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1. Introduction: 
 Throughout w,  and  denote the classes of 
all, gai and analytic scalar valued single sequence, 
respectively. 
 We write w2 for the set of all complex 

sequences (xmn), where m, n   , the set of positive 
integers. Then, w2 is a linear space under the 
coordinate wise addition and scalar multiplication. 
 Some initial works on double sequence 
spaces is found in Bromwich [2]. Later on, they were 
investigated by Hardy [3], Moricz [7], Moricz and 
Rhoades [8], Basarir and Solankan [1], Tripathy [11], 
Turkmenoglu [12], and many others. 
We procure the following sets of double sequences: 

Mu(t): =   ,
t2 mnx w :sup x <mn mnm,n N

 
 
 

 


 

Cp(t): =   2
, ,: lim 1 ,

mnt

mn m n m nx w p x l for somel      

C0p(t): =   2
,: lim 1 ,mnt

mn m n mnx w p x    

Lu(t): =   2

1 1
: ,

mnt

mn mnm n
x w x

 

 
    

Cbp(t): =          0 0 ;p u bp p uC t M t and C t C t M t    

THE p-METRIC SPACE OF 2 DEFINED BY 
MUSIELAK 
 
Where t = (tmn) is the sequence of strictly positive 

real’s tmn for all m, n    and p – limm,n denotes 
the limit in the Pringshein’s sense. In the case tmn = 1 

for all m, n   ; Mu(t), Cp(t), C0p(t), Lu(t), Cbp(t) and 
C0bp(t) reduce to the sets Mu, Cp, C0p, Lu, Cbp and 

C0bp, respectively. Now, we may summarize the 
knowledge given in some document related to the 
double sequence spaces. Gokhan and Colak [14,15] 
have proved that Mu(t) and Cp(t), Cbp(t) are complete 
paranormed spaces of double sequences and gave the 
–, –, – duals of the spaces Mu(t) and Cbp(t) . Quite 
recently, in her PhD thesis, Zelter [16] has essentially 
studied both the theory of topological double 
sequence spaces and the theory of summability of 
double sequences. Mursaleen and Edely [17] and 
Tripathy [11] have independently introduced that 
statistical convergence and Cauchy for double 
sequences and given the relation between statistical 
convergent and strongly Cesaro summable double 
sequences. Altay and Basar [20] have defined the 
spaces BS, BS(t), CSp, CSbp, CSr and BV of double 
sequences consisting of all double series whose 
sequence of partial sums are in the spaces Mu, Mu(t), 
Cp, Cbp, Cr and Lu, respectively, and also examined 
some properties of those sequence spaces and 
determined the – duals of the spaces BS, BV, CSbp 
and the (v) - duals of the spaces CSbp and CSr of 
double series. Basar and Server [21] have introduced 
the Banach space Lq of double sequences 
corresponding to the well-known space lq of single 
sequences and examined some properties of the space 
Lq. Quite recently Subramanian and Misra [22] have 

studied the space  2 , ,M p q u  of double sequences 

and gave some inclusion relations. 
 The class of sequences which are strongly 
Cesaro summable with respect to a modulus was 
introduced by Maddox [6] as an extension of the 
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definition of strongly Cesaro summable sequences. 
Connor [23] further extended this definition to a 
definition of strong A– summability with respect to a 
modulus where A = (an,k) is a nonnegative regular 
matrix and established some connections between 
strong A– summability, strong A– summability with 
respect to a modulus, and A– statistical convergence. In 
[24] the notion of convergence of double sequences 
was presented by A. Pringsheim. Also, in [25]-[26], 
and [27] the four dimensional matrix transformation 

 
, 1 1

mn

kl mnk l m n
Ax a x

 

 
   was studied extensively 

by Robison and Hamilton. 
We need the following inequality in the 

sequel of the paper. For a, b  0 and 0 < p < 1, we 
have 
 (a + b)p  ap + bp  (1.1) 

 The double series 
, 1 mnm n

x


  is called 

convergent if any only if the double sequence (smn) is 

convergent, where  
,

, 1
,

m n

mn iji j
s x m n


   . 

