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Abstract: In this paper we suggest a hybridization scheme to solve Economic Lot Scheduling Problem (ELSP) 

using basic period approach. We proposed a hybrid approach based on Tabu Search (TS) optimization to find the 

optimum value of ki’s and Golden Section Search (GSS) with parabolic interpolation to find the optimum value of 

basic period T. The proposed hybridized scheme is compared with the best known Genetic Algorithm (GA) [4] on 

Bomberger’s dataset [1]. This hybrid approach is found competitive and efficient in solving Economic Lot 

Scheduling Problem and outperform the Genetic Algorithm on problems with higher machine utilization. 
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1. Introduction 

The Economic Lot Scheduling Problem 

(ELSP) has been under research for more than four 

decades. The problem is computationally very 

complex and has been classified as NP-hard problem 

[1]. Despite its complexity the ELSP has been 

encountered in most production planning scenarios. 

Due to NP hard nature of the problem many 

researchers have developed heuristic solutions to the 

problem. There are four approaches to solve the ELSP 

problem: common cycle [7]; basic period [4, 18]; 

extended basic approach [3]; and time varying lot size 

approach [6].  

As the ELSP is generally viewed as NP-hard, 

the focus of most research efforts has been towards 

generating near optimal repetitive schedule(s). To 

date, several heuristic solutions [4, 9, 10, 11, 12, 18] 

have been proposed using any one of the common 

cycle, basic period, extended basic approach, or time-

varying lot size approaches. The common cycle 

approach always produces a feasible schedule and is 

the simplest to implement, however, in some cases the 

solution when compared to the lower bound is of poor 

quality [16]. Unlike the common cycle approach, the 

basic period approach allows different cycle times for 

different products, however, the cycle times must be 

an integer multiple of a basic period. Although the 

basic period approach generally produces a better 

solution to ELSP than common cycle approach, but 

getting a feasible schedule is NP-hard [1]. The BP 

approach assumes that the production runs of all 

products shall be made in each basic period. Then, the 

basic period must be long enough to accommodate the 

production of all the products. This is rather a 

restrictive condition which usually results in 

suboptimal solutions. The extended basic period 

approach removes this restriction and admits the 

possibility that in any basic period only a subset of the 

products shall be produced [14, 15, 18]. This obviates 

the waste of capacity of the production facility. Lastly, 

the time-varying lot size approach is more flexible 

than the other two approaches, allowing for different 

lot sizes for the different products in a cycle [16]. 

Dobson [6] showed that the time-varying lot size 

approach always produced a feasible schedule as well 

as giving a better quality solution.  

The proposed research is motivated by the 

recent success [4, 9, 10, 11, 12, 18] of the meta-

heuristics to solve ELSP. Therefore, this research 

investigates the use of meta-heuristics to solve the 

ELSP problem using basic period approach. We 

applied Tabu Search (TS) with Golden Section Search 

(GSS) [18] to find the solution and compared with 

existing Genetic Algorithm (GA) [4] based best 

known solution. The two meta-heuristics will be 

compared in order to calibrate their performance in 

regards to solution quality produced and computation 

time needed. 

 

2. Basic Period Approach to ELSP 

We present ELSP model [1] which is based on 

the basic period approach. We have to produce m 

distinct products on single production facility with the 

following assumptions. 

 The competing products for production facility do 

not have any precedence over each other.  

 Back-orders are not allowed.  

 An item is considered for production only if its 

inventory is depleted to the zero level. This rule is 

known as Zero-Switching-Rule (ZSR). 

 The production facility is assumed to be failure 

free and to always produce perfect quality 

products. The solution of the ELSP is based on 
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specifying an inventory cycle for each part, 

subject to following conditions: 

 The quantity of a part produced during its cycle 

must be sufficient to meet demand over the cycle. 

 The length of the cycle must be sufficient to 

permit the production of other parts scheduled 

during the cycle. 

A schedule is feasible if the above conditions 

are met. This feasible solution becomes optimal if the 

total cost is minimized. 

