
Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1107

Area efficient cryptographic ciphers for resource constrained devices

T. Blesslin Sheeba1, Dr. P. Rangarajan2

1. Department of ECE, Sathyabama University, Chennai-600087, India
2. Department of EEE, RMD Engineering College, Chennai-600087, India

blesslinsheebarmk@gmail.com

Abstract: The upcoming area of pervasive computing will be characterized by many smart devices that have very
limited resources in terms of memory, computing power and battery supply. In information technology, Ubiquitous
which is widely believed to be the next paradigm .The mass deployment of pervasive devices promises on the one
hand many benefits, but on the other hand, many foreseen applications are security sensitive. In order to provide
security on resource constrained devices lightweight cryptographic algorithms have been developed. In this paper
we propose lightweight cryptography for FPGAs by introducing block cipher independent optimization techniques
for Altera Cyclone III FPGAs and applying them to the lightweight cryptographic algorithms HIGHT and Present.
Both are less than half the size of the AES implementation without using block RAMs.
[T. Blesslin Sheeba, P. Rangarajan. Area efficient cryptographic ciphers for resource constrained devices. Life
Sci J 2013;10(3):1107-1114] (ISSN: 1097-8135). http://www.lifesciencesite.com. 161

Keywords: AES, Block cipher, Camellia, FPGAs, Lightweight cryptography.

1. Introduction
 Ubiquitous computing represents the third area
of computing devices after mainframes and personal
computer for first and second eras. Radio frequency
identification (RFID) tags and wireless sensor
network (WSN) nodes are a few examples which are
being used for automated electronic toll systems,
identification tags for food products, pets, clothing
and so on. This brings us close to the threshold of
pervasive computing. The mass deployment of this
device brings serious concerns for security and
privacy[18]&[19]. The traditional cryptographic
algorithms may not be suitable for these devices as
they have limited memory and computational power
along with serious power constraints. This led to
development of new branch of cryptography called
lightweight cryptography. HIGHT and Present were
developed specifically for lightweight cryptography
AES and Camellia, though not considered
lightweight, and are also being used on these devices.
Until now, lightweight cryptography is targeted
towards application specific integrated circuits
(ASICs). ASICs involve high non-recurring
engineering cost and long time to market where as
Field Programmable Gate Arrays (FPGAs) involve
low non-recurring engineering cost and less time to
market.
 The dominant factor favorable to ASICs is their
lower power consumption, which is of primary
concern for lightweight cryptographic devices and
their lower cost in large volumes. With the advent of
low-cost and low-power FPGAs, we expect them to
become popular for battery powered applications

such as WSN nodes. Hence, they are a targeted for
lightweight cryptographic applications.
Reconfigurability of FPGAs allows the system to be
upgraded if ever the need arises which is not possible
with ASICs. Furthermore, lightweight crypto
implementations lead to area saving over traditional
implementations. This enables a designer to add
crypto to an existing design at a minimal cost or to
reduce the overall area consumption which might
lead to cost saving as the design might now fit into a
smaller, cheaper FPGAs. The ciphers considered are
of full strength security i.e. 128-bit key length, even
though traditional lightweight cryptography considers
80-bit key length to be sufficiently secure.

2. Materials and Methods
Advanced Encryption Standard
 The Advanced Encryption Standard (AES)
specifies FIPS-approved cryptographic algorithm that
can be used to protect electronic data. The algorithm
AES is a symmetric block cipher that can encrypt
(encipher) and decrypt (decipher) information. In
cipher text encryption converts data to an un-
intelligible form, decrypting the cipher text converts
orginal form of data called plaintext. A cryptographic
key of 128, 192, and 256 bits to encrypt and decrypt
data in blocks of 128 bits is possible in AES
algorithm. The specified standard algorithm may be
implemented in software, firmware or hardware. The
specific implementation may depend on several
factors such as the application, the environment and
technology.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1108