 A sequence x = (xmn) is said to be double 

analytic if 
1/

sup
m n

mn mnx


 . The vector space of all 

double analytic sequences will be denoted by 2. A 
sequence x = (xmn) is called double gai sequence if 

  1/
! 0

m n

mnm n x a


   as m, n  . The double 

gai sequences will be denoted by 2. Let  = {all 
finite sequences}.  
 Consider a double sequence x = (xij). The 
(m, n)th section x[m,n] of the sequence is defined by 

  ,,

, 0

m nm n

ij iji j
x x


   for all m, n   ; where ij 

denotes the double sequence whose only non zero 

term is a 
 

1

!i j
 in the (i, j)th place for each i, j   . 

 An FK-space (or a metric space) X is said to 
have AK property if (mn) is a Schauder basis for X. 
Or equivalently x[m,n]  x. 
 An FDK-space is a double sequence space 
endowed with a complete metrizable; locally convex 
topology under which the coordinate mappings x = 
(xk)  (xmn) (m, n   ) are also continuous. 

 Let M and  are mutually complementary 
modulus functions. Then, we have: 
(i) For all u, y  0,  

 uy  M(u) + (y), (Young’s ineuqality) 
[See[13]] (1.2) 

(ii) For all u  0, 
 u(u) = M(u) + ((u)).  (1.3) 

(iii) For all u  0, and o <  < 1 
M(u)  M(u)   (1.4) 

 Lindenstrauss and Tzafriri [5] used the idea 
of Orlicz function to construct Orlicz sequence space 

1
: , 0k

M k

x
l x w M for some 







   
      

   
 , 

The space lM with the norm 

 
1

inf 0 : 1 ,k

k

x
x M







   
    

   
  

becomes a Banach space which is called an Orlicz 

sequence space. For    1pM t t p   , the spaces 

lM coincide with the classical sequence space lp. 
 A sequence f = (fmn) of modulus function is 
called a Musielak-modulus function. A sequence g = 
(gmn) defined by 

gmn(v) =     sup : 0 , , 1, 2,...mnv u f u u m n    

is called the complementary function of a Musielak-
modulus function f. For a given Musielak modulus 
function f, the Musielak-modulus sequence space tf 
and its sub-space hf are defined as follows 
     1/

2 : ! 0 , ,
m n

f f mnt x w I m n x as m n


      

     1/
2 : ! 0 ,

m n

f f mnh x w I m n x as m n


     , 

where If is a convex modular defined by 
                   

1/
! ,

m n

f mn mn mn fm I n I
I x f m n x x x t a

 



 
     . 

We consider tf equipped with the Luxemburg metric  
      1/1

, sup inf ! 1
m n

m n mn m n m nm I n I
d x y u f m n x

 




 

   
     

   
 

 

 Let  =  be a non-decreasing sequence of 
positive real’s tending to infinity with 1 = 1 and +1, 

+1   + 1. The generalized de la Vallee-Poussin 
means is defined by 

t(x) =   
1/1

!
m n

mnm I n I
m n x

 




 
  , 

where   1,I       . A sequence x = (xmn) is 

said to be (V, ) – summable to a number t  0 as  
 . 
If X is a sequence space, we give the following 
definitions: 
(i) X = the continuous dual of X; 
(ii)   , 1

: ,mn mn mnm n
X a a a x foreachx X 


    ; 

(iii)  
, 1

:mn mn mnmn
X a a a x x X 



 
 

   
 
 

 ; 

(iv)  
,

, 1
:sup 1 ,

M N

mn mn mn mnm n
a a a x

X
for each x X

 

    
  

  

 ; 
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(v) let X bean FK – space  ; then 

  : 'f
mnX f f X   ; 

(vi)       
1/

:sup ,
m n

mn mn mn mna a a x
X

for each x X



   
 

  

; 

X.X, X are called  – (or Kothe – Toeplitz) dual of 
X,  – (or generalized – Kothe – Toeplitz) dual of X, 
 – dual of X,  – dual of X respectively. X is defined 
by Gupta and Kamptan [13]. It is clear that X  X 
and X  X, but  X  X does not hold, since the 
sequence of partial sums of a double convergent 
series need not to be bounded. 

