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