Figure 1.HIGHT

 The algorithm shall be used in conjunction

with a FIPS approved or NIST recommended mode
of operation. Object Identifiers (OIDs) and any
associated parameters for AES used in these modes
are available at the Computer Security Objects
Register (CSOR).
HIGHT
 HIGHT (HIGH security and light weight) is a
64-bit block cipher with 128-bit key length. It uses
generalized Feistel structure with 32-rounds
containing simple operations such as XOR, modular
addition in the group of 28 elements, and bitwise
rotation. The absence of traditional substitution layer,
its Feistel structure and byte oriented operations
make it suitable for low-cost, low-power and
lightweight implementations. The HIGHT algorithm
was modifieded to reduce the critical path in the key
schedules which also reduces the area to 2608 gates.
The initial security analysis presented in [2] & [4]
showed that HIGHT only 19 rounds is secure. It
provides low-resource hard-ware implementation,
which is proper to ubiquitous computing device such
as a sensor in USW or a RFID. HIGHT does not only
consist of simple operations to be ultra-light but also
has enough security as a good encryption algorithm.

Table 1. Comparision of AES and HIGHT

Present
 Present is an ultra-lightweight block cipher an it
is a 31-round Substitution-Permutation (SP) network
with a block size of 64-bit and 80-bit or 128-bit key
lengths. In this paper a 128-bit key length is
considered. Present was designed by incorporating
some features of Serpent and Data Encryption
Standard (DES). The nonlinear substitution layer, i.e.
S-box in Present is similar to that of Serpent and the
linear permutation layer to that of DES. The original
Present proposal provides a basic security analysis.
With the establishment of the AES the need for new
block ciphers has been greatly diminished; for almost
all block cipher applications the AES is an excellent
and preferred choice. However, despite recent
implementation advances, the AES is not suitable for
extremely constrained environments such as RFID
tags and sensor networks [3]. In this paper ultra-
lightweight block cipher is described. During design
of cipher , both security and hardware efficiency have
been equally important [5].
Block ciphers
 The entire block of plaintext can be encrypted
with the same key [14]. This means that the
encryption of any plaintext bit in a given block
depends on every other plaintext bit in the same
block[15]. In practice, the vast majority of block
ciphers either have a block length of 128 bits (16
bytes) such as the advanced encryption standard
(AES), or a block length of 64 bits (8 bytes) such as
the Data Encrypted Standard (DES) or triple DES
(3DES) algorithm.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1109

Figure 2.Top level block diagram of HIGHT

2.1. Optimization techniques
 Designing compact architectures in FPGAs
depends on effective use of architectural features
provided in the targeted FPGAs. FPGAs have
features such as Look Up Table (LUT) based 16-bit
shift register (SRL16) and Distributed Random
Access Memory (DRAM) which can be employed to
improve the performance and decrease the area of a
given design by an order of magnitude.

2.2. FPGA Architecture
FPGA Structure
 The fundamental logic unit in FPGAs is a slice,
which contains mainly two four input LUTs and two
flipflops. Half the slices of a chip are called
SLICEMs. Their LUTs can be configured as 16 bit
shift registers (SRL16) or as 16-bit distributed RAMs

Called DRAMs.
Shift Register
 The number of slices required for implementing
a shift register depends on the number of bits to be
stored and the number of taps. Taps are positions of a

shift register where data can be written to or read
from. Each tap is configured as a flipflop.

Distributed RAM (DRAM)
 DRAMs offer fast and localized memory. They can be
cascaded for realizing deeper memories with minimal
penalty on timing. Distributed RAM supports two types of
memories: single-port RAM and dual-port RAM. Both have
synchronous write and either synchronous or asynchronous
read.

2.3. Plain text and key storage
 The most area consuming components of
cryptographic algorithms are data and key storage.
DRAM and shift register are two options for efficient
memory implementation. In order to develop
lightweight architectures, the algorithm
implementations are scaled down to use either an 8-
bit or a 16-bit datapath. Key and data are loaded
either 8-bits or 16-bits depending on the
implementation. Loading into shift register is simpler
as the number of control bits needed is less as
compared to DRAM which needs addressing. The
size of the address increases with the number of

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1110

words to be stored in DRAM. On the other hand, the
control bits of shift register are independent of size of
the data it stores. However, some ciphers require
intermediate data values. In case of HIGHT, plaintext
is stored in DRAM due to its generalized Feistel
structure. The key scheduling in ciphers Camellia,
HIGHT and Present involve shifting of key which
make use of shift register more apt as in[4]&[5].
However, the key in HIGHT is need in a different
order during initial and final transformations
compared to round operations which are difficult to
accomplish with a shift register. In this case, a
DRAM is used to store the key.