The notion of difference sequence spaces 
(for single sequences) was introduced by Kizmaz as 
follows 

       :k kZ x x w x Z       

for Z = c, c0 and l, where xk = xk – xk+1 for all k   . 

Here c, c0 and l denote the classes of 
convergent, null and bounded scalar valued single 
sequences respectively. The difference sequence 
space bvp of the classical space lp is introduced and 
studied in the case 1  p   by Basar and Altay and 
in the case 0 < p < 1 by Altay and Basar in [20]. The 
spaces c(), c0(), l() and bvp are Banach spaces 
normed by 
    

1/

1 1
sup 1 , 1

pp

k p kk
x x k x and x bv x p




       

. 

 Later on the notion was further investigated 
by many others. We now introduce the following 
difference double sequence space defined by 

      2 :mn mnZ x x w x Z       

where Z = 2, 2 and xmn = (xmn – xmn+1) – (xm+1n – xm+1n+1)  = 
xmn – xmn+1 – xm+1n + xm+1n+1 for all m, n   . 
 
2. DEFINITION AND PRELIMINARIES 
 Let n    and X be a real vector space of 

dimension w, where n  w. A real valued function 

      1 1 1,.., ,...,p n n n p
d x x d x d x on X satisfying 

the following four conditions: 

(i)    1 1 ,..., 0n n p
d x d x   if and only if 

d1(x1), ..., dn(xn) are linearly de-pendent, 

(ii)     1 1 ,..., n n p
d x d x  is invariant 

under permutation, 
(iii) 

        1 1 1 1,..., ,..., ,n n n n pp
d x d x d x d x   

 

(iv)       

    
1 1 2 2

1/

1 2 1 2

, , , ... ,

, ,..., , , ...,

p n n

pp

X n Y n

d x y x y x y

d x x x d y y y





  

for 1  p < ; (or)  
(v) 

      
 

 
1 2

1 1 2 2

1 2

, ,..., ,
, , , ,..., , : sup

, ,...

X n

n n

Y n

d x x x
d x y x y x y

d y y y

  
  

  

 

for x1, x2, ..., xn  X, y1, y2, ..., yn  Y is called the p 
product metric of the Cartesian product of n metric 
spaces is the p norm of the n-vector of the norms of 
the n sub-spaces. 
 A trivial example of p product metric of n 

metric space is the p norm space is X =   equipped 
with the following Euclidean metric in the product 
space is the p norm: 
       

        

     
     

     

11 11 12 12 1 1

21 21 22 22 2 2

1 1

1 1 2 2

...

...

.
, ..., sup det sup

.

.

...

n n

n n

n n mn mnE

n n n n nn nn

d x d x d x

d x d x d x

d x d x d x

d x d x d x

 
 
 
 
  
 
 
 
 
 

 

where xi = (xi1, ..., xin)  n  for each i = 1, 2, ..., n. 
If every Cauchy sequence in X converges to 

some L  X, then X is said to be complete with 
respect to the p– metric. Any complete p– metric 
space is said to be p– Banach metric space. 

Let X be a linear metric space. A function w: 
X    is called Para normed, if 
1. w(x)  0, for all x  X; 
2. w(–x) = w(x), for all x  X; 
3. w(x + y)  w(x) + w(y), for all x, y  X; 
4. If (mn) is a sequence of scalars with mn  

 as m, n   and (xmn) is a sequence of 
vectors with w(xmn – x)  0 as m, n  , 
then w(mnxmn – x)  0 as m, n  . 

 A paranormed w for which w(x) = 0 implies 
x = 0 is called total paranorm and the pair (X, w) is 
called a total paranormed space. It is well known that 
the metric of any linear metric space is given by some 
total paranorm (sec [32], Theorem 10.42, p.183). 
 Let f = (fmn) be a Musielak-modulus 

function,        1 2 1, , ,..., n p
X d x d x d x   be a p-

metric space, q = (qmn) be bounded sequence of 
strictly positive real numbers and u = (umn) be any 
sequence of strictly positive real numbers. By S(p – 
X) we denote the space of all sequences defined over 

       1 2 1, , ,..., n p
X d x d x d x a . In the present 

paper we define the following sequence spaces: 

