
Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1021

Optimal Regression Test Case Prioritization using genetic algorithm

T. Prem Jacob 1, Dr. T. Ravi 2

1. Research Scholar, Department of Computer Science and Engineering, Sathyabama University, Chennai, India
2. Principal, Srinivasa Institute of Engineering and Technology, Chennai, India

premjac@yahoo.com

Abstract: Regression testing is an essential and expensive activity in the maintenance phase to show that the code
has not been affected by the changes. It consumes 80% of the maintenance cost. Hence optimizing the regression
testing will be the prime motives for the software testers. We prioritize the test case based on number of the
modified lines the test case covers. The test case that covers the maximum number of the modified lines is given
highest priority, and executed first. Hence even if testing is not completed we can cover maximum number of
modified lines. The test cases prioritization is done by using genetic algorithm. It takes the test case information as
input and it produces a sequence of the test case that has to be executed so that maximum number of the modified
code gets covered.
[T. Prem Jacob, T. Ravi. Optimal Regression Test Case Prioritization using genetic algorithm. Life Sci J
2013;10(3):1021-1033] (ISSN:1097-8135). http://www.lifesciencesite.com. 149

Keywords: Regression Testing; Test Case; Genetic Algorithm.

1. Introduction

Software testing requires resources and
consumes 30-50% of the total cost of development.
Testing is often done in time to market pressure and is
supposed to test whole software in a systematic
manner to achieve quality as much as possible.
Testing also includes many other expectations such as
delivering error free versions and checking thorough
software iteration in available time and other
resources. It may not be possible for testers provide
quality product free of bugs to customers, so it
ultimately raises the possibility of potential risks in
software, while on the other hand time slippage occurs
for delivering the satisfactory quality assessment of
software. Testing has been traditionally performed in
value neutral approach in which all software parts are
given same testing resources to test but this eventually
does not satisfy the end customer as approximate 36%
of software functions are only often used .Therefore it
is meaningless to test the whole software in this way.
One type of testing is a regression testing in which
software is tested after making some changes to it.
Regression testing is considered to be very expensive
due to repeated execution of existing test cases.
Regression testing involves execution of a large
number of test cases and is time consuming. It is
impractical to repeatedly test the software by
executing a complete set of test cases under resource
constraints. Because of these reason researches have
considered various methods for reducing the cost of
regression testing, this includes test case
minimization, and regression test selection, test suite
minimization techniques lower cost by reducing a test
suite to a minimal subset that maintains equivalent
coverage of the original test suite with respect to a

particular test adequacy criterion, regression test
selection method reduces the cost of regression testing
by selecting an appropriate subset of the existing test
suite based on information about the program,
modified version.

Test suite minimization methods and
Regression test selection, however, can have
drawbacks. For example, although some empirical
evidence indicates that, in certain cases, there is little
or no loss in the ability of a minimized test suite to
reveal faults in comparison to its non-minimized
original other empirical evidence shows that the fault
detection capabilities of test suites can be severely
compromised by minimization. Similarly, although
there are safe regression test selection techniques that
can ensure that the selected subset of a test suite has
the same fault detection capabilities as the original test
suite, the conditions under which safety can be
achieved do not always hold. Therefore, there is a
need to schedule the test cases based on some criteria.
This process is called test case prioritization. There
are many criteria, based on which one can prioritize
the test cases. For example, ordering test cases based
on, total coverage of the code components, ordering
the test cases based on, coverage of code components
which not previously covered, ordering test cases will
be based on their ability to reveal the faults in the code
they cover. We use prioritization based on a number
of code covered or modified lines. The test case with
maximum number of modified lines is executed the
earliest and the one with the least number of modified
lines executed at the last.

When the time required to re-execute an
entire test suite is short, test case prioritization may
not be cost-effective, it may be sufficient simply to

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1022

schedule test cases in any order. When the time
required to execute an entire test suite is sufficiently
long, however, test-case prioritization may be
beneficial because, in this case, meeting testing goals
earlier can yield meaningful benefits. Because test
case prioritization techniques do not themselves
discard test cases, they can avoid the drawbacks that
can occur when regression test selection and test suite
minimization discard test cases. Alternatively, in cases
where the discarding of test cases is acceptable, test
case prioritization can be used in conjunction with
regression test selection or test suite minimization
techniques to prioritize the test cases in the selected or
minimized test suite. Further, test case prioritization
can increase the likelihood that, if regression testing
activities are unexpectedly terminated, testing time
will have been spent more beneficial than if test cases
were not prioritized.
2. Literature Survey

Yu-Chi Huang (2010) has proposed a cost
cognizant test case prioritization technique based on
the use of historic records and genetic algorithm. They
run a controlled experiment to evaluate the proposed
technique’s effectiveness. This technique however
does not take care of the test cases similarity.

Sangeeta Sabharwal (2011) has proposed a
technique for prioritization test case scenarios derived
from activity diagram using the concept of basic
information flow metric and genetic algorithm.
Sangeeta Sabharwal (2011) has generated prioritized
test case in static testing using genetic algorithm. They
have applied a similar approach as to prioritize test
case scenarios derived from source code in static
testing.