The following notations and equations (1-14) 

are used to find the solution of ELSP [1, 5]: 

 

i : An item index, i={1,2, …,n} 

Di : Annual demand for item i (units/ year) 

Pi : Annual production rate for item i 

(units/year) 

Hi : Holding cost for item i ($/unit-year) 

Si : Setup cost for item i ($/setup) 

τi : Setup time for item i (years) 

Qi : Production quantity for item i, a decision 

variable (units) 

Ti : Cycle time for item i, a decision variable 

(in days) 

TCi : Total annual holding and setup cost for 

item i ($/year) 

TC : Total annual holding and setup cost for all 

item ($/year) 

 

The total cost for an item i is: 
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The total annual cost of all n items is: 
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The ELSP is formulated as follows: 

 

Minimize TC 

          ∑((
  
  
⁄ )    

  
  
)   

 

   

 (3) 

 

No two items are produced at the same time 

 

(4) 

 

The first constraint ensures that the time 

spent setting up the machine and producing the items 

does not exceed the time available. Solving the 

unconstrained problem results a loose lower bound 

known as the independent solution (IS).  

The optimal order quantity for item i is given 

by: 

 

   

  Substituting from equation (5) into equation 

(2) gives IS lower bound on the ELSP as follows: 
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  Alternatively, a tighter lower bound (TCL) 

can be obtained by minimizing the total cost (TC) 

subject to constraint in equation (3): 
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And satisfying: 

 

In case if the production facility in under-

utilized, the capacity constraint will not be binding 

and TCL will be same as TCIS. However, with the 

higher utilization, TCL is higher than the IS lower 

bound. The increase in TC and TCL relative to TCIS 

at high utilization is due to production quantities 

becoming larger to reduce the time spend on setup, 

which substantially increases the holding cost.  

Now, we discuss an analytical approach 

which allows achieving the optimal solution to a 

restricted version of the original problem mentioned 

in [6, 19]. The approach is called basic period 

approach. In basic period approach, the cycle time for 

every item i is an integer multiple ki of a fundamental 

cycle T. Thus, the cycle time for an item i is: 

       (9) 

Also the production quantity for an item i 

will becomes: 

       (10) 

The total cost incurred under basic period 

approach (TCBP) is obtained from substituting Ti and 

Qi into equation (2). Thus, the total cost is: 
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TCBP established in Equation (11) is now a 

function of T and ki's. Once TCBP is established, the 

ELSP under BP approach is: 

Minimize TCBP 

 

          ∑(   
       
  

)   

 

   

 (12) 

   

  The constraint in the above optimization 

problem ensures that the fundamental cycle is long 

enough to accommodate the production of all items 

even though not every item has to be produced during 

every fundamental cycle. The constraint guarantees 

the feasibility but may result in a suboptimal solution 

to the original problem. In [1], it is shown that the 

above problem can be formulated and solved as a 

Dynamic Programming (DP) problem. The main idea 

of [1] was to fix T, and solve the DP problem to 

obtain the optimal ki's and then use the information to 

get a better estimate of the optimal T. Thus, this 

approach requires solving a number of DP problems 

to find the optimal T.  

  In a nutshell this approach requires a one-

dimensional search on T. In each of the iteration of the 

search, a DP problem must be solved. Thus, a more 

precise estimate of the optimal T requires larger 

number of the DP problems to be solved that makes 

the use of meta-heuristics even more attractive 

alternate to solve the problem. The above formulation 

very well suits meta-heuristics. GA [4] suggested that 

both the T and ki's are simultaneously determined 

leaving no need to solve DP problems repeatedly with 

different values of T. Furthermore, the curse of 

dimensionality due to DP is not encountered in using 

GA. 

 

3. Proposed Hybridized Approach 

In this research; we suggest hybridization of 

Tabu Search with GSS to solve ELSP using basic 

period approach. We have used Tabu Search to find 

the optimum value of integer multiple ki's and GSS to 

find the optimum value of basic period T. The 

proposed hybridized scheme is analyzed using 

Bomberger’s dataset [1]. A discussion on GSS is 

presented in [18]. GSS is incorporated with Cuckoo 

Search, Particle Swarm Optimization and Simulated 

Annealing to solve ELSP [18]. 

