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Abstract: The upcoming area of pervasive computing will be characterized by many smart devices that have very 
limited resources in terms of memory, computing power and battery supply. In information technology, Ubiquitous 
which is widely believed to be the next paradigm .The mass deployment of pervasive devices promises on the one 
hand many benefits, but on the other hand, many foreseen applications are security sensitive. In order to provide 
security on resource constrained devices lightweight cryptographic algorithms have been developed. In this paper 
we propose lightweight cryptography for FPGAs by introducing block cipher independent optimization techniques 
for Altera Cyclone III FPGAs and applying them to the lightweight cryptographic algorithms HIGHT and Present. 
Both are less than half the size of the AES implementation without using block RAMs. 
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1. Introduction  
        Ubiquitous computing represents the third area 
of computing devices after mainframes and personal 
computer for first and second eras. Radio frequency 
identification (RFID) tags and wireless sensor 
network (WSN) nodes are a few examples which are 
being used for automated electronic toll systems, 
identification tags for food products, pets, clothing 
and so on. This brings us close to the threshold of 
pervasive computing. The mass deployment of this 
device brings serious concerns for security and 
privacy[18]&[19]. The traditional cryptographic 
algorithms may not be suitable for these devices as 
they have limited memory and computational power 
along with serious power constraints. This led to 
development of new branch of cryptography called 
lightweight cryptography. HIGHT and Present were 
developed specifically for lightweight cryptography 
AES and Camellia, though not considered 
lightweight, and are also being used on these devices. 
Until now, lightweight cryptography is targeted 
towards application specific integrated circuits 
(ASICs). ASICs involve high non-recurring 
engineering cost and long time to market where as 
Field Programmable Gate Arrays (FPGAs) involve 
low non-recurring engineering cost and less time to 
market. 
        The dominant factor favorable to ASICs is their 
lower power consumption, which is of primary 
concern for lightweight cryptographic devices and 
their lower cost in large volumes. With the advent of 
low-cost and low-power FPGAs, we expect them to 
become popular for battery powered applications 

such as WSN nodes. Hence, they are a targeted for 
lightweight cryptographic applications. 
Reconfigurability of FPGAs allows the system to be 
upgraded if ever the need arises which is not possible 
with ASICs. Furthermore, lightweight crypto 
implementations lead to area saving over traditional 
implementations. This enables a designer to add 
crypto to an existing design at a minimal cost or to 
reduce the overall area consumption which might 
lead to cost saving as the design might now fit into a 
smaller, cheaper FPGAs.  The ciphers considered are 
of full strength security i.e. 128-bit key length, even 
though traditional lightweight cryptography considers 
80-bit key length to be sufficiently secure. 
 
2.  Materials and Methods 
Advanced Encryption Standard 
         The Advanced Encryption Standard (AES) 
specifies FIPS-approved cryptographic algorithm that 
can be used to protect electronic data. The algorithm 
AES is a symmetric block cipher that can encrypt 
(encipher) and decrypt (decipher) information. In 
cipher text encryption converts data to an un-
intelligible form, decrypting the cipher text converts 
orginal form of data called plaintext. A cryptographic 
key of 128, 192, and 256 bits to encrypt and decrypt 
data in blocks of 128 bits is possible in AES 
algorithm. The specified standard algorithm may be 
implemented in software, firmware or hardware. The 
specific implementation may depend on several 
factors such as the application, the environment and 
technology. 