2.4. Control logic
 Finite State Machines (FSM) are used for
realizing the control logic of complex systems.
Traditionally, FSMs are implemented using flipflops
and combinational logic. However, this type of FSM
implementation is complex and not efficient. The use
of RAM blocks for sequential logic led to ROM-
based FSM implementations. The control signals for
each operation are combined to one control word.
These control words are stored in a memory location
which can be accessed by an address. DROMs are
inferred by holding the write signal low for DRAMs.
ROM- based FSMs have additional advantages. The
maximum frequency at which a ROM-based FSM
operate is independent of the complexity of the
circuit. This method is also proved to save power. For
our HIGHT and Present architectures, the control
signals are generated by a counter and some
additional logic. The size of the control word is
reduced by removing any control signals which
repeat a short sequence of values many times, such as
control signals for round operations, from the main
controller and assigning them to a sub-controller. We
use this technique for camellia where the control
signals for round function f are generated by a sub-
controller called F-controller.
3. Discussion
 The HIGHT algorithm consists of 32-rounds
with initial and final transformations before the first
and after the last rounds respectively. The plaintext P
and cipher text C are split into eight 8-bit blocks
P7…P0 and C7…C0 and the original key K into
sixteen 8-bit blocks K15….K0.The initial
transformation uses the four whitening key bytes W
K0, W K1 , W K2 , and W K3 to transform a plain
text P into the input of first round function, X0 =
X0,7 X0,0. In the final transformation, the data is
shifted towards right and transforms X32 = X32,7

X32,0 into cipher text C by with the four whitening
keys W K4 , W K5 , W K6 and W K7. Both
transformations perform a XOR or modular addition
as shown in Figure 1.

3.1 Lightweight architecture of HIGHT
 The reduction of area for HIGHT is achieved by
scaling the 64-bit algorithm to 8-bit. This reduction
does not come at the cost of temporary storage or
multiplexers.

Data Storage
 The round function involves shifting which
suggest that a shift register is the most efficient
solution for data storage. However, the generalized
Feistel structure of HIGHT leads to a misalignment of
data when a shift register is used. Realignment
requires additional clock cycles. This reduces the
throughput and the more complex logic increases the
area consumption. Therefore, we use a DRAM which
is more efficient both in terms of area and latency. A
dual-port DRAM is used as the round function
requires two 8-bit blocks of data for computing one 8-
bit block. The shifting involved in round function is
accomplished by addressing. The addresses needed for
all operations are generated by using three 3-bit
multiplexers M6, M7, and M8, 2-bit and 3-bit adders,
12-bit shift register SR and a 3-bit counter C3as shown
in figure 3. The address from M8 is used for both
reading and writing while M7 is used only for reading.
The control signals for all operations are generated by
using a 5-bit counter and some logic functions.

Round Function,Initial and Final Transformation
 The addresses for round function are generated
by shift register (SR) and a 3-bit adder. The initial
values of SR required for first round are computed by
using 2 LSB bits of C3. The addresses for the next
round are generated by loading the result of 3-bit
adder into SR. This way of generating the addresses
reduces the complexity of the control logic and
avoids extra clock cycles needed for shifting of data.
Each round operation requires 4 clock cycles. The
initial and the final transformations are performed by
using the data path of the round function with use of
two extra multiplexers M2 and M3. The addresses for
both transformations are generated by C3. The initial
transformation is performed while the data is being

loaded into the shift register which save clock cycles.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1111

Figure 3. 16-bit datapath of Present

Key Storage and Scheduling
 The 128-bit key is stored in a single-port
DRAM. The sub-keys and whitening keys are
generated by using two 3-bit counters C1 and C2 and
a 2x1 multiplexer M5. The MSB bit of the key
address which is also used as selection bit for M5 is
generated from the output of the 5-bit counter used
in control logic. The two 3-bit counters are used for
addressing instead of one 4-bit counter to
accomplish shifting involved in key scheduling.