James H. Andrews (2011) has applied genetic
algorithm for randomized unit testing to figure out the
best suitable test cases.

Mohsen FallahRad (2011) has applied
common genetic and bacteriological algorithm for
optimizing testing data in mutation testing.

RuchikaMalhotra (2011) has developed an
adequacy based test data generation technique using
genetic algorithms.
3. Problem Definition

Prioritizations (orderings) of T and f are a
function that, applied to any such ordering, yields an
award value for that ordering. For simplicity, and
without loss of generality, the definition assumes that
higher award values are preferable to lower ones.

For given T, a test suite, PT, the set of
permutations of T, and f, a function from PT to the
real number. Our aim is to find T’ PT such that

(T’’) (T’’ PT’)
(T’’ T’) [f (T’) f(T’’)]

There are several aspects of the test case
prioritization problem that are worth describing

further. There are many possible goals of
prioritization. To measure the success of a
prioritization technique in meeting any such goal,
however, we must describe the goal quantitatively. In
Definition, f represents such quantification. We will
precisely define one particular function f for use in
quantifying the first of these goals. Depending upon
the choice of f, the test case prioritization problem
may be intractable. For example, given a function f
that quantifies whether a test suite achieves statement
coverage at the fastest rate possible, an efficient
solution to the test case prioritization problem would
provide an efficient solution to the knapsack problem.
Similarly, given a function f that quantifies whether a
test suite detects faults at the fastest rate possible, a
precise solution to the test case prioritization problem
would provide a solution to the halting problem. In
such cases, prioritization techniques must be
heuristics. Test case prioritization can be used either
in the initial testing of software or in the regression
testing of software. One difference between these two
applications is that, in the case of regression testing,
prioritization techniques can use information gathered
in previous runs of existing test cases to help prioritize
the test cases for subsequent runs. It is useful to
distinguish two varieties of test case prioritization,
general test case prioritization and version specific test
case prioritization. In general test case prioritization,
given a program P and test suite T, we prioritize the
test cases in T with the intent of finding an ordering of
test cases that will be useful over a succession of
subsequent modified versions of P. Thus, general test
case prioritization can be performed following the
release of any version of the program during off-peak
hours, and the cost of performing the prioritization is
amortized over the subsequent releases. It is hoped
that the resulting prioritized suite will be more
successful than the original suite at meeting the goal
of the prioritization, on average over those subsequent
releases. In contrast, in version-specific test case
prioritization, given a program P and test suite T, we
prioritize the test cases in T with the intent of finding
an ordering that will be useful on a specific Version P’
of P. Version-specific prioritization is performed over
a set of changes have been made to P and prior to
regression testing P’. Because this prioritization is
accomplished after P’ is available, care must be taken
to keep the cost of performing the prioritization from
excessively delaying the very regression testing
activities it is intended to facilitate. The prioritized test
suite may be more effective at meeting the goal of the
prioritization for P’ in particular than would a test
suite resulting from general test case prioritization, but
may be less effective on average over a succession of
subsequent releases. Typically though not necessarily
the general test case prioritization does not use

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1023

information about specific modified versions of P,
whereas version specific prioritization does use such
information. Of course, it is possible for general test
case prioritization techniques to incorporate
information about expected modifications to improve
the average performance of prioritized test suites over
a succession of program versions, and it is possible to
use prioritization techniques that ignore the modified
program as version-specific techniques. It is also
possible to integrate test case prioritization with
regression test selection or test suite minimization
techniques for example, by prioritizing a test suite
selected by a regression test selection algorithm, or by
prioritizing the minimal test suite returned by a test
suite minimization algorithm. Finally, given any
prioritization goal, various prioritization techniques
may be applied to a test suite with the aim of meeting
that goal. For example, in an attempt to increase the
rate of the fault to be detected in the test suites, we
might prioritize test cases in terms of the extent to
which they execute modules that, measured
historically, have tended to fail. Alternatively, we
might prioritize test cases in terms of their increasing
cost-per-coverage of code components, or in terms of
their increasing cost-per-coverage of features listed in
a requirements specification. In any case, the intent
behind the choice of a prioritization technique is to
increase the likelihood that the prioritized test suite
can better meet the goal than would an ad hoc or
random ordering of test cases. We restrict our
attention, focusing on general test case prioritization
in application to regression testing, independent of
regression test selection and test suite minimization.
4. Genetic Algorithm

Genetic algorithms (GAs) are search methods
based on principles of natural selection and genetics.
GAs encodes the decision variables of a search
problem into finite-length strings of alphabets of
certain cardinality. The strings which are candidate
solutions to the search problem are referred to as
chromosomes, the alphabets are referred to as genes
and the values of genes are called alleles. For
example, in a problem such as the travelling salesman
problem, a chromosome represents a route, and a gene
may represent a city. In contrast to traditional
optimization techniques, GAs work with coding of
parameters, rather than the parameters themselves. To
evolve good solutions and to implement natural
selection, it needs a measure for distinguishing good
solutions from bad solutions. The measure could be an
objective function that is a mathematical model or a
computer simulation, or it can be a subjective function
where humans choose better solutions over worse
ones. In essence, the fitness measure must determine a
candidate solution’s relative fitness, which will
subsequently be used by the GA to guide the evolution

of good solutions. Another important concept of GAs
is the notion of population. Unlike traditional search
methods, genetic algorithms rely on a population of
candidate solutions. The population size, which is
usually a user-specified parameter, is one of the
important factors affecting the scalability and
performance of genetic algorithms. For example,
small population sizes might lead to premature
convergence and yield substandard solutions.