      2
1, , 1 2

1
, ,..., limq

nf V u m I n Ip
d x d x d x

 







  

  
    

         
1/

1 2 1! , , ,..., 0
mnq

m n

mn mn mn n
p

u f m n x d x d x d x




  
   

  

, 
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      2
, , 1 2 1 ,

1
, , ,..., supq

f V u n m Ip
d x d x d x n I


  

 

   
    

      1/

1 2 1, , ,..., ,
mnq

m n

mn mn mn n
p

u f x d x d x d x




       

 

If we take fmn(x) = x, we get 

      2
, , 1 2 1

1
, ,..., limq

f V u n m I n Ip
d x d x d x

 





  

  
    

         
1/

1 2 1! , , ,..., 0,
mnq

m n

mn mn n
p

u m n x d x d x d x




  
   

  

      2
, , 1 2 1 ,

1
, , ,..., supq

f V u n m I n Ip
d x d x d x

 
 

  

  
    

       1/

1 2 1, , ,..., ,
mnq

m n

mn mn n
p

u x d x d x d x




 
  

 

If we take q = (qmn) = 1 for all m, n   , we get 

      2
, , 1 2 1

1
, ,..., limq

f V u n m I n Ip
d x d x d x

 





  

  
    

         
1/

1 2 1! , , ,..., 0,
m n

mn mn mn n
p

u f m n x d x d x d x




  
   

  

      2
, , 1 2 1 ,

1
, , ,..., supq

f V u n m I n Ip
d x d x d x

 
 

  

  
    

      1/

1 2 1, , ,..., ,
m n

mn mn mn n
p

u f x d x d x d x




       

 

If we take q = (qmn) = 1 and u = (umn) = 1 for all             
m, n   , we get 

      2
, , 1 2 1

1
, ,..., limq

f V u n m I n Ip
d x d x d x

 





  

  
    

         
1/

1 2 1! , , ,..., 0,
m n

mn mn n
p

f m n x d x d x d x




  
   

  

 

      2
, , 1 2 1 ,

1
, , ,..., supq

f V u n m I n Ip
d x d x d x

 
 

  

      

       1/

1 2 1, , ,..., ,
m n

mn mn n
p

f x d x d x d x




 
  

 

 The following inequality will be used 
throughout the paper. If 0  qmn  sup qmn = H,K = 
max (1, 2H–1) then 

 mn mn mnq q q

mn mn mn mna b K a b    

for all m, n and amn , bmn   . Also 

 max 1,mnq H
a a  for all a   . 

 The main aim of this paper is to introduce 
some multiplier sequence spaces defined by a 
Musielak-modulus function over p-metric spaces also 
study some topological properties and inclusion 
relation on above defined sequence spaces. 
 
3. MAIN RESULTS 
3.1. Theorem 

 Let f = (fmn) be a Musielak-modulus 
function, q = (qmn) be analytic sequence of positive 
real numbers and u = (umn) be any sequence of strictly 
positive real numbers. Then the spaces 

      2
, , 1 2 1, ,...,q

f V u n p
d x d x d x 

 
  

and 

      2
, , 1 2 1, , ,...,q

f V u n p
d x d x d x 

 
  

 are liner 

spaces. 
 
Proof 
 It is routine verification. Therefore the proof 
is omitted. 
 
3.2. Theorem 
 Let f = (fmn) be a Musielak-modulus funtion , 
q = (qmn) be analytic sequence of positive real 
numbers and u = (umn) be any sequence of strictly 
positive real numbers. Then spaces 

      2
, , 1 2 1, , ,...,q

f V u n p
d x d x d x 

 
  

 is a 

paranormed space with respect to the paranormed 
defined by 

 
1

inf
m I n I

g x
 

  


 


   

         
1/

1/

1 2 1! , , ,..., 1,
mn

Hq
m n

mn mn mn n
p

u f m n x d x d x d x




  
       

 

where H = max (1, supmnqmn < ). 
 