Life Science Journal 2013;10(3)                                                              http://www.lifesciencesite.com 

 

1108 
 

 
Figure 1.HIGHT 

 
 The algorithm shall be used in conjunction 

with a FIPS approved or NIST recommended mode 
of operation. Object Identifiers (OIDs) and any 
associated parameters for AES used in these modes 
are available at the Computer Security Objects 
Register (CSOR). 
HIGHT 
         HIGHT (HIGH security and light weight) is a 
64-bit block cipher with 128-bit key length. It uses 
generalized Feistel structure with 32-rounds 
containing simple operations such as XOR, modular 
addition in the group of 28 elements, and bitwise 
rotation. The absence of traditional substitution layer, 
its Feistel structure and byte oriented operations 
make it suitable for low-cost, low-power and 
lightweight implementations. The HIGHT algorithm 
was modifieded to reduce the critical path in the key 
schedules which also reduces the area to 2608 gates. 
The initial security analysis presented in [2] & [4] 
showed that HIGHT only 19 rounds is secure. It 
provides low-resource hard-ware implementation, 
which is proper to ubiquitous computing device such 
as a sensor in USW or a RFID. HIGHT does not only 
consist of simple operations to be ultra-light but also 
has enough security as a good encryption algorithm.  
 

Table 1. Comparision of AES and HIGHT 

 

Present 
        Present is an ultra-lightweight block cipher an it 
is a 31-round Substitution-Permutation (SP) network 
with a block size of 64-bit and 80-bit or 128-bit key 
lengths. In this paper a 128-bit key length is 
considered. Present was designed by incorporating 
some features of Serpent and Data Encryption 
Standard (DES). The nonlinear substitution layer, i.e. 
S-box in Present is similar to that of Serpent and the 
linear permutation layer to that of DES. The original 
Present proposal provides a basic security analysis. 
With the establishment of the AES the need for new 
block ciphers has been greatly diminished; for almost 
all block cipher applications the AES is an excellent 
and preferred choice. However, despite recent 
implementation advances, the AES is not suitable for 
extremely constrained environments such as RFID 
tags and sensor networks [3]. In this paper ultra-
lightweight block cipher is described. During design 
of cipher , both security and hardware efficiency have 
been equally important [5]. 
Block ciphers    
       The entire block of plaintext can be encrypted 
with the same key [14]. This means that the 
encryption of any plaintext bit in a given block 
depends on every other plaintext bit in the same 
block[15]. In practice, the vast majority of block 
ciphers either have a block length of 128 bits (16 
bytes) such as the advanced encryption standard 
(AES), or a block length of 64 bits (8 bytes) such as 
the Data Encrypted Standard (DES) or triple DES 
(3DES) algorithm. 
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Figure 2.Top level block diagram of HIGHT 
 
2.1. Optimization techniques 
         Designing compact architectures in FPGAs 
depends on effective use of architectural features 
provided in the targeted FPGAs.  FPGAs have 
features such as Look Up Table (LUT) based 16-bit 
shift register (SRL16) and Distributed Random 
Access Memory (DRAM) which can be employed to 
improve the performance and decrease the area of a 
given design by an order of magnitude.  
 
2.2. FPGA Architecture 
FPGA Structure 
        The fundamental logic unit in FPGAs is a slice, 
which contains mainly two four input LUTs and two 
flipflops. Half the slices of a chip are called 
SLICEMs. Their LUTs can be configured as 16 bit 
shift registers (SRL16) or as 16-bit distributed RAMs  
 
Called DRAMs. 
Shift Register 
        The number of slices required for implementing 
a shift register depends on the number of bits to be 
stored and the number of taps. Taps are positions of a 

shift register where data can be written to or read 
from. Each tap is configured as a flipflop.  
 
Distributed RAM (DRAM) 
        DRAMs offer fast and localized memory. They can be 
cascaded for realizing deeper memories with minimal 
penalty on timing. Distributed RAM supports two types of 
memories: single-port RAM and dual-port RAM. Both have 
synchronous write and either synchronous or asynchronous 
read.  
 