Once the problem is encoded in a
chromosomal manner and a fitness measure for
discriminating good solutions from bad ones has been
chosen, we can start to evolve solutions to the search
problem using the following steps:
4.1. Initialization

The initial population of candidate solutions
is usually generated randomly across the search space.
However, domain-specific knowledge or other
information can be easily incorporated.
4.2. Evaluation

Once the population is initialized or an
offspring population is created, the fitness values of
the candidate solutions are evaluated.
4.3. Selection

Selection allocates more copies of those
solutions with higher fitness values and thus imposes
the survival-of-the-fittest mechanism on the candidate
solutions. The main idea of selection is to prefer better
solutions to worse ones, and many selection
procedures have been proposed to accomplish this
idea, including roulette-wheel selection, stochastic
universal selection, ranking selection and tournament
selection, some of which are described in the next
section.
4.4. Recombination

Recombination combines parts of two or
more parental solutions to create new, possibly better
solutions (i.e. offspring). There are many ways of
accomplishing this and competent performance
depends on a properly designed recombination
mechanism. The offspring under recombination will
not be identical to any particular parent and will
instead combine parental traits in a novel manner.
4.5. Mutation

While recombination operates on two or
more parent chromosomes, mutation locally but
randomly modifies a solution. Again, there are many
variations of mutation, but it usually involves one or
more changes being made to an individual’s trait or
traits. In other words, mutation performs a random
walk in the vicinity of a candidate solution.
4.6. Replacement

The offspring population created by
selection, recombination, and mutation replaces the
original parental population. Many replacement
techniques such as elitist replacement, generation-wise

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1024

replacement and steady-state replacement methods are
used in GAs. Repeat steps from evolution to replace
until a terminating condition is met. Goldberg (1983,
1999, and 2002) has likened GAs to mechanistic
versions of certain modes of human innovation and
has shown that these operators when analyzed
individually are ineffective, but when combined
together they can work well as in Figure 1. This aspect
has been explained with the concepts of the
fundamental intuition and innovation intuition. The
same study compares a combination of selection and
mutation to continual improvement (a form of hill
climbing), and the combination of selection and
recombination of innovation (cross-fertilizing).

Figure.1. Genetic Algorithm Giving Global Maxima

5. Proposed Methodology

Genetic algorithm is stochastic search
technique, which is based on the idea of selection of
the fittest chromosome. In genetic algorithm,
population of chromosome is represented by different
codes such as binary, real number, permutation etc.
genetic operators(i.e. selection, crossover, mutation) is
applied on the chromosome in order to find more
fittest chromosome. Fitness of the chromosome can be
defined by a suitable objective function. As a class of
stochastic method genetic algorithm is different from
a random search. While genetic algorithm carry out a
multidimensional search by maintaining population of
potential user, random methods consisting of a
combination of iterative search methods and simple
random search methods can find a solution for a given
problem. One of the genetic method’s most attractive
features is to explore the search space by considering
the entire population of the chromosome.

The steps of genetic algorithm are:
1. Generate population (chromosome).
2. Evaluate the fitness of generated population.
3. Apply selection for individual.
4. Apply crossover and mutation.
5. Evaluate and reproduce the chromosome.

5.1. Generate Population
 Initially population is randomly selected and

encoded. Each chromosome represent the possible

solution of the problem (in our case the sequence of
test cases is chromosome and our aim is to optimize
this sequence). For example- for 12 test cases T1, T2,
T3……….T12 the sequence is
T1T2T4T6T9T10T12T3T5T7
5.2. Evaluate the Fitness

Fitness of the chromosome can be defined by
the objective function. An objective function tells how
‘good’ or ‘bad’ a chromosome is. This objective
function generates a real number from the input
chromosome. Based on this number two or more
chromosome can be compared.
5.3. Apply Selection

In general the selection is depending on the
fitness value of the chromosome. The chromosome
with higher or lower value will be selected based on
the problem definition.
5.4. Apply Crossover And Mutation

Parents are chosen and randomly combined.
This technique for generating random chromosome is
called crossover.

There exist two type of crossover.
(i). Single point crossover.
(ii). Multiple point crossover.