3.2. Lightweight architecture of PRESENT
 The area is reduced by scaling the 64-bit
implementation to a 16-bit implementation and by applying
the optimization techniques. Scaling the implementation to 8-
bit would decrease the throughput drastically and yield a
very small area reduction due to the complexity of the
permutation operation. Our implementations of wider data
path led to a significant increase in area consumption.

Data storage
 The state b63 _ _ _ b0 is stored in the shift
register SR1 for the reason specified in III. It
performs a 16-bit circular left-shift per clock cycle.
We consider the 64-bit shift register as a combination
of sixteen 4-bit block 15,_ _ _ ,0. The 16 MSB are
tapped out of SR1 for the round operation.

S-box Implementation and Permutation Layer
 The round operation starts by XOR the
incoming data with the round key RKi and applying

the result to four S-boxes. Present’s 4-bit to 4-bit S-
boxes are implemented in a single LUT each. Our
architecture uses four S-boxes for round operations
and two for key scheduling. The Permutation
function is implemented by using the shift register
SR2 which performs a shift by 4 bits during round
operation and by 16 bits after each round when
copying its content into SR1. Furthermore, the 16-bit
output from the S-boxes is given as input to the
blocks 12, 8, 4, and 0 of SR2. During first clock cycle
of the round operation the 4-bits blocks 15 11, 7 and
3 are computed from the 16 MSB of SR1 and placed
in position 12, 8, 4, and 0 of SR2. In the subsequent
clock cycle SR2 is shifted by 4 bits and blocks 14,
10, 6 and 2 are computed and placed in the now
empty positions 12, 8, 4, and 0 of SR2. These
operations repeat for another two clock cycles to
complete the round function. This results in a total of
8 clock cycles for each round operation.

Key Storage and Scheduling
 The key is stored in a 128-bit shift register
which performs a 16-bit circular left shift. The first
round key RK1 is obtained during the first four clock
cycles by tapping the 16 MSB from the key and
passing them to the RKGen function. However,
during these four clock cycles the key was shifted by
64-bit. Subsequent round keys require only a shift by
61 bits which is not possible with a 16-bit shift. We
overcome this problem by placing three extra taps on
the shift register and using two 3-bit registers A and

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1112

B along with several multiplexers . The 3 bits that
were “lost” during generation of the first round key
are stored in register A. For subsequent round keys,
the value from register A and the 13 MSB from the
key are passed to RKGen. However, when generating
the round key RK2 we are facing the same problem
of shifting by 64-bit again and compensate by storing
three bits in register B. From now on, RKgen gets the
value from registers BjjAjj11 MSB from key. When
we write the round keys back into the shift register
we take the 3-bit difference into account. Therefore,
no additional registers are required for subsequent
rounds. The RKgen function consists of two S-boxes
for S-box operation, a 5-bit XOR to compute the
XOR with the round counter, and multiplexers to
choose the appropriate bits for round key generation.
The output of the RKgen function is the round key as
shown in figure 4.

 Figure 4. Key scheduling of present

4. Results
 The designs of HIGHT and Present were
described in Verilog HDL, synthesized for the Altera
Cyclone III EP3C16F484C6 device using Altera
Quartus II and Simulated with Modelsim. All results
are after place and route. Table I shows the detailed
implementations of HIGHT and Present. The results
for AES were obtained by using the VerilogHDL
code for the ASIC implementation and synthesizing it
in FPGA. Camellia and AES encrypt blocks of 128-
bit data, whereas the other algorithms operate on 64-
bit data blocks. Therefore, AES and Camellia
implementations require more storage. Furthermore,
AES and Camellia have 8x8 S-boxes which occupy
64 slices or 16% and 20% respectively of the total
design area in our implementations. Present’s 4x4
Sbox occupies only 2 slices Present AES use
registers (i.e. flipflops) for data and key storage. Even
though the total number of flipflops needed is far
smaller than the number of LUTs used, the
addressing logic contributes to the area consumption.