 

4. Tabu Search 

Fred Glover proposed Tabu Search (TS) [10, 

17], to allow Local Search (LS) methods to overcome 

local optima. It includes short term memory to prevent 

the reversal of recent moves, and longer term 

frequency memory to reinforce attractive components. 

The basic principle of TS is to pursue LS whenever it 

encounters a local optimum by allowing non-

improving moves; cycling back to previously visited 

solutions is prevented by the use of memories, called 

tabu lists, that record the recent history of the search, a 

key idea that can be linked to Artificial Intelligence 

concepts. TS approach is similar to steepest 

ascent/mildest descent approach. Glover described TS 

as a Meta-Heuristic approach, i.e., a general strategy 

for guiding and controlling “inner” heuristics 

specifically tailored to the problems at hand. The 

basic pseudo-code of this algorithm is shown below: 

 

Notations  

S, The current solution, 

S
*
, The best-known solution, 

f
*
, Value of S

*
,
 

N(S) The neighborhood of S, 

Ñ(S) The “admissible” subset of N(S) (i.e., non-

tabu or allowed by aspiration). 

 

Initialization 

Choose (construct) an initial solution S0. 

Set S :=S0 , f* := f(S0), S
*
:= S0, T := Ø. 

 

Search 

While termination criterion not satisfied do 

Select S in argmin[f(S')]; 

S'  Ñ(S) 

If f(S) < f*, then set f* := f(S), S* := S; 

record tabu for the current move in 

T (delete oldest entry if necessary); 

end while. 

 

A. Proposed GSS-TS Hybridization Scheme 

  The proposed hybridized TS with GSS 

algorithm is discussed below: 

 The nonlinear objective function given in equation 

(11) is minimized subject to constraint given in 

equation (12). 

 Lower and upper bounds of T and ki’s are 

computed using following equations [5], 
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 ki’s are initialized randomly between [  
     

  ],  

i = 1, 2, …, n 

 Given the initial ki’s, the TCBP subject to 

constraint (12) can be minimized by performing a 

one dimensional search on T based on GSS [18]. 

 The following steps are repeated until the 

maximum iteration becomes reached or until a 

convergence criterion has been met. 

 TS algorithm is applied to generate the new 

solution in k-dimensional search space. Here, 

each dimension represents one ki and the whole 

solution represents one complete possible 

solution to ELSP problem.  

 ki’s associated with solution that do not fulfill 

lower and upper bound requirements are updated 

with randomly generated values between 

[  
     

  ]. 

 Newly generated ki’s associated with solution in 

k-dimensional search space are given to apply  

one dimensional search on T based on GSS [18] 

to minimize TCBP subject to constraint (12). 

 Current best ki’s and T are updated that minimize 

the TCBP. 

 

5. Results 

The proposed hybrid TS optimization 

scheme is applied to solve ELSP problem using basic 

period approach. We use the Bomberger’s dataset 

which is the most commonly used in the ELSP 

literature [1] as shown in Table 1. All the simulations 

are run on a year horizon and by assuming that ten 

items are produced on a single machine. Production 

activity is assumed to be 240 days in a year, only on 

weekdays. The results obtained from detailed analysis 

are exhibited in Table 2, Table 3, and Table 4.  

 

 

Table 1: Data of Bomberger’s problem [4, 18] 

Product 

index, i 
1 2 3 4 5 6 7 8 9 10 

Base 

Demand 
24,000 24,000 48,000 96,000 4800 4800 1440 20,400 20,400 24,000 

Setup cost 

(Si): $ 
15 20 30 10 110 50 310 130 200 5 

Production 

rate (Pi): 

units/day 

30,000 8000 9500 7500 2000 6000 2400 1300 2000 15,000 

Setup time 

(τi) : h 
1 1 2 1 4 2 8 4 6 1 

Holding 

cost (Hi): 

$/unit-year 

0.00065 0.01775 0.01275 0.01000 0.27850 0.02675 0.15000 0.59000 0.09000 0.00400 

 

Table 2 compares the cost obtained by 

solving [1] problem as shown in Table 1 using TS 

and GA [4] algorithms. In Table 3 relative deviation 

from tighter lower bound (TCL), improvement 

achieved through TS algorithm over results obtained 

through GA algorithm [4], efficiency in terms of 

execution time taken by TS algorithm are compared 

while Table 4 compares the detailed solution found 

by TS with GA solution [4].  