For example- suppose two sequences for test cases is
P1: T1T2T3T4T5T6T7T8T9
P2: T4T2T5T7T8T1T6T9T2
When we use one point crossover offspring can be
C1: T1T2T3T4T8T6T9T5T7
C2: T4T3T5T7T6T8T9T1T2

For C1 write first part of the P1 as it is and
then write second part of P2 with constraint that a test
case has not been added in to C1. For doing mutation
two genes selected randomly along the chromosome
and swapped with each other.
For example- when T3 and T9 get selected randomly
T1T2T3T4T8T6T9T5T7
T1T2T9T4T8T6T3T5T7
6. Test Case Optimization Using GA

This paper provides technique for test case
prioritization using genetic algorithm. Let’s say a
program has test case suite T, now if one can make
modification in the program p, suppose modified
program is P’, so in order to test program P’ one can
generate a prioritize sequence of test cases from test
case suite T , on the basis of the line of code modified.
Here the following genetic parameter will be used.
6.1. Fitness Function

The following objective function (fitness
function) will be used.
Fitness value (F) = Σ {order * (number of modified
lines covered by test cases)}
For example- a test case sequence is T1_T2_T3_T4
and T1, T2, T3 and T4 covers 2,1,5,3 modified lines
of code respectively. Then fitness value for this
sequence will be

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1025

F= (2*4) + (1*3) + (5*2) + (3*1) 16
In this T1 has order 4 and it covers 2 lines of code,T2
has order 3 and it contains 1 line of code , T3 has
order 2 and it covers 5 line of code and T4 has order 1
and it covers 3 lines of code.
6.2. Crossover
Here one can use one point cross over with crossover
probability Pc=0.33.
Crossover Probability=Fitness Function of
Chromosomes/∑Fitness Function.
6.3. Mutation

Here we will use mutation probability
Pm=0.2. It means that 20% of the genes will be muted
within a chromosome. Example: Test cases with
execution history.

Table1 tells us which test case covers which
line code of the code being tested, one can see that test
case with test case ID one covers statement eight,
nine, ten, eleven, twelve and thirteen like case, one
can find what are the statement numbers covered by

particular software. This is helpful because later on
when we know the number of modified lines, we can
compare the number of modified lines with above
information and sort out which test case covers most
modified lines of code as in Table 2.

Each test case has to be also associated with
its implicit properties such as the code functions that
they parse through, within the development code, and
the complexity of the tested code. Assume that lines 5,
8,10,15,20,23,28,35 are modified and the modified
lines of code covered by each test case are shown in
the table 3.
 It shows the test cases which does not at all cover
modified lines of code though they cover lines, now
we use genetic algorithm because that is one of the
best search problem that over comes the problem in
hill climbing but if we already know that there is
going to be one local maxima then hill climbing
becomes more efficient.

Table 1.Test Case Execution History

Test Case ID A B C Expected Output Execution History
T1 30 20 40 Obtuse angle triangle 8,9,10,11,12,13
T2 30 20 40 Obtuse angle triangle 8,9,10,11,12,13,14,15,16,17
T3 30 20 40 Obtuse angle triangle 10,11,12,13
T4 30 20 40 Obtuse angle triangle 10,11,12,13,14,15,16,20,21,22
T5 30 20 40 Obtuse angle triangle 12,13,14,15,16,20,21,22
T6 30 20 40 22,23,24,25,28
T7 30 20 40 Obtuse angle triangle 5, 6, 7, 8, 9, 10,11, 12, 13,14, 15, 16, 20,21, 15, 16,20, 21, 35
T8 - - -
T9 30 20 40 5, 6, 7, 8, 9, 10,11, 12, 13,14, 15, 16, 20,21, 15, 16,20, 21, 35
T10 30 20 40 18, 19, 20, 21,35
T11 30 20 40 Obtuse angle triangle 24, 25
T12 30 20 40 Obtuse angle triangle 15, 16, 20, 21

Table 2.Test Case Code Coverage

Statement Test
case

1

Test
case

2

Test
case

3

Test
case

4

Test
case

5

Test
case

6

Test
case

7

Test
case

8

Test
case

9

Test
case
10

Test
case
11

Test
case
12

5 X X
6 X X
7 X X
8 X X X X
9 X X X X

10 X X X X X X
11 X X X X X X
12 X X X X X X X
13 X X X X X X X
14 X X X X X
15 X X X X X X
16 X X X X X X
17 X
18 X
19 X
20 X X X X X X

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1026

21 X X X X X
22 X X X
23 X
24 X X
25 X X
26
27
28 X
29
30
31
32
33
34
35 X X X

Gregg Rothermel suggests that one can also

prioritize the test cases based on the number of
branch code the test case covers, the number of
additional code that the test case covers. But we limit
only to prioritize the test cases based on number of
modified lines a test case covers.

