
Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 339

A Method for identifying loops in a Workflow using Petri Nets

V.R. Kavitha1 , N. Suresh Kumar2

1. MCA Department, Velammal College of Engineering and Technology, Madurai, India, 625009.
2 Principal, Velammal College of Engineering and Technology, Madurai, India, 625009

kavi_mani14@yahoo.com

Abstract: In the current scenario most of the organizations adopt Business Process Modeling Techniques to
represent their Workflow. The process model for the Workflow involves multiple organizations and multiple
departments. Decision making will be done by more than one person; this will lead to increase in Workflow
complexity. Proper modeling is needed for efficient business decision making. Workflow complexity depicts the
presence of loops of any length. Most of the existing algorithms check the loops which is having the length of 1 or 2.
The new algorithm featured in this work which automatically checks the boundedness of Workflow by identifying
the presence of loops having any length in the Workflow. The algorithm works in two stages. First, it checks for
loop-less Workflow. If the first stage detects the presence of loops, then in the second stage, individual loops are
identified and proper remedial measures are taken to modify the original Workflow which ensures boundedness.
[V.R. Kavitha, N. Suresh Kumar. A Method for identifying loops in a Workflow using Petri Nets. Life Sci J
2013;10(3):339-343] (ISSN:1097-8135). http://www.lifesciencesite.com. 52

Keywords: Boundedness; Petri Nets; Workflow

1. Introduction

The new technological developments help
the organizations to automate their complex business
processes by making use of Workflow Management
techniques. The main objectives of the organizations
are to analyze the process, categories them and
sequence them based on the nature of work. This
process may be fully automatic, semiautomatic or
manual. Workflow Management System takes care of
assigning jobs to the resources, keeping track of the
status of individual jobs and execution of activities
[1, 2, 3 and 4].

The term Workflow Management refers to
the ideas, methods, techniques and softwares used to
support structured business processes. Staffware,
IBM MQseries, COSA are Workflow Managements
systems that offer generic modeling capabilities.
Workflows are case based. A job is divided into set
of cases and each case is executed according to the
specific order. The goals of Workflow Management
are scheduling and executing the cases as effectively
as possible. Basically workflow model is considered
as a graph; also referred as Flow Diagram, Workflow
Graph, Procedure and Routing Definition. When the
business processes are represented in the form of
Workflow, the designer designs the model accurately,
and then tests for correctness. Designer should have
in-depth knowledge in Workflow languages. He
should conduct number of meetings with the
managers for clarification of work sequences[5,6]. To
avoid such meetings and to automate and analyze
workflow several new tools are developed by the
researchers.

Petri net is selected for representing
workflow models because checking the boundedness
property is easy. As the flow of execution is defined,
it is easy to transform Petri Net into digraph. In
literature process logs are used to identify short loops
of length two; but higher lengths in a workflow are
identified by making use of the proposed algorithm.
The complexity of the workflow increases if the size
of the workflow increases. If it is exponential, then
complexity of identifying loops present in the net is
also exponential. Section 2 presents preliminary
definitions and theories needed for understanding the
current paper. Section 3 presents the proposed
algorithm. Section 4 given the implementation part of
the algorithm with illustrations. Section 5 concludes
the paper.

2. Preliminaries
2.1 Petri Net

An Petri net, ‘ N ’ is a bipartite, weighted,
directed multigraph, mathematically represented by a
four-tuple N = (P,T, I,O) where
P = { p1, p2 ,..., pi ,..., pn } is a finite set of places,
T = { t1,t2 ,...,tj ,...,tm } is a finite set of transitions,
P ∩T = Ø and P UT ≠ Ø
I : (P ×T) →
O : (P ×T) → where No = {0,1,2,…}

A Petri net structure N = (P,T,F,W) without
any specific initial marking is denoted by N. A Petri
net with the given initial marking is denoted by
(N,M0) [5,6 and 7].

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 340

2.2 Bounded

A Petri net (N,M0) is said to be k-bounded if
the number of tokens in each place does not exceed a
finite number k for any marking reachable from M0,
i.e., M(p) ≤k for every place p and every marking
[8,9 and 10] .

2.3 Firing rule

A transaction is said to be enabled when all
its input places should be filled with at least one
token. An enabled transition may or may not fire
depending on whether the event actually takes place
or not. But once enabled, a transition has the potential
to fire; hence, the transition is called potentially
friable. The firing of a Petri net will remove tokens
from its input place and place the tokens in all its
output places. If there is no transaction is enabled
then the execution halts. A transaction t∈T is enabled
iff M(p) ≥ I(p,t);∀ p ∈ P. If an enabled transaction t
fires then it causes a change in marking from
M(p)toM′(p)given by the equation:
M′(p)= M(p)− I(p,t)+O(p,t) ; ∀ p ∈ P.