The Camellia implementation uses 88 SRL-16
elements, which would be capable of storing a
maximum of 1,408 bits, to store its two 128-bit keys.
Unfortunately, the round key generation shifts the
key by 15 and 17 bits. This irregular shift requires
many additional tapings causing the high number of
SRL-16 elements. Implementing shifts in multiples of
8 require less area.

Table 2. Lightweight implementation results for

Altera Cyclone III

 The same can be observed in Present’s key
schedule as its involves 61-bit shifts. HIGHT makes
extensive use of DRAM elements for both, data and
key storage and uses SRL-16s in its control logic.
Present uses SRL-16s for both. DRAM and SRL-1
elements are an ideal choice for storing data and key
provided that the algorithm is regular which leads to
a simple control logic. Camellia is an example for an
algorithm with high irregularity, therefore DRAM
and SRL-16 elements cannot be used to full effect.
Implementing permutation functions that span more
than 8 or 16 bits also increases the area consumption
and latency for lightweight implementations in
FPGAs. Table 3.compares our implementations with
Camellia, TinyXTEA-3, AES and the eSTREAM
portfolio ciphers. The stream ciphers outperform all
block cipher implementations with respect to the
throughput/area metric. However, they are defined
for 80-bit keys and only MICKEY and Grain offer
128-bit versions. Stream ciphers are still considered
immature and only recently the stream cipher F-
FCSR-H was removed from the portfolio. AES has
the highest throughput of the block ciphers followed
by HIGHT. However, HIGHT has a better throughput
to area ratio and consumes only half the size and no
block rams. For the throughput to area ratio
computation 300 slices are added to the area of AES
and 140 to AES to compensate for the block ram
usage.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1113

Table 3. Results for Present and HIGHT compared to other block Ciphers and the eSTREAM for TFOLIO Ciphers

on FPGA

Corresponding Author:
T.Blesslin Sheeba
Department of ECE, Sathyabama University,
Chennai-600087, India.
Email: blesslinsheebarmk@gmail.com

5. Conclusion
 Lightweight implementations of cryptographic
algorithms for FPGAs are going to become an
important research area due to the introduction of
FPGAs for battery powered devices. In this paper we
introduced the first lightweight implementations of
the block ciphers HIGHT and Present on FPGAs. Our
implementation of HIGHT consumes less than 100
slices, encrypts data at 65 Mbps and has a better
throughput over area ratio than the previously
published lightweight implementation of AES.
Furthermore, we introduced optimization techniques
for lightweight implementations that can also be
applied to other algorithms. Investigating the
robustness of lightweight implementations against
side channel analysis and implementing lightweight
asymmetric cryptosystems is future work.

References
[1] J.-P. Kaps, G. Gaubatz, and B. Sunar,

“Cryptography on a speck of dust,” Computer,
vol. 40, no. 2, Feb 2007, pp. 38– 44.

[2] D. Hong et al., “HIGHT: A new block cipher
suitable for low-resource device,” in CHES
2006, ser. LNCS, L.Goubin and M. Matsui,
Eds., vol. 4249. Springer, 2006, pp. 46–59.

[3] A. Bogdanov et al., “PRESENT: An ultra-
lightweight block cipher,” in CHES 2007, ser.
LNCS, vol. 4727. Springer,2007, pp. 450–466.

[4] L. Young-Il, L. Je-Hoon, Y. Younggap, and C.
Kyoung-Rok, “Implementation of HIGHT
cryptic circuit for RFID tag,”IEICE Electronics
Express, vol. 6, no. 4, 2009,pp. 180–186.

[5] O. Ozen et al., “Lightweight block cipher
revisisted: Cryptanalysis of reduced round
PRESENT and HIGHT,” in ACISP, ser. LNCS,
vol. 5594. Springer, 2009, pp. 90–107.

