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Abstract: This study adopts the Monte Carlo simulation method to investigate a coupled XY model on two-
dimensional triangular lattices. The simulation reveals a q-state clock-like phase transition in addition to the original 
XY phase transition. Analyzing the spin histograms exposes that the strong on-site coupling tends to lock the 
difference between the phase variables of the two XY order parameters and generates an additional phase transition. 
The novel discrete q-state symmetry arising from the coupling term is demonstrated to joint the continuous 
symmetry of the model in this investigation.  
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1. Introduction 

There has much research interest in statistical 
models that simultaneously display both continuous 
and discrete symmetries. Kosterlitz and Thouless1 
have explained that the two-dimensional XY phase 
transition is not a conventional continuous phase 
transition, but rather involves the breakage of bound 
pairs of the topological vortex and antivortex in the 
system. Although the continuous aspect of phase 
transition in XY model has been studied extensively, 
the Mermin-Wagner2 theorem does not exclude the 
possibility of discrete symmetry breaking. We 
propose a coupled XY model to investigate the 
competition between the continuous and discrete 
phase transitions. Physical systems that 
simultaneously display both discrete and continuous 
symmetries have received considerable interest. 
Three-state Potts-like phase transitions involving 
herringbone order have been investigated. The XY 
continuous transition might compete with some 
discrete transitions in the system. The Ising-like 
phase transition was taken into account in competing 
with Kosterlitz-Thouless transition in He3 superfluid 
film.3 Thus Lee et al. examined the nonuniversal 
critical behavior in a coupled XY-Ising model.4 
Notably, the classical XY model can be expressed as 
many forms of coupled XY model and with variation 
of the temperature or other parameters, two or more 
successive transitions can occur in the case of 
strongly coupled excitation. Jiang et al.5,6 studied a 
coupled XY model based on a Hamiltonian proposed 
by Bruinsma and Aeppli7 for smectic liquid crystals. 
The on-site coupling between the two XY ordering 
parameters in the proposed model can generate 

discrete phase transitions, such as Potts transitions8. 
Jiang et al.9 demonstrated a unique three-state Potts-
like discrete transition following the continuous XY 
transition in the system. Jiang et al. also found two 
different orderings established simultaneously via a 
single continuous phase transition in some coupling 
parameter domain. Moreover, they used the new 
phenomena to interpret the liquid crystal Sm-A to 
Hex-B transition.10,11 Considerable interest exists in 
the competition between the continuous phase 
transition and the discrete aspect in two-dimensional 
XY systems and in smectic liquid crystal layers.12,13 
A coupled XY model is proposed in this 
investigation, in which a possible q-fold disturbance 
similar to that three-fold one of Jiang et al. is 
introduced to the on-site coupling. The proposed 
model reveals versatile properties and several distinct 
phase transitions occur. Besides the classical XY 
transition, a unique q-state clock transition is 
generated in the intrinsic XY system. 

 
2. Physical model and analysis 

The coupled XY Hamiltonian in this investigation 
is as follows  
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where the first and the second terms are XY models 
themselves and the coupling term is introduced in the 
third term. Two angular variables θi and φi are 
located at each triangular lattice site i. For the 
experimental importance, it is more realistic to 
simulate the model on the triangular lattice than the 
square lattice. <i,j> represents the nearest-neighbor 
pairs of sites and denotes the nearest-neighbors’ 
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coupling in the first two terms. The third term shows 
that the coupling between the two XY order 
parameters is localized at the same lattice site. The 
integer number q of coupled XY model will decide 
coupling form of the two order parameters. It is noted 
that as the θ and φ are coupled relatively strongly, the 
phase transitions are quite interesting. Therefore J3 = 
3.1 (larger than both J1 and J2) is chosen to examine 
the phenomena in the following studies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.Heat-capacity (C) versus temperature. 
Figures (a), (b), (c) and (d) display the cases of q= 4, 
5, 8 and 12, respectively. 
 

The simple scenario, the case of J1 > J2 (say, J1 
= 1.0 and J2 = 0.5), is explored in this investigation. 
Employing the standard Monte Carlo technique, we 
conducted the simulation works on 36X36 triangular 
lattices with periodic boundaries. The heat-capacity 
data as a function of temperature for various q were 
obtained by calculating the energy fluctuation 

)(
1 22

2
 HH

NT
CV

, as displayed in Figs. 