The firing rule is called Strict Firing Rule,
when it is applied to finite capacity Petri nets. And it
is called Weak Firing Rule when it is applied to
infinite capacity Petri nets. At any point of time the
output place transaction will not exceed the
maximum token carrying capacity C (p).
2.4 Graph

A graph is a pair of sets (V,E) where V is a
finite set called the set of vertices and E is a set of 2-
element subsets of V , called the set of edges.
2.5 Path and Cycle

A path in a graph G = (V,E) is a walk of
length k in which the vertices v1, . . . , vk+1 are all
distinct. Here vi,vj V and (vi,vj) E. A cycle in a
graph G = (V,E) is a walk of length k _ 1 in which v1,
. . . , vk are distinct and v1 = vk+1.
2.6 Digraph

A digraph D = (V, E) can be interpreted as a
relation R on the set V in the following way. For
every x, y V , we write xRy if and only if (x, y)
E.
3. Proposed Algorithm To Check For

Boundedness
Workflow complexity depicts the presence

of loops of any length. Most of the existing
algorithms check the loops which are having the
length of 1 or 2. The proposed algorithm which
automatically checks the boundedness of Workflow
by identifying the presence of loops having any
length. Since Petri net gives flow direction of the
processes, it is easy for the designer to convert it into
a directed graph. This property helps in finding the
loops present in the net.

The algorithm works in two stages. Here Pi
represents different stages of the algorithm where i =
1 or 2. First, it checks for loop-less Workflow. If the
first stage detects the presence of loops, then in the
second stage, individual loops are identified and
proper remedial measures are taken to modify the
original Workflow which ensures boundedness.
During the First stage the Workflow is converted into
Petri net. Let I(Pi) : Input nodes for the ith phase of
the algorithm O(Pi) : Output nodes for the ith phase of
the algorithm. In phase one I(P1) = n and check the
O(P1) which is n1, if n1 = n then the number of input
nodes and the output nodes are equal. The algorithm
concludes that no loop present in the Workflow and
the Workflow is bounded. If n1 < n then phase one of
the algorithm identifies the presence of loop in the
Workflow and the output is routed to phase two.

I(P2) = n-n1 where n1 is the number of nodes
identified which will not form loop in the Workflow.
The second phase of the algorithm uses depth first
algorithm for traversal and uses stack for storing
multiple paths.
3.1 Pseudo code to check for boundedness

Findloop(G(V,E))

1. Phase 1 V, E
2. Zero-in-degree(V)
3. for all V G do begin

if (in-degree(Vi) ==0) then
delete Vi from G and update in-degree for
all the nodes adjacent to V
end

4. Phase 2 for all V G do begin
traverse(G)
end

5. traverse(G) begin
 for all V G if outdegree >1 then create

stack and store traversal
6. if any repetition of node then

L vertices from stack
7. Make changes made in step 6 leads to nodes

having in-degree zero then go to Phase 1 and
repeat the steps

8. Algorithm terminates when V = Ф

4. Algorithm Implementation with Illustrations

To illustrate the algorithm, Five year plan
Workflow of an organization is taken as input, which
is given in Figure 1. Using Figure 1. A Petri net
model is derived and is given in Figure 2. The Petri
net given in Figure 2 is converted into a digraph and
the output is shown in Figure 3.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 341

Figure 1: Workflow of Five year plan

a). In the first iteration zero in-degree nodes removed
are P30, P31, P22, P17 and in-degree information is
updated this leads to further removal of nodes in the
second iteration.
b). Remove zero in-degree nodes P3, P29, P18, P23 the
remaining graph is given in Figure 4. From the
Figure. 4 it is identified that the algorithm cannot
proceed further because there is no nodes having in-
degree zero and number of vertices is not equal to the
number of nodes visited. So, first stage is giving the
output as loop present in the network, and it may lead
to unboundedness.