Now we apply genetic algorithm, on this
data find one can represents this information in a
matrix, the first column would be order, second
column would be number of lines modified by each
test cases, and then one can generate random number
without repetition and put it in the following column,
these pattern of random number would represent
chromosomes and we would have chromosomes, e1,
e2, …. and so on in the

following column of the matrix and then we
find the fitness of each chromosomes, find
probability, perform selection and recommend which
chromosomes to be taken in to the population. Based
on the random number we came to know that the first
random number recommends the chromosome 1
which is represented as
(T1T2T3T4T5T6T7T8T9T10
T11T12)

Because the selected random number lies
between 0-0.342. Second random number
recommends the chromosome 2 which is represented
as
(T2T4T6T8T10T12T1T3T5T7
T9T11)

Because the random number lies between
0.342-0.671.The third random number recommends
the chromosome 1 which is represented as
(T1T2T3T4T5T6T7T8T9T10
T11T12)

Because the selected random number lies
between 0-0.342.So now we have the following
member in our mating pool:

T1T2T3T4T5T6T7T8T9T10
T11T12
T2T4T6T8T10T12T1T3T5T7
T9T11
T1T2T3T4T5T6T7T8T9T10
T11T12

Now we will apply the one point cross over
on these chromosome and will generate the new off
springs.
T1T2T3T4T5T6T7T8T9T10
T11T12
T2T4T6T8T10T12T1T3T5T7
T9T11
T1T2T3T4T5T6T7T8T9T10
T11T12

When we apply one point crossover to the
selected population then we get these offspring’s
T1T2T3T4T5T6T7T9T11T8
T10T12
T2T4T6T8T10T12T1T9T11T3
T5T7
T1T2T3T4T5T6T7T9T11T8
T10T12
Table 3. Number of Modified Lines Covered by the
Test Case

Test case Number of modified lines
T1 2
T2 4
T3 1
T4 3
T5 2
T6 2
T7 5
T8 2
T9 4

T10 1
T11 0
T12 2

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1027

Suppose if the crossover probability is 0.3
then we select 2 chromosomes from the offspring and
one from the parents based on the fitness function
value.

This process is repeated certain fixed
number of iterations, on repeating this procedure
multiple times, we will get the nearly optimum
solution as in Table 4.
7. Steps by Step Procedure for Genetic Algorithm

 The GA mainly consists of five modules. The
modules are GA Initialization, Fitness Evaluation,
Selection, Crossover, and Mutation. Each module is
described separately.
7.1. GA Initialization

In this module sample population is
initialized. It is generated randomly or heuristically.
Individuals are represented by a fixed-length string
over a finite alphabet. Population is a collection of
chromosomes. Each chromosome consists of genes in
it. Gene type includes number of method calls, lower
bound, upper bound, value pool value etc.

Here order is the priority of the test case, if
the test case is to be executed first then the order of
the test case will be n, where n is the number of test
case, NML is number of lines modified, this
information is matched with the test execution history
to derive which test case covers how many numbers
of modified lines.

E1, E2,.. are the chromosomes, they are
made of some pattern of test case execution history,
to generate this random pattern we use rand() present
in stdlib of c language, one has to generate the
random number such that it should be within one to N
, or in other words if “K” the random number
generated it should satisfy this condition K N, the
other condition is that the number should not repeat,
thus if we calculate the total number of possibilities
then one will have to calculate the value of N X (N-1)
X (N-2) X (N-3)….1 this value will be very large if N
is large, thus genetic algorithm would much optimize
the load of find such a possibilities.

Order NML E1 E2 E3 E4 E5
12 2 5 9 . . .
11 4 4 4 . . .
10 6 8 2 . . .
9 7 9 10 . . .
8 6 1 5 . . .
7 1 2 11 . . .
6 0 10 12 . . .
.

Table 4. Using genetic algorithm on the same data

Chromosomes
Fitness
Value

Normalized
Value

Cumulative
Probability

Selection Of
Random Numbers

Recommendation

T1->T2-> T3-> T4-> T5->T6-> T7-
>T8-> T9-> T10-> T11-> T11-> T12 196

196/5
73=0.
342

0.342 0.3
Chromosomes

e1

T2->T4->T6->T8->T10
->T12-> T1->T3->T5-> T7->T9->T11 189

189/5
73=0
329

0.671 0.4
Chromosomes

e2

T5->T6->T8-> T9->T12
->T1-> T7->T11->T2-> T3->T4->T10 188

188/5
73=0.
328

1 0.2
Chromosomes

e1

7.2. GA Evaluation

Once the population is initialized or an
offspring population is created, the fitness values of
the candidate solutions are evaluated. This is where
we attempt to identify the most successful members
of the population, and typically we accomplish this
using a fitness function. The purpose of the fitness
function is to rank the individuals in the population.

The fitness calculation is done for each chromosome
using the following formula

Where n is the number of test case to be

prioritized. In the above equation order is the priority
of a particular test case, and NML is the number of
modified lines, here one can find the order and
number of modified lines of each test cases in a test

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1028

case pattern present in a chromosomes, addition of
each of these order and number of modified lines
give us the fitness value of a particular chromosomes.

Here for instance if one takes the first
chromosome e1, then one has test case 5 scheduled to
be executed first, test case 4 comes second thus, for
first test case We take the value 5 and index it in the
array of matrix, this gives as the order and number of
the particular test case in column one and two, we
find the product of order and number of modified line
test case 5 and it comes out to be 48 as 8 x 6 then one
can proceed with test case 4 it comes out to be 63 and

then we add 48+63, this process continues till then
end of all the test cases finally we get the fitness of
chromosomes e1 and we calculate for e1-e5.
7.3. GA Selection

In the selection step we choose the
individuals whose traits we want to install in the next
generation. In the selection process typically we call
the fitness function to identify the individuals that we
use to create the next generation. In the biological
world, usually two parents contribute chromosomes
to the offspring.