1(a) – 1(d). During the simulation, the angles θi and 
φi are treated as continuous unconstrained variables. 
1,000,000 Monte Carlo steps (MCS) are used for 
each temperature. To ensure thermal equilibrium, the 
first 200,000 MCS are discarded. There appear two 
heat-capacity peaks for q ≤ 4, and three peaks for q > 
4. This phenomenon shows that the system proceeds 
through two phase transitions for q ≤ 4, and pass 
through three phase transitions for q > 4. We show 
the heat-capacity diagram of the case q = 4 in Figs. 
1(a), a sharp peak is located at T = 0.88 and a broad 
hump appears around T = 1.7. (The temperature is in 
unit of J1 in this study.). The heat-capacity diagrams 
of q = 5, q = 8, and q = 12 are displayed in Figs. 1(b), 
1(c), and 1(d), respectively. All of the figures display 
a broad hump around T = 1.7. In the case of q = 4, 
another sharp peak shows at T = 0.88. It is noted that 
for the cases of q > 4, the sharp peak at the lower 
temperature is divided into two peaks. An extra 
transition appears and these two peaks constitute a 
critical transition region. The new peak of the 
transition further shifts to the lower temperature as 
the value q increases. For the case of q = 5, the peak 
is located at T = 0.64. For the case of q = 8, the peak 
is located at T = 0.27. For q=12, the temperature of 
the lowest heat-capacity peak approaches zero, as 
shown in the figure. Comparing with the smooth heat 
capacity peak of KT type transition these heat 
capacities peaks are rather singular. They are affected 
by the strong coupling of the two order parameters. 
Especially in the case of q = 3, the two peaks would 
combined to transition simultaneously. And the 
transition belongs to the special university class in 
discussing the exponents of the heat capacity and the 
helicity modulus.  

To illustrate the nature of these phase 
transitions, the spin histograms of the states near the 
heat-capacity peaks for various values of q are 
analyzed directly. For the case of q = 4, Figs. 2(a) 
and 2(e) illustrate histograms of parameters θi and φi 
at low temperature T = 0.1, we find both θi and φi are 
accumulative and exhibit a single hump. Raising the 
temperature to T = 0.7, which is below the first phase 
transition (whereas TC1 = 0.88). The distributions of 
both θi and φi still exhibit a single hump as shown in 
Figs. 2(b) and 2(f). Notably, φi initiates small satellite 
peaks. The temperature is raised gradually to T = 1.0, 
which is the temperature between the first and second 
phase transition, TC2 = 1.7. Figures 2(c) and 2(g) 
display the spin distributions of θi and φi. Despite the 
distribution of θi still displaying a single hump, the 
distribution of φi separates into four distinct peaks 
with almost equal height in one period 2π of φi with 
equal interval of 2π/4. Further increasing the 
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temperature to above the TC2, the spin distributions at 
T = 1.8 are drawn in Figs. 2(d) and 2(h). Both spin 
distributions of θi and φi were observed to smear out 
and distribute over all angles equally. Such that 
orders θ and φ both display an isotropic character.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Histograms for parameters θi and φi of the 
case q = 4. 

 
 
For the case of q = 5, the unusual histograms of 

φi near the heat-capacity peaks are illustrated in 
Figs. 3(a)-3(d). The distribution of θi is not shown 
here because it has the similar evolution to that of 
the former case of q = 4 for various values of q. At 
low temperature T = 0.1, the distribution of φi 
displays a single peak as shown in Fig. 3(a). At T = 
0.7, which is the temperature between the first and 
second transition temperature (TC1 = 0.64, TC2 = 
0.88) in the critical region, three peaks rather than 
the original concentrated single peak are shown in 
Fig. 3(b). Notably, the number of peaks of the 
distribution of φi increases with increasing 
temperature. Further increasing the temperature to 
just above the TC2, the distribution of φi separates 
into five distinct peaks with almost equal height in 
one period 2π of φi with equal interval of 2π/5. The 
spin distribution of φi at T = 1.0 is shown in Fig. 
3(c). Figure 3(d) displays the spin distributions of φi 
at T = 1.8, which is the temperature just above the 
third phase transition (TC3 = 1.7). The spin 
distribution of φi is smeared out and spread over all 
angles equally. For the case of q = 8, the distribution 
evolution of φi is similar to the case of q = 5 as 
shown in Figs. 3(e) – 3(h). For the case of q = 12, at 
T = 0.1, the spin distribution of φi appears three 

peaks as shown in Fig. 3(i). The first transition 
temperature is supposed to be lower than T = 0.1. 
The distribution evolution of φi near the other 
transition temperature is similar to the cases of q ≧ 
5. As shown in the Fig. 3(j), the distribution of φi 
reveals nine peaks at T = 0.7, which is below TC2 
(TC2 = 0.88). And at T = 1.0, Fig. 3(k) shows that the 
distribution of φi separates into twelve distinct peaks 
with almost equal height in one period 2π of φi with 
equal interval of 2π/12. At T = 1.8, higher than TC3 
(TC3 = 1.7), the φi order distributes over all 
orientation as shown in Fig. 3(l). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Histograms of the parameter φi. 