Figure 2: Five year plan Workflow represented as
Petri Net

c) Depth first traversal starts from the node P0 and
when it is encountering multiple paths further
traversal information is stored in a stack and
algorithm proceeds and generates sub graphs having
loops. These sub graphs are analyzed further and the
nodes involved in the loop are identified. In our
example the identified loops are:
L1 = P0, P1, P2, P0;
L2 = P5, P6, P7, P0;
L3 = P19, P24, P25, P19;
L4 = P16, P15, P14, P13, P20;

Figure 3: Graph representation of the Petri net given in Figure 2

P0 P1 P4 P5 P6 P7 P8 P2

P16 P15 P13 P12 P11 P10 P9 P14

P20 P21 P24 P25 P26 P27 P28 P19

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 342

Figure. 4: Resultant graph after first phase

d) Identified loops are given in Figure 5.
 From Figure. 5 it is clear that using the loops
generated by the proposed algorithm, The
unboundedness identified are four places. To make
the unbounded net as bounded modification is
required. This can be decided based on the current
situation and properties of the Workflow. The
restriction here identified are n=3 and dummy node is
attached which will not affect the functioning of the
Workflow at any point of time. Only when
unboundedness occurs it will control the Workflow.
 The modification of the Workflow is given in
Figure 6. By doing this modification the unbounded
Workflow is modified as a bounded Workflow.

(a)

(b)

(c)

(d)

Figure 5. (a,b,c,d) Loops identified after Algorithm is
applied on Figure 4.

 (a) (b)

 (c) (d)

Figure 6: (a,b,c,d) Decision taken after the loops are
identified

5. Conclusion

P0 P1 P4 P5 P6 P7 P8 P2

P16 P15 P13 P12 P11 P10 P9 P14

P20 P21 P24 P25 P26 P27 P28 P19

P30

P3

P29 P31

P18 P17
 P23 P22

S

P0 P1 P2

P5 P6 P7

P24 P25 P19

P16 P15 P13 P14

P20

T20

P
22

T3

P
30

T17

P
17

T9

P
29

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 343

 Current research work proposes an algorithm to
find the loops of higher lengths that are present in a
Workflow. The main advantage of applying the
proposed algorithm is practically possible to apply
even if the workflow grows in size and previous
research works did not identify the loops which are
having higher lengths. The algorithm expects the
vertices are unique and no repetition is allowed.
There is a need to further address these challenges
and duplicate tasks with noise needs more attention.

Corresponding Author:
Mrs.V.R. Kavitha
MCA Department
Velammal College of Engineering and Technology
Madurai, 625009, India
E-mail: kavi_mani14@yahoo.com

References
1. Ana Karla Alves de Medeiros, Antonella Guzzo,

Gianluigi Greco, Wil M. P. Van der Aalst,
A.J.M.M. Weijiters, Boudewijn F. van Dongen,
and Domenico Sacca. Process Mining Based on
Clustering : A Quest for Precision. BPM
Workshops, LNCS 4928, Springer-Verlag Berlin
Heidelberg 2008.

2. W.M.P. van der Aalst and K.M. van Hee.
Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

3. Yu Ru and Christoforos N. Hadjicostis.
Reachability Analysis for a Class of Petri Nets.
Joint IEEE Conference on Decision and Control
and 28th Chinese Control Conference P.R.,
China, 2009.

4. van der Aalst, W., Rubin, V., van Dongen, B.,
Kindler, E., G¨unther, C. Process Mining: A

Two-Step Approach using Transition Systems
and Regions. BPM Center Report BPM-06-30,
BPM Center, BPMcenter.org, 2006.

5. Scott Callaghan, Ewa Deelman, Dan Guntere,
Gideon Juve, Philip Maechling, Christopher
Brooks, Karan Vahi, Kevin Milner, Robert
Graves, Edward Field, David Okaya, Thomas
Jordan. Scaling up workflow-based applications.
Journal of Computer and System Sciences, 76
(2010) :428–446.

6. Gergely Sipos. Protecting the consistency of
workflow applications in collaborative
development environments. Future Generation
Computer Systems 28 (2012):500–512.

7. Wanchun Dou, J. Leon Zhao, Shaokun Fan. A
collaborative scheduling approach for service-
driven scientific workflow execution. Journal of
Computer and System Sciences 76 (2010):416–
427.

8. Lavanya Ramakrishnan, Jeffrey S. Chase,
Dennis Gannon, Daniel Nurmi, Rich Wolski.
Deadline-sensitive workflow orchestration
without explicit resource control. J. Parallel
Distrib. Comput. 71 (2011):343–353.

9. Haiping Zha, Jianmin Wang, Lijie Wen,
Chaokun Wang, Jiaguang Sun. A workflow net
similarity measure based on transition adjacency
relations. Computers in Industry 61 (2010):463–
471.

10. Erik Elmroth, Francisco Hernández, Johan
Tordsson. Three fundamental dimensions of
scientific workflow interoperability: Model of
computation, language, and execution
environment. Future Generation Computer
Systems, 26 (2010) :245_256.

6/26/2013