Order NML E1 E2 E3 E4 E5
12 2 5 9 . . .
11 4 4 4 . . .
10 6 8 2 . . .
9 7 9 10 . . .
8 6 1 5 . . .
7 1 2 11 . . .
6 0 10 12 . . .
.

Of course, in software testing, we are free to

use any combination of parents. For example, we are
free to combine the traits of the top two, five, 10, or
any other number of individuals.

 Order NML
 12 2
 11 4
 10 6
 9 7
Index 5 8 6
 7 1
 6 0

There are various selection technique,
random wheel selection technique, tournament
selecting technique, we implement only the random
wheel selection technique.

In order to perform random wheel selection
we calculate the probability and cumulative
probability of the population, the formula for
calculating the probability and cumulative probability
are:

random number generator to generate a new random
number and check where the point lies in cumulative
probability, the chromosomes with most fitness
values covers the most sector in the wheel.
7.4. GA Crossover

Recombination combines parts of two or
more parental solutions to create new, possibly better
solutions (i.e. offspring).There are many ways of
accomplishing this, and competent performance

depends on a properly designed recombination
mechanism. The offspring under recombination will
not be identical to any particular parent and will
instead combine parental traits in a novel manner
(Goldberg, 2002).

There are many crossover methods, one
better than another, namely, one point crossover, two
point crossover, uniform crossover etc, uniform
crossover is considered in many situations to be one
of the best methods, but for the ease of
implementation we considers only the one point
crossover. Consider that the following two
chromosomes (e1, e2) were selected to be the fittest
amongst the five chromosomes. One also has the
execution sequence of these two chromosomes.

In one point cross over one generates the a
random number smaller than the number of test
cases, then one can take that random number of point
of crossover, we calculate the cross over probability,
which tells us the amount of changes that will be
done on the chromosomes.

E2 E4
T8 T3
T7 T4
T3 T1
T5 T10
T1 T12
T12 T11
T4 T9
T11 T8
T6 T7

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1029

T10 T2
T2 T5
T9 T6

Assume 8 be the number which is generated
by the random functions, the cross over probability
comes out to be 0.33 which means that 33% of the
chromosomes will be changed following is what we
get after cross over.

E2 E4
T8 T3
T7 T4
T3 T1
T5 T10
T1 T12
T12 T11
T4 T9
T11 T8
T7 T6
T2 T10
T5 T2
T6 T9

7.5. GA Mutation
While recombination operates on two or

more parental chromosomes, mutation locally but
randomly modifies a solution.

Again, there are many variations of
mutation, but it usually involves one or more changes
being made to an individual’s trait or traits. In other
words, mutation performs a random walk in the
vicinity of a candidate solution.

Mutation is done to bring a change in
structure after crossover, and it is advised to perform
mutation only after certain iteration, because genetic
algorithm follows nature, and making changes
unnaturally brings about an opposition to the nature.

E2 E4
T8 T3
T7 T4
T3 T1
T5 T10
T1 T12
T12 T11
T4 T9
T11 T8
T7 T6
T2 T10
T5 T2
T6 T9

For mutation one can generate random
number based on the mutation probability and then
the structure at those random numbers are changed.

E2 E4
T8 T3
T7 T4
T11 T8
T5 T10
T1 T12
T12 T11
T4 T9
T3 T1
T7 T6
T2 T10
T5 T2
T6 T9

Considering the above chromosomes where
cross over is already performed, and suppose the
mutation probability is 0.16 then one can generate
two random numbers and then brings changes about
those structure, if 3 and 8 are then number generated
then the above chromosomes becomes.

The structure that is at the index 3, index 8
that are swapped as a process of mutation, it is
believed to improve the fitness if mutation is done
once in certain iteration and not all.
8. Pseudo-Code for Genetic Algorithm

Begin
T<-0
Initialise P(t)
while (not termination condition)
 Evaluate P(t)
 Select P(t+1) from P(t)
 Crossover P(t+1)
 Mutate P(t+1)
 t<-t+1
end while
end procedure

8.1. Evaluation Operation
Test info is an array that stores all the

necessary information of a test case represents the
chromosomes. Fitness is variable that stores fitness
value of chromosomes. Fitar is an array that stores
the fitness value of each chromosome. Order is the
priority of test case. TID is the test case number we
get from test case information.

while(e not 7)
Fitness<-0
Order starts from number of test cases
for (each number of test case)
TID<-testinfo[i][e]
Fitness<-fitness+ (order*testinfo[TID-1][1])
Order decremented by one
End for
Put the fitness value in fitar;
increment j
increment e