Table 2 shows that 48% of TS solutions are 

either better or similar to best results obtained from 

GA algorithm. On the contrary 41% of GA results are 

better or similar to best results obtained from TS 

algorithm. Therefore, it can be concluded that in 

majority of cases TS performed better than GA 

algorithm. 

Table 3 shows that average relative 

deviation from TCL is 19.841% using TS and worst 

average relative deviation from TCL is 21.261% 

using GA algorithm, average improvement over GA 

is 0.952% using TS, and average CPU utilization 

time is 2.609 seconds using TS. It is also important to 

note that GA differs with TS algorithm for high 

utilization as well as for low utilization cases. GA 

found worst relative deviation from TCL for higher 

utilization but results for lower utilization cases are 

comparatively closed to TS algorithm.  

  Table 4 shows detailed comparison of values 

for T and ki (i.e., i=1,2,…10) using TS with GA 

algorithm. For low utilization cases 50 to 92 ki have 

different values but for high utilization cases 95 to 99 

all ki have same value ‘1’. TS found same value for T 

and ki which gives low deviation from TCL. GA 

found the same value for ki but failed to find value for 

T similar to TS algorithm and therefore resulting in 

high deviation from TCL. 
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Table 2: Comparison of TSIS, TCL, GA and TS solutions for Bomberger’s problem [1, 4, 18] 

Utilization (%) TSIS TCL GA TS Best Cost Best Algorithm(s) 

50 5960.445 5960.445 6038.410 6036.748 6036.748 TS 

55 6218.253 6218.253 6328.670 6372.022 6328.670 GA 

60 6459.905 6459.905 6621.750 6619.799 6619.799 TS 

65 6687.131 6687.131 6914.700 6914.837 6914.700 GA 

66.18 6738.810 6738.810 7024.110 7024.100 7024.100 TS 

70 6901.335 6901.335 7395.460 7395.460 7395.460 GA, TS 

75 7103.674 7103.674 7789.630 7917.524 7789.630 GA 

80 7295.114 7295.114 8096.010 8181.051 8096.010 GA 

83 7405.090 7405.090 8250.290 8342.896 8250.290 GA 

86 7511.593 7511.593 8553.310 8483.945 8483.945 TS 

88.24 7588.934 7588.934 8782.420 8782.289 8782.289 TS 

89 7614.763 7614.763 8874.550 8874.803 8874.550 GA 

92 7714.729 7714.729 9745.800 9746.356 9745.800 GA 

95 7811.608 8418.885 12018.080 11949.646 11949.646 TS 

97 7874.534 11290.966 17143.000 17134.260 17134.260 TS 

98 7905.510 15681.535 24533.820 24457.541 24457.541 TS 

99 7936.166 29942.667 55544.470 47550.735 47550.735 TS 

 

 

  

Table 3: Comparison of Relative Deviation from TCL, Improvement over GA, and CPU time taken by algorithms 

for Bomberger’s problem [1, 4, 18]. 

 

% Relative Deviation from TCL % Improvement over GA CPU time (sec.) 

Utilization 

(%) 
GA TS TS TS 

50 1.308 1.280 0.028 3.232 

55 1.776 2.473 0 2.4 

60 2.505 2.475 0.029 2.875 

65 3.403 3.405 0 2.936 

66.18 4.234 4.234 0 2.624 

70 7.160 7.160 0 2.159 

75 9.656 11.457 0 2.46 

80 10.979 12.144 0 2.809 

83 11.414 12.664 0 2.685 

86 13.868 12.945 0.811 2.729 

88.24 15.727 15.725 0.001 2.239 

89 16.544 16.547 0 1.946 

92 26.327 26.334 0 2.663 

95 42.751 41.939 0.569 2.478 

97 51.829 51.752 0.051 2.559 

98 56.450 55.964 0.311 2.58 

99 85.503 58.806 14.392 2.985 

Average 21.261 19.841 0.952 2.609 

Min. 1.308 1.280 0 1.946 

Max. 85.503 58.806 14.392 3.232 

Std. Dev. 23.939 19.765 3.471 0.320 
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Table 4: Detail comparison of GA and TS results for Bomberger’s problem [1, 4, 18] 