2.3. Plain text and key storage 
        The most area consuming components of 
cryptographic algorithms are data and key storage. 
DRAM and shift register are two options for efficient 
memory implementation. In order to develop 
lightweight architectures, the algorithm 
implementations are scaled down to use either an 8-
bit or a 16-bit datapath. Key and data are loaded 
either 8-bits or 16-bits depending on the 
implementation. Loading into shift register is simpler 
as the number of control bits needed is less as 
compared to DRAM which needs addressing. The 
size of the address increases with the number of 
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words to be stored in DRAM. On the other hand, the 
control bits of shift register are independent of size of 
the data it stores. However, some ciphers require 
intermediate data values. In case of HIGHT, plaintext 
is stored in DRAM due to its generalized Feistel 
structure. The key scheduling in ciphers Camellia, 
HIGHT and Present involve shifting of key which 
make use of shift register more apt as in[4]&[5]. 
However, the key in HIGHT is need in a different 
order during initial and final transformations 
compared to round operations which are difficult to 
accomplish with a shift register. In this case, a 
DRAM is used to store the key. 
 
2.4. Control logic 
        Finite State Machines (FSM) are used for 
realizing the control logic of complex systems. 
Traditionally, FSMs are implemented using flipflops 
and combinational logic. However, this type of FSM 
implementation is complex and not efficient. The use 
of RAM blocks for sequential logic led to ROM-
based FSM implementations. The control signals for 
each operation are combined to one control word. 
These control words are stored in a memory location 
which can be accessed by an address. DROMs are 
inferred by holding the write signal low for DRAMs. 
ROM- based FSMs have additional advantages. The 
maximum frequency at which a ROM-based FSM 
operate is independent of the complexity of the 
circuit. This method is also proved to save power. For 
our HIGHT and Present architectures, the control 
signals are generated by a counter and some 
additional logic. The size of the control word is 
reduced by removing any control signals which 
repeat a short sequence of values many times, such as 
control signals for round operations, from the main 
controller and assigning them to a sub-controller. We 
use this technique for camellia where the control 
signals for round function f are generated by a sub-
controller called F-controller. 
3. Discussion 
        The HIGHT algorithm consists of 32-rounds 
with initial and final transformations before the first 
and after the last rounds respectively. The plaintext P 
and cipher text C are split into eight 8-bit blocks 
P7…P0 and C7…C0 and the original key K into 
sixteen 8-bit blocks K15….K0.The initial 
transformation uses the four whitening key bytes W 
K0, W K1 , W K2 , and W K3 to transform a plain 
text P into the input of first round function, X0 = 
X0,7 X0,0. In the final transformation, the data is 
shifted towards right and transforms X32 = X32,7 

X32,0 into cipher text C by with the four whitening 
keys W K4 , W K5 , W K6 and W K7. Both 
transformations perform a XOR or modular addition 
as shown in Figure 1.  
 
3.1 Lightweight architecture of HIGHT 
        The reduction of area for HIGHT is achieved by 
scaling the 64-bit algorithm to 8-bit. This reduction 
does not come at the cost of temporary storage or 
multiplexers. 
  
Data Storage  
        The round function involves shifting which 
suggest that a shift register is the most efficient 
solution for data storage. However, the generalized 
Feistel structure of HIGHT leads to a misalignment of 
data when a shift register is used. Realignment 
requires additional clock cycles. This reduces the 
throughput and the more complex logic increases the 
area consumption. Therefore, we use a DRAM which 
is more efficient both in terms of area and latency. A 
dual-port DRAM is used as the round function 
requires two 8-bit blocks of data for computing one 8-
bit block. The shifting involved in round function is 
accomplished by addressing. The addresses needed for 
all operations are generated by using three 3-bit 
multiplexers M6, M7, and M8, 2-bit and 3-bit adders, 
12-bit shift register SR and a 3-bit counter C3as shown 
in figure 3. The address from M8 is used for both 
reading and writing while M7 is used only for reading. 
The control signals for all operations are generated by 
using a 5-bit counter and some logic functions. 
 