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1030

end while

8.2. Selection Operation
for(number of chromosomes times)
calculate the probability for each chromosomes ;
sum of probability of each chromosomes;
calculate the cumulative probability of;
end for
for (two parents)
do
until
generate a random number;
check where the number lies in roulette wheel
Convert the generated number such that it lies in
between 0-1
for(the number of chromosomes times)
if(the number lies in between 0 and first cumulative
probability)
break;
else if(check where it lies in cumulative
probability)

break;
end for
check or number is already used:
 Set Check true;

for (j<-0;j<i; increment j)
if (if number is already used)
set check to false
break; //no need to check other elements of crom[]
end if
end while if check is not true
end for

8.3. Crossover Operation
for(the number of test case times)
if(until the point of cross over)
new matrix first column=elements of selected
chromosomes

end if
else
do
until
initialize the n;
if(n crosses the number of test cases)
then set n to zero
set check true;
for(j from 0 to current index)
if(current chromosomes element is already in the
new matrix)

set check to false
break;
end if
end for
end while if check is not true

new matrix first column=element of selected
chromosomes

end else
end for

//second child
for(the number of test case times)
if(until the point of cross over)
new matrix second column=elements of selected
chromosomes

end if
else
do
until
initialize the n;
if(n crosses the number of test cases)
then set n to zero
set check true;
for(j from 0 to current index)
if(current chromosomes element is already in the
new matrix)

set check to false
break;
end if
end for
end while if check is not true
new matrix second column=element of selected
chromosomes

end else
end for

8.4. Mutation Operation
srand(time(NULL));
generate first random number
do
until
set check true
generate second random number;
if(the two random numbers are same)
set check to false
break;
end while if check is not true
//swap

Swap the execution order of selected random
number for first child
Swap the execution order of selected random
number for the second child

9. Performance Analysis

Generally in regression testing we use
certain algorithms to get various information, there
are regression test case algorithm to detect number of
lines modified or number of lines covered, we take
the advantage of the these information to find the best
execution sequence of test case that would maximize
the code coverage or that would cover maximum

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1031

modified lines, we consider a matrix to represent the
test case information, the test case information are the
test case id, test case order, number of lines modified
or number of lines covered by a test case, and the
chromosomes are set of test cases in some random
execution order.

For performance analysis we use some
random chromosomes it then uses a fitness function
and checks how at an average is the fitness of each
chromosomes, we observe that in the beginning or
otherwise called first generation, at an average the
fitness value of the chromosomes is very poor, in
order to improve the fitness at an average it uses the
genetic algorithm, the idea of genetic algorithm
originated from Darwin theory of evolution, its main
postulate being “the survival of the fittest”, this
algorithm mimics the nature and produces the best
optimum solution, thus genetic algorithm does not
grantee best solution, instead it gives the best
optimum solution available.

Amongst many operations available in the
genetic algorithm cross over and mutation are the two
that is implemented, the two produces a fairly good
outcome. There are many crossover methods, one
better than another, namely, one point crossover, two
point crossover, uniform crossover etc., uniform
crossover is considered in many situations to be one
of the best methods, but for the ease of
implementation we consider only the one point
crossover.

Table 5. First generation
E1 E2 E3 E4 E5
T5 T8 T9 T3 T2
T2 T7 T1 T4 T4
T7 T3 T8 T1 T6
T8 T5 T2 T10 T8
T9 T1 T7 T12 T10
T3 T12 T3 T11 T12
T1 T4 T6 T9 T1
T10 T11 T4 T8 T3
T12 T6 T5 T7 T 5
T11 T10 T12 T2 T7
T4 T2 T10 T5 T9
T 6 T9 T 11 T6 T11

While recombination operates on two or
more parental chromosomes, mutation locally but
randomly modifies a solution. Again, there are many
variations of mutation, but it usually involves one or
more changes being made to an individual’s trait or
traits. In other words, mutation performs a random
walk in the vicinity of a candidate solution. The first
generation has following chromosomes as in Table5.

The output which is produced by the
chromosome has the fitness function as in Table 6.If
the average fitness value of the chromosomes are
found it comes out to be 190.6 fitness values. With
above fitness value we search two best parents and
perform cross over for fixed amount of times, for
instance with five iteration we get the following
output as in Table 7. The chromosomes fitness values
are in Table 8.

Table 6. Fitness function
Chromosomes E1 E2 E3 E4 E5
Fitness value 208 178 216 162 189

Table 7. Fitness values

Chromosomes E1 E2 E3 E4 E5
Fitness value 208 216 202 206 196

Table 8. Final generation

E1 E2 E3 E4 E5
T5 T9 T9 T5 T9
T2 T1 T1 T2 T1
T7 T8 T8 T7 T8
T8 T2 T7 T8 T7
T9 T7 T12 T12 T11
T3 T3 T4 T4 T4
T1 T6 T11 T11 T12

T10 T4 T6 T6 T10
T12 T5 T10 T9 T 6
T11 T12 T2 T3 T5
T4 T10 T3 T10 T2
T 6 T11 T 5 T1 T3

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1032

Table 9. Fitness value
Iteration 1 2 3 4 5 6

Average Fitness 190.6 201.6 205 205.6 200 205.6

Now after the implementation of genetic
algorithm if we find the average fitness value of the
below execution sequence the fitness value comes out
to be 205.6The best execution sequence of the
chromosomes is as follows. On performing five
iterations and finding the fitness value we get the
following result as in Table 9.Plotting graph for the
above result we get the following curve, which
suggest the genetic algorithm does not always
guarantee the answer as in Figure 2.