Utilization Meta-heuristic 

 GA TS 

50 
T = 28.183 

ki=[5,1,2,1,2,4,10,1,3,1] 

T = 28.594 

ki=[5,1,2,1,2,5,9,1,3,1] 

55 
T = 28.762 

ki=[5,2,2,1,2,4,8,1,2,1] 

T = 29.314 

ki=[3,1,1,1,2,4,8,1,3,1] 

60 
T = 28.863 

ki=[4,1,1,1,2,4,9,1,2,2] 

T = 28.798 

ki=[3,2,1,1,2,4,8,1,2,1] 

65 
T = 30.828 

ki=[2,1,1,1,2,3,7,1,2,1] 

T = 30.838 

ki=[2,1,1,1,2,3,7,1,2,1] 

66.18 
T = 30.443 

ki=[2,1,1,1,2,2,6,1,2,1] 

T = 30.449 

ki=[2,1,1,1,2,2,6,1,2,1] 

70 
T = 33.42 

ki=[2,1,1,1,1,2,3,1,2,1] 

T = 33.42 

ki=[2,1,1,1,1,2,5,1,2,1] 

75 
T = 31.794 

ki=[3,1,1,1,2,3,7,1,1,1] 

T = 35.719 

ki=[2,1,1,1,1,2,6,1,1,1] 

80 
T = 34.438 

ki=[2,1,1,1,1,3,6,1,1,1] 

T = 35.614 

ki=[1,1,1,1,1,2,5,1,1,1] 

83 
T = 34.951 

ki=[1,1,1,1,1,2,5,1,1,1] 

T = 35.815 

ki=[1,1,1,1,1,2,4,1,1,1] 

86 
T = 37.131 

ki=[1,1,1,1,1,1,5,1,1,1] 

T = 38.371 

ki=[1,1,1,1,1,2,4,1,1,1] 

88.24 
T = 38.442 

ki=[1,1,1,1,1,1,3,1,1,1] 

T = 38.436 

ki=[1,1,1,1,1,1,3,1,1,1] 

89 
T = 41.748 

ki=[1,1,1,1,1,1,3,1,1,1] 

T = 41.758 

ki=[1,1,1,1,1,1,3,1,1,1] 

92 
T = 53.904 

ki=[1,1,1,1,1,1,2,1,1,1] 

T = 53.914 

ki=[1,1,1,1,1,1,2,1,1,1] 

95 
T = 75.809 

ki=[1,1,1,1,1,1,1,1,1,1] 

T = 75 

ki=[1,1,1,1,1,1,1,1,1,1] 

97 
T = 125.08 

ki=[1,1,1,1,1,1,1,1,1,1] 

T = 125 

ki=[1,1,1,1,1,1,1,1,1,1] 

98 
T = 188.14 

ki=[1,1,1,1,1,1,1,1,1,1] 

T = 187.5 

ki=[1,1,1,1,1,1,1,1,1,1] 

99 
T = 439.45 

ki=[1,1,1,1,1,1,1,1,1,1] 

T= 375 

ki=[1,1,1,1,1,1,1,1,1,1] 

 

6. Conclusion 

This research presented hybridized scheme 

based on Tabu Search and Golden section search to 

solve the ELSP problem under basic period approach. 

This hybrid technique used Tabu Search to find the 

optimum value of ki‘s and followed by golden section 

search to find the basic period T. The feasibility of the 

solution is guaranteed with a constraint that ensures 

the items assigned in each period can be produced 

within the length of the period. The experimental 

results indicate following outcomes: 

 The hybridization scheme was able to find BP 

solution comparatively similar to GA [4] for the 

low utilization problems. 

 The hybridization scheme was also able to find 

comparatively better BP solutions than GA [4] for 

the high utilization problems. 
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