Proof 
 Clearly g(x)  0 for x = (xmn) 

      2
, , 1 2 1, ,...,q

f V u n p
d x d x d x 

 
  

. Since fmn(0) = 

0, we get g(0) = 0. 
 Conversely, suppose that g(x) = 0, then 

1
inf

m I n I 
  





   

         
1/

1/

1 2 1! , , ,..., 1 0
mn

H
q

m n

mn mn mn n
p

u f m n x d x d x d x




             

 

Suppose that   
1/

! 0
m n

mnm n x


   for each m, n   . 

This implies that   
1/

! 0,
m n

mn mnu m n x


   for each 

m, n   . 
         Then 

         
1/

1 2 1! , , ,...,
m n

mn mn n
p

u m n x d x d x d x


 
.  

It follows that 
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1
m I n I 

  





   

        

1/

1/

1 2 1! , , ,...,
mn

H
q

m n

mn mn mn n
p

u f m n x d x d x d x




  
       

, 

which is a contradiction. Therefore 

  
1/

! 0
m n

mnm n x


   for each m, n and thus 

  
1/

! 0
m n

mnm n x


   for each m, n   . Let 

         
1/

1/

1 2 11 1

1
! , , ,..., 1

mn
H

q
m n

mn mn mn nm n
p

u f m n x d x d x d x
 





 

   
        

 
 

and 

1
m I n I 

  





   

         
1/

1/

1 2 1! , , ,..., 1.
mn

Hq
m n

mn mn mn n
p

u f m n y d x d x d x




  
       

 Then by using Minkowski’s inequality, we have 

1
m I n I 

  





   

           
1/

1/

1 2 1! , , ,...,
mn

Hq
m n

mn mn mn mn n
p

u f m n x y d x d x d x




  
       

 

         
1/

1/

1 2 1

1
! , , ,...,

mn
Hq

m n

mn mn mn nm I n I
p

u f m n x d x d x d x
 





 

   
        

 

1
m I n I 

  





   

         
1/

1/

1 2 1! , , ,..., 1
mn

Hq
m n

mn mn mn n
p

u f m n y d x d x d x




  
       

,  

so we have 
 

1
in f

m I n I
g x y

 
   


  


 

 

        
1/

1/

1 2 1, , ,..., 1
mn

Hq
m n

mn mn mn mn n
p

u f x y d x d x d x




  
       

 

1
inf

m I n I 
  

 
  


   

          
1/

1/

1 2 1! , , ,..., 1
mn

Hq
m n

mn mn mn n
p

u f m n x d x d x d x




             

1
inf

m I n I 
  

 
 


 

 

         
1/

1/

1 2 1! , , ,..., 1
mn

Hq
m n

mn mn mn n
p

u f m n y d x d x d x




            

Therefore, 
 g(x + y)  g(x) + g(y). 

Finally, to prove that the scalar multiplication is 
continuous. Let  be any complex number. By 
definition, 

 
1

in f
m I n I

g x
 

 


  

 
  


 

 

         
1/

1/

1 2 1! , , , ..., 1
mn

Hq
m n

mn mn mn n
p

u f m n x d x d x d x




            

 

where 
1

t


 . Since  sup
max 1,mn mnq p

y  , we have 

   sup / 1
max 1, inf :mn mn

p q H

m I n I
g x t

 


 
  

 
  


 

 

         
1/

1/

1 2 1! , , , ..., 1
mn

Hq
m n

mn mn mn n
p

u f m n x d x d x d x




            

 

This completes the proof. 
 
3.3. Theorem  
 Let f = (fmn) be a Musielak-modulus 
function. Then the following statements are 
equivalent 
i) 

             2 2

, , 1 2 1 , , 1 2 1, , ,..., , , ,...,q q

f V u n f V u np p
d x d x d x d x d x d x 

           

 

ii) 
             2 2

, 1 2 1 , , 1 2 1, , ,..., , , ,...,q q
V u n f V u n

p p
d x d x d x d x d x d x  

         

 

iii) 
       1/

, , 1 2 1

1
sup , , ,...,

mnq
m n

mn mn m n nm I n I
p

u f x d x d x d x
 

 





 

 
 

 
 

 

 
Proof 
(i)  (ii) is obvious, since 

             2 2
, 1 2 1 , 1 2 1, , ,..., , , ,...,q q

V u n V u np p
d x d x d x d x d x d x  

    
      

. 