Round Function,Initial and Final Transformation 
        The addresses for round function are generated 
by shift register (SR) and a 3-bit adder. The initial 
values of SR required for first round are computed by 
using 2 LSB bits of C3. The addresses for the next 
round are generated by loading the result of 3-bit 
adder into SR. This way of generating the addresses 
reduces the complexity of the control logic and 
avoids extra clock cycles needed for shifting of data. 
Each round operation requires 4 clock cycles. The 
initial and the final transformations are performed by 
using the data path of the round function with use of 
two extra multiplexers M2 and M3. The addresses for 
both transformations are generated by C3. The initial 
transformation is performed while the data is being 

loaded into the shift register which save clock cycles. 
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Figure 3. 16-bit datapath of Present 
 
Key Storage and Scheduling   
         The 128-bit key is stored in a single-port 
DRAM. The sub-keys and whitening keys are 
generated by using two 3-bit counters C1 and C2 and 
a 2x1 multiplexer M5. The MSB bit of the key 
address which is also used as selection bit for M5 is 
generated from the output of the 5-bit counter used 
in control logic. The two 3-bit counters are used for 
addressing instead of one 4-bit counter to 
accomplish shifting involved in key scheduling. 
 
3.2. Lightweight architecture of PRESENT 
         The area is reduced by scaling the 64-bit 
implementation to a 16-bit implementation and by applying 
the optimization techniques. Scaling the implementation to 8-
bit would decrease the throughput drastically and yield a 
very small area reduction due to the complexity of the 
permutation operation. Our implementations of wider data 
path led to a significant increase in area consumption.  
  
Data storage 
        The state b63 _ _ _ b0 is stored in the shift 
register SR1 for the reason specified in III. It 
performs a 16-bit circular left-shift per clock cycle. 
We consider the 64-bit shift register as a combination 
of sixteen 4-bit block 15,_ _ _ ,0. The 16 MSB are 
tapped out of SR1 for the round operation.  
 
S-box Implementation and Permutation Layer  
         The round operation starts by XOR the 
incoming data with the round key RKi and applying 

the result to four S-boxes. Present’s 4-bit to 4-bit S-
boxes are implemented in a single LUT each. Our 
architecture uses four S-boxes for round operations 
and two for key scheduling. The Permutation 
function is implemented by using the shift register 
SR2 which performs a shift by 4 bits during round 
operation and by 16 bits after each round when 
copying its content into SR1. Furthermore, the 16-bit 
output from the S-boxes is given as input to the 
blocks 12, 8, 4, and 0 of SR2. During first clock cycle 
of the round operation the 4-bits blocks 15 11, 7 and 
3 are computed from the 16 MSB of SR1 and placed 
in position 12, 8, 4, and 0 of SR2. In the subsequent 
clock cycle SR2 is shifted by 4 bits and blocks 14, 
10, 6 and 2 are computed and placed in the now 
empty positions 12, 8, 4, and 0 of SR2. These 
operations repeat for another two clock cycles to 
complete the round function. This results in a total of 
8 clock cycles for each round operation.  
 
Key Storage and Scheduling 
        The key is stored in a 128-bit shift register 
which performs a 16-bit circular left shift. The first 
round key RK1 is obtained during the first four clock 
cycles by tapping the 16 MSB from the key and 
passing them to the RKGen function. However, 
during these four clock cycles the key was shifted by 
64-bit. Subsequent round keys require only a shift by 
61 bits which is not possible with a 16-bit shift. We 
overcome this problem by placing three extra taps on 
the shift register and using two 3-bit registers A and 
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B along with several multiplexers . The 3 bits that 
were “lost” during generation of the first round key 
are stored in register A.  For subsequent round keys, 
the value from register A and the 13 MSB from the 
key are passed to RKGen. However, when generating 
the round key RK2 we are facing the same problem 
of shifting by 64-bit again and compensate by storing 
three bits in register B. From now on, RKgen gets the 
value from registers BjjAjj11 MSB from key. When 
we write the round keys back into the shift register 
we take the 3-bit difference into account. Therefore, 
no additional registers are required for subsequent 
rounds. The RKgen function consists of two S-boxes 
for S-box operation, a 5-bit XOR to compute the 
XOR with the round counter, and multiplexers to 
choose the appropriate bits for round key generation. 
The output of the RKgen function is the round key as 
shown in figure 4. 
 