[6] M. Rawski, H. Selvaraj, and T. Luba, “An
application of functional decomposition in
ROM-based FSM implementation in FPGA
devices,” J. Syst. Archit., vol. 51, no. 6-7, 2005,
pp. 424–434.

[7] E. Biham, R. Anderson, and L. Knudsen,
“Serpent: A new block cipher proposal,” in FSE

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1114

1998, ser. LNCS, vol. 1372. Springer, January
1998, pp. 222–223.

 [8] B. Collard and F.-X. Standaert, “A statistical
saturation attack against the block cipher
PRESENT,” in CT-RSA, ser. LNCS, vol. 5473.
Springer, 2009, pp. 195–210.

[9] A. Antipa, D. Brown, R. Gallant, R. Lambert,
R. Struik, and S. Vanstone, \Accelerated
Veri_caiton of ECDSA Signatures", Selected
Areas in Cryptography – SAC 2005, LNCS
3897, B. Preneel, S. Tavares (eds.), Berlin,
Germany: Springer-Verlag, 2006, pp. 307-318.

[10] A. Bogdanov, L. R. Knudsen, G. Leander, C.
Paar, A. Poschmann, M. J. B. Robshaw, Y.
Seurin, and C. Vikkelsoe, \PRESENT: An
Ultra-Lightweight Block Cipher", The 9th
International Workshop on Cryptographic
Hardware and Embedded Systems - CHES
2007, LNCS 4727, P. Paillier, I. Verbauwhede
(eds.), Berlin, Germany: Springer-Verlag, 2007,
pp. 450-466.

[11 �] T. G uneysu, T. Kasper, M. Novotn_y, C. Paar
and A. Rupp. Cryptanalysis with
COPACOBANA. In IEEE Transactions on
Computers, 2008, vol. 57, no. 11, pages 1498-
1513.

 [12] H. Kim, J. Kim, and S. Chee. HIGHT: A new
block cipher suitable for low-resource device.
Cryptographic Hardware and Embedded
Systems (CHES), volume LNCS 4249,
Springer, 2006, pp. 46–59.

[13] G. Leander, C. Paar, A. Poschmann, and K.
Schramm.New lightweight DES variants.In A.
Biryukov, editor, Fast Software Encryption
2007 (FSE), volume LNCS 4593, Springer,
2007, pp. 196–210.

[14] Lars R. Knudsen, Gregor Leander, Axel
Poschmann, and MatthewJ. B. Robshaw.
PRINTcipher: A block cipher for IC-printing.
CHES,LNCS 6225, 2010, pp. 16–32.

[15] Chae Hoon Lim and Tymur Korkishko.
mCrypton - a lightweight block cipher for
security of low-cost RFID tags and sensors.
WISA2005 , volume 3786 of LNCS, Springer,
2005, pp. 243–258.

[16] K. Shibutani, T. Isobe, H. Hiwatari, A.
Mitsuda, T. Akishita, and T. Shirai. Piccolo: An
Ultra-Lightweight Blockcipher. In CHES,
LNCS 6917, 2011, pp. 342–357.

[17] Matthias Krause and Matthias Hamann. The
Cryptographic Power of Random Selection.
ECRYPT Workshop on Lightweight
Cryptography. 2011, pp. 122–146.

[18] Ari Juels. Yoking-Proofs for RFID Tags. In
the Proceedings of First International Workshop
on Pervasive Computing and Communication
Security, IEEE Press, 2004, pp.138–143.

[19] Ari Juels, Yoking-Proofs for RFID Tags, In
the Proceedings of First International Workshop
on Pervasive Computing and Communication
Security, IEEE Press, (2004).,pp.138–143

[20] Junichiro Saitoh and Kouichi Sakurai,
Grouping Proofs for RFID Tags, In the
Proceedings of AINA International Conference,
IEEE Computer Society, (2005), pp. 621–624.

[21] Selwyn Piramuthu, On Existence Proofs for
Multiple RFID Tags, In the Proceedings of
ACS/IEEE International Conference on
Pervasive Services, IEEE Computer Society,
(2006),pp. 317–320.

6/25/2013