 
The spin histograms at T = 0.1, 0.7, 1.0 and 1.8 

show that orders θ and φ proceed through several 
distinct phase transitions. At low temperatures (T < 
0.1), both θ and φ are ordered, and both spin 
distributions are accumulative. The bond 
orientational order corresponds to θi ≈ θj and φi ≈ φj. 
Notably, θi ≈ φi also, owing to the strong on-site 
coupling of J3. At temperatures higher than TC1, θ 
order remains unchanged, φ order starts the first XY-
like phase transition into multi-fold degenerate state. 
The coupling resulting from the third term will be 
unable to guide the orientation of φ to follow that of 
θ. Thus, the bond orientation of order parameter φ 
evolves into multiple directions corresponding to the 
equivalent energy minima in this temperature range. 
For q ≤ 4, the system passes through the transition 
into a steady q folder degenerate state. For q > 4, the 
system goes through the transition into multi-fold 
degenerate intermediate state, and more degeneracy 
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occurs as the temperature is increasing. As the 
temperature is raised to T > TC2, the on-site J3 
coupling generates q equivalent steady energy 
minima in one period 2π of φi with equal interval of 
2π/q. The bond orientation of φ divides into q 
distinct directions, and the order parameter of φ 
proceeds through the second phase transition. The 
system exhibits q disorder freedom for the φ 
parameter in the degenerate energy state. The 
simulation results are also inspected by use of the 
energy histograms and the Binder’s fourth-order 
cumulant of energy.14 The analysis does not reveal 
any signal of the first order phase transition. A q-
state clock model presented one second-order 
transition for q ≤ 4, two KT transitions for q > 4. As 
the parameter q increases the lower transition 
temperature approaches zero, leaving one KT 
transition in the system. The simulation results 
present characters of discrete symmetry resemble 
that of the q-state clock model. As the temperature is 
further raised, the system melts and proceeds 
through the last XY phase transition. Both θ and φ 
then are melted into a completely disordered phase. 
The simulation reveals the unique q-state clock-like 
phase transition in addition to the original XY phase 
transitions. Analyzing the spin histograms exposes 
that the strong on-site coupling tends to lock the 
difference between the phase variables between the 
two XY order parameters and thus generates an 
additional phase transition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Phase diagram of transition temperature 
versus state parameter q. 
 
 

 
In order to illustrate the occurrence of the q-

state clock-like phase transition, we summarize the 
simulation data to plot the phase diagram. Figure 4 
shows the schematic diagram of phase transition 
sequences as the function of parameter q. The solid 
dots are determined by the peaks of heat-capacity. 
The heavy line at T = 1.7 denotes the XY isotropic 
transition in the system. For q > 4, the q-state 
intermediate transition at T = 0.88 is denoted by the 
dash line. The thin line presents the lowest transition 
temperature. As the parameter q increases, the 
transition shifts to lower temperatures. The q-state 
clock intermediate phase is located in the grid region 
between the dash line and the light line. It is 
assumed that as the coupling strength is lowered 
down and the parameter q is sufficient large, the 
discrete q-state clock-like transition of the coupled 
XY model would evolve back to the original 
continuous XY transition. 

 
 

3. Discussion and Conclusions 
     To summarize the results, we examine a unique 
coupled XY model on in two-dimensional triangular 
lattices by use of the Monte Carlo simulation. The 
phase transition in the model reveals both continuous 
and discrete symmetries. The system proceeds 
through two phase transitions for q ≤ 4, through three 
phase transitions for q > 4. Analyzing the spin 
histograms of θi and φi shows that the φ order 
precedes the discrete q-state clock-like phase 
transition. As the value q is sufficient large, the 
discrete q-state clock-like transition would become a 
continuous XY transition. The occurring of the 
unique q-state clock-like phase transition in addition 
to the XY phase transition is due to the coupling 
term, which tends to lock the difference between the 
phase variables of the two XY systems. The coupled 
XY model ascertains that a discrete symmetry arising 
from the coupling term joints to the original 
continuous symmetries. And the competition of 
continuous and discrete symmetries is also 
demonstrated in the investigation. 
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