           Figure 4. Key scheduling of present 
 
4. Results 
        The designs of HIGHT and Present were 
described in Verilog HDL, synthesized for the Altera 
Cyclone III EP3C16F484C6 device using Altera 
Quartus II and Simulated with Modelsim. All results 
are after place and route. Table I shows the detailed 
implementations of HIGHT and Present. The results 
for AES were obtained by using the VerilogHDL 
code for the ASIC implementation and synthesizing it 
in FPGA. Camellia and AES encrypt blocks of 128-
bit data, whereas the other algorithms operate on 64-
bit data blocks. Therefore, AES and Camellia 
implementations require more storage. Furthermore, 
AES and Camellia have 8x8 S-boxes which occupy 
64 slices or 16% and 20% respectively of the total 
design area in our implementations. Present’s 4x4 
Sbox occupies only 2 slices Present AES use 
registers (i.e. flipflops) for data and key storage. Even 
though the total number of flipflops needed is far 
smaller than the number of LUTs used, the 
addressing logic contributes to the area consumption. 

The Camellia implementation uses 88 SRL-16 
elements, which would be capable of storing a 
maximum of 1,408 bits, to store its two 128-bit keys. 
Unfortunately, the round key generation shifts the 
key by 15 and 17 bits. This irregular shift requires 
many additional tapings causing the high number of 
SRL-16 elements. Implementing shifts in multiples of 
8 require less area.  

 
Table 2. Lightweight implementation results for  

Altera Cyclone III 

 
 
         The same can be observed in Present’s key 
schedule as its involves 61-bit shifts. HIGHT makes 
extensive use of DRAM elements for both, data and 
key storage and uses SRL-16s in its control logic. 
Present uses SRL-16s for both. DRAM and SRL-1 
elements are an ideal choice for storing data and key 
provided that the algorithm is regular which leads to 
a simple control logic. Camellia is an example for an 
algorithm with high irregularity, therefore DRAM 
and SRL-16 elements cannot be used to full effect. 
Implementing permutation functions that span more 
than 8 or 16 bits also increases the area consumption 
and latency for lightweight implementations in 
FPGAs. Table 3.compares our implementations with 
Camellia, TinyXTEA-3, AES and the eSTREAM 
portfolio ciphers. The stream ciphers outperform all 
block cipher  implementations with  respect   to  the 
throughput/area metric. However, they are defined 
for 80-bit keys and only MICKEY and Grain offer 
128-bit versions. Stream ciphers are still considered 
immature and only recently the stream cipher F-
FCSR-H was removed from the portfolio. AES has 
the highest throughput of the block ciphers followed 
by HIGHT. However, HIGHT has a better throughput 
to area ratio and consumes only half the size and no 
block rams. For the throughput to area ratio 
computation 300 slices are added to the area of AES 
and 140 to AES to compensate for the block ram 
usage.  
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Table 3. Results for Present and HIGHT compared to other block Ciphers and the eSTREAM for TFOLIO Ciphers 

on FPGA 
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5. Conclusion 
         Lightweight implementations of cryptographic 
algorithms for FPGAs are going to become an 
important research area due to the introduction of 
FPGAs for battery powered devices. In this paper we 
introduced the first lightweight implementations of 
the block ciphers HIGHT and Present on FPGAs. Our 
implementation of HIGHT consumes less than 100 
slices, encrypts data at 65 Mbps and has a better 
throughput over area ratio than the previously 
published lightweight implementation of AES. 
Furthermore, we introduced optimization techniques 
for lightweight implementations that can also be 
applied to other algorithms. Investigating the 
robustness of lightweight implementations against 
side channel analysis and implementing lightweight 
asymmetric cryptosystems is future work. 
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