(ii)  (iii) Suppose 

             2 2
, 1 2 1 , , 1 2 1, , ,..., , , ,...,q q

V u n f V u np p
d x d x d x d x d x d x  

    
      

. 

and let (iii) does not hold. Then 

      
1/

, , 1 2 1

1
sup , , ,...,

mnq
m n

mn mn m n nm I n I
p

u f x d x d x d x
 

 





 

  
  

  
 

. 

and therefore there  is a sequence (ij) of positive 
integers such that (3.1) 

   

 
      

  

 1 2 1

1
, , ,..., ,

! !

mn

i j

i j

q
m n m n

mn mn nm I n I

p

ij ij
f u d x d x d x

m n m n 
 

  

 

  
   
   
   

 

 

i, j = 1, 2, ... 
Define x = (xmn) by 
  

 
   

 
,1 ;1 , , 1,2,3,...;

!

0, , .

i j

i j

m n

mn

ij
m I n I if i j

x x m n

if m I n I

 

 

 
     

  
  

 

Then         2
, , 1 2 1, , ,...,q

mn f V u n
p

x x d x d x d x 
  
  

 but 

        2
, , 1 2 1, , ,...,q

mn f V u n p
x x d x d x d x 

   
  

 which 

contradicts (ii). Hence 
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(iii) must hold. 
(iii)  (i). Suppose 

          2

, 1 2 1, , ,...,q

mn V u n mnp
x x d x d x d x and x x

     
  

 

      2
, , 1 2 1, , ,..., .q

f V u n
p

d x d x d x 
   

 Then (3.2) 

      
1/

, , 1 2 1

1
sup , , ,...,

mnq
m n

mn mn m n n
pm I n I

u f x d x d x d x
 

 






 

  
  

  
 

. 

which contradicts (iii). Hence (i) must hold. 
 
3.4. Theorem 

Let 1  qmn  supmnqmn < . Then the 
following statements are equivalent. 

i)       

      

2
, , 1 2 1

2
, 1 2 1

, , ,...,

, , ,..., ,

q
f V u n p

q
V u n p

d x d x d x

d x d x d x









 
  

   

 

ii)       

      

2
, , 1 2 1

2
, 1 2 1

, , , ...,

, , , ..., ,

q
f V u n p

q
V u n p

d x d x d x

d x d x d x

 



    

   

 

iii) 

      

1/

,

,

1 2 1

,1
inf 0,

, , ...,

mnq
m n

m n

m n mnm I n I

n
p

x
u f

d x d x d x 
 





 



  
     

    

 

 

t > 0. 
 
Proof 
(i)  (ii) is obvious. 
(ii)  (iii) Suppose 

      

      

2
, , 1 2 1

2
, 1 2 1

, , , ...,

, , , ...,

q
f V u n p

q
V u n p

d x d x d x

d x d x d x

 



  
  

   

  

and let (iii) does not hold. Then (3.3) 

      
1/

, , 1 2 1

1
inf , , ,..., 0, 0.

mnq
m n

mn mn m n nm I n I
p

u f x d x d x d x t
 

 




 

  
   

  
 

We can choose an index sequence (ij) such that 

   

 
      1 2 1

1
, , ...,

!

mn

i j
i j

q
m n

mn mn nm I n I

p

ij
u f d x d x d x

m n 
 

 

 

  
   
  
   

 

 

  

 
, , 1, 2,...

!

m n
ij

i j
m n






 

Define x = (xmn) by 
 

 
  

 
,1 ;1 , , 1, 2,3,..., ;

!

0, , .

i j

i j

m n

mn

ij
m I n I if i j

m nx x

if m I n I

 

 


     

  
  

 

Thus by (3.3) we have x = (xmn)  

      2
, 1 2 1, , ,...,q

V u n
p

d x d x d x 
 
  

 but  

        2
, 1 2 1, , ,...,q

mn V u n
p

x x d x d x d x 
     

 which 

contradicts (ii). Hence (iii) must hold. 