Figure 2: Fitness plot for each iteration

10. Conclusion and Future Enhancement

Here the genetic algorithm is applied on the
test cases with their execution history. We used a
fitness function which gives higher value if a test
case covers more line of code, and a test case which
has higher fitness value is provide higher priority in
ordered sequence. When we applied genetic
algorithm a large number of time we will get a nearly
optimized solution. As we know that genetic
algorithm does not always gives optimum solution,
but if we run this algorithm fairly large number of
time then we will get nearly optimum solution.

The input given to the genetic algorithm is a
set of chromosomes and the chromosomes are set of
test cases with the execution history, below is an
instance of chromosome.
T1T2T3T4T5T6T7T8T9T10
T11T12

We consider a random execution sequence
generated by random number generator function
available in stdlib library(c language) the sequence so
generated becomes one chromosomes, we use five
chromosomes, generates the fitness of each
chromosomes, and then the average fitness value is
found. In the first generation the average fitness value
comes out to be 190.6, we use iteration value five as
a fixed terminating condition, after the fifth iteration
we find that the average fitness value of the
population becomes 205.6 a much better one then the

first generation. This means that the final population
has a set of chromosomes, whose execution sequence
is nearly the best optimum solution. We considers a
random terminating value, we can perform analysis
on bench mark problems and derive the terminating
criteria by which we can find the least iteration value
that will provide guarantee the near optimal solution.
References
1. Smith (2009). An empirical study of

incorporating cost into test suite reduction and
prioritization. In Proceedings of the 24th
Symposium on Applied Computing, 2009.

2. T. Prem Jacob, Dr.T.Ravi,(2013) Regression
Testing: Tabu Search Technique for Code
Coverage, Indian Journal of Computer Science
and Engineer-ing, Vol. 4, No.3.

3. Zhong (2008). An experimental study of four
typical test suite reduction techniques.
Information and Software Technology, 50(6).

4. Semantics Guided Regression Test Cost
Reduction David Binkley, Loyola College in
Maryland.

5. T.Prem Jacob, Dr.T.Ravi,(2013) Detecting of
Soft-ware Source Code Defects using Test Case
Prioritization Rules, 2nd ICLCT’13, London
(UK).

6. Generic Chromosome Representation and
Evaluation for Genetic Algorithms Kristian
Guillaumier Department of Computer Science
and AI, University of Malta.

7. Kapfhammer(2007). A Comprehensive
Framework for Testing Database-Centric
Applications. PhD thesis, University of
Pittsburgh, Pittsburgh, Pennsylvania.

8. Prioritizing Test Cases For Regression Testing
Gregg Rothermel, Member IEEE Computer
Society.

9. A Concept Analysis Inspired Greedy Algorithm
for Test Suite Minimization SriramanTallam,
Dept. of Computer Science. The University of
Arizona Tucson.

10. T.Prem Jacob, Dr.T.Ravi,(2013),An Efficient
Method for Regression Test Selection,
International Journal of Software Engineering
and Technology, ISSN 0974 – 9632.

11. Sampath(2008). Prioritizing user-session-based
test cases for web applications testing. In
Proceedings of the 2nd International Conference
on Software Testing, Verification, and
Validation.

12. Venkatesh, Priyesh Cherurveettil, Thenmozhi. S,
Balasubramanie. P. Predicting test effectiveness

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 1033

using performance models in Life Science IT
projects. Life Sci J 2012;9(4):96-100
(ISSN:1097-8135)

T.PREM JACOB received the B.E
degree in Computer Science and
Engineering from C.S.I Institute of
Technology, Manonmaniam Sundaranar
University, Nagercoil, India in 2004 and

M.E degree in Computer Science and Engineering
from Sathyabama University, Chennai, India in 2006,
where he is currently working towards the Ph.D.
degree in Computer Science and Engineering at
Sathyabama University, Chennai, India. He is an
Assistant Professor of Computer Science and
Engineering in Sathyabama University and he has
more than 7 Years of Teaching Experience. He has
participated and presented many Research Papers in
International and National Conferences. His area of
interests includes Software Engineering, Data mining
and Data warehouse.

Dr. T. Ravi, Principal of Srinivasa
college of Engineering & Technology,
Chennai. He has graduated in computer
science and Engineering from Madurai
Kamaraj University, Masters and Ph.D

in computer Science and Engineering from Jadavpur
University, Kolkata. He has more than 20 years of
teaching experience in various engineering
institutions in Tamil Nadu. More than 25 research
papers are published in International & National
Journals and conferences and also 5 text books are
published through various publications. He is the
Recognised Research Supervisor in Anna University
and Sathyabama University Chennai and MS
university, Tirunelveli.

6/20/2013