(iii)  (i). Let 

        2
1, , 1 2, , ,...,q

nmn f V u
p

x x d x d x d x 
    

 That is, (3.4) 

         
1/

, , 1 2 1

1
inf ! , , , ..., 0,

mnq
m n

mn mn m n n
pm I n I

u f m n x d x d x d x


 





 

  
   

  
 

 
 Suppose (iii) hold and 

        2
, 1 2 1, , , ..., .q

mn V u n
p

x x d x d x d x 
    

 Then for some 

number 0є   and index 00, we have 

           
1/

0 , 1 2 1! , , ,...,
mn

mn

q
m nq

mn mn mn m n n
p

f є u f m n x d x d x d x




  
      

  

 and consequently (3.4) 

  0

1
lim 0,

mnq

mnm I n I
f є

 


  
     

which contradicts (iii). Hence 

             2 2
, , 1 2 1 , 1 2 1, , ,..., , , ,..., .q q

f V u n V u np p
d x d x d x d x d x d x  

         
 

This completes the proof. 
 
3.5. Theorem 
 Let f = (fmn) be a Musielak-modulus function. 
Let 1  qmn  supmnqmn < . Then 

             2 2
, , 1 2 1 , 1 2 1, , ,..., , , ,...,q q

f V u n V u np p
d x d x d x d x d x d x 

          
 

hold if and only if 
(3.5) 

         
1/

, , 1 2 1

1
lim ! , , ,...,

mnq
m n

mn mn m n n
pm I n I

u f m n x d x d x d x
 

 






 

  
   

  
 

Proof 
Suppose

             2 2
, , 1 2 1 , 1 2 1, , ,..., , , ,...,q q

f V u n V u np p
d x d x d x d x d x d x 

          

and let (3.5) does not hold. There is a number t0 > 0 
and an index sequence (ij) such that (3.6) 

         
1/

, 1 2 1

1
! , , ,...,

mn

i j i j

q
m n

mn mn m n n
pm I n I

u f m n x d x d x d x
  




 

  
  

  
   

, 1, 2,...N i    

Define x = (xmn) by 
 

 
 

 
0 ,1 ;1 , , 1, 2,3,...;

0, , .

i j

i j

m n

mn

t m I n I if i j
x x

if m I n I

 

 

     
  

 

 

Therefore,         2
, , 1 2 1, , , ...,q

mn f V u n
p

x x d x d x d x 
     

  

but         2
, 1 2 1, , ,...,q

mn V u n
p

x x d x d x d x 
    

. Hence 

(3.5) must hold. 
Conversely, if  

        2
, , 1 2 1, , , ...,q

mn f V u n
p

x x d x d x d x 
     

, then for each 

s,  and  



Life Science Journal 2013;10(3)                                                          http://www.lifesciencesite.com 

 

316 

(3.7) 

      
1/

, 1 2 1

1
, , ,...,

mn

i j i j

q
m n

mn mn m n n
pm I n I

u f x d x d x d x N
  




 

  
   

  
  S

uppose that  

        2
, 1 2 1, , ,...,q

mn V u n
p

x x d x d x d x 
    

. Then for some 

number 0 0є   we have 

        
1/

0 , 1 2 1, , ,...,
mn

mn

q
m nq

mn mn mn m n n
p

f є u f x d x d x d x




  
     

  
 

and hence for m, n we get 
  

 0

1 mnq

mnm I n I
f є N

 
  

      , 

for some N > 0, which contradicts (3.5). Hence 

             2 2
, , 1 2 1 , 1 2 1, , ..., , , ,...,q q

f V u n V u n
p p

d x d x d x d x d x d x 
          

. This completes the proof. 
3.6. Theorem  
 Let f = (fmn) be a Musielak-modulus function. 
Let 1  qmn  supmnqmn < . Then 

             2 2
, 1 2 1 , , 1 2 1, , , ..., , , ,...,q q

V u n f V u n
p p

d x d x d x d x d x d x 
          

 hold if and only if 
(3.8)  

         
1/

, , 1 2 1

1
lim ! , , ,..., 0

mnq
m n

mn mn m n n
pm I n I

u f m n x d x d x d x
 

 





 

  
   

  
 

Proof: It is similar to above. Therefore we omit the 
proof. 
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