
Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2992

Hybridization of Multiple Intelligent Schemes to Solve Economic Lot Scheduling Problem Using Basic Period

Approach

Syed Hasan Adil
1
, Syed Saad Azhar Ali

2
, Aarij Hussaan

1
, Kamran Raza

1

1.
 Department of Computer Science,

2.
 Department of Electronic Engineering, Iqra University,

Main Campus: Defence View, Shaheed-e-Millat Road (Ext.) Karachi-75500, Pakistan

hasan.adil@iqra.edu.pk

Abstract: Economic Lot Scheduling Problem (ELSP) has been an area of active research for many years. Different

approaches have been proposed to find the optimal solution for the problem. Traditionally, researchers have used a

single algorithm to find the solution. In this paper, we argue that better results can be obtained for the ELSP

problem, if we use a hybridization scheme instead of the traditional single algorithm approach. In this context, we

suggest multiple hybridization of an “intelligent” technique with Golden Section Search (GSS) to solve ELSP using

basic period approach. We have used three hybrid approaches based on Simulated Annealing (SA), Cuckoo Search

(CS), and Particle Swarm Optimization (PSO) to find the optimum value of integer multiple ki’s and GSS to find the

optimum value of basic period T. The proposed hybridized schemes are applied on Bomberger’s dataset [1], random

data generated using distribution given in Dobson’s [2] and also on random data generated using new distribution

derived from Bomberger’s dataset [1]. Comparative analyses are presented in which the hybridized algorithms based

on SA, CS and PSO incorporated with GSS are compared. These hybridized schemes were found efficient for both

low and high machine utilization.

[Adil SH, Ali SSA, Hussaan A, Raza K. Hybridization of Multiple Intelligent Schemes to Solve Economic Lot

Scheduling Problem Using Basic Period Approach. Life Sci J 2013;10(2):2992-3005] (ISSN:1097-8135).

http://www.lifesciencesite.com. 414

Keywords: Economic Lot Scheduling Problem; Basic Period Approach; Cuckoo Search; Particle Swarm

Optimization; Golden Section Search.

1. Introduction

The ELSP has been under research for more

than four decades. The problem is computationally

very complex and has been classified as NP-hard

problem [1]. Despite its complexity the ELSP has

been encountered in most production planning

scenarios [3]. Due to the NP hard nature of the

problem many researchers have developed heuristic

solutions to the problem. There are four approaches

to solve the ELSP problem: common cycle [4]; basic

period [5]; extended basic approach [6]; and time

varying lot size approach [2].

As the ELSP is generally viewed as NP-

hard, the focus of most research efforts has been

towards generating near optimal repetitive

schedule(s). To date, several heuristic solutions [5, 7,

10, 11, 12, 13, 14, 15, 18, 19] have been proposed

using any one of the common cycle, basic period,

extended basic approach, or time-varying lot size

approaches. The common cycle approach always

produces a feasible schedule and is the simplest to

implement, however, in some cases the solution when

compared to the lower bound is of poor quality [16].

Unlike the common cycle approach, the basic period

approach allows different cycle times for different

products, however, the cycle times must be an integer

multiple of a basic period. Although the basic period

approach generally produces a better solution to

ELSP than common cycle approach, but getting a

feasible schedule is NP-hard [1]. The basic period

approach assumes that the production runs of all

products shall be made in each basic period.

Therefore, the basic period must be long enough to

accommodate the production of all the products. This

is a rather restrictive condition which usually results

in suboptimal solutions. The extended basic period

approach removes this restriction and admits the

possibility that in any basic period only a subset of

the products shall be produced [17, 18]. This obviates

the waste of capacity of the production facility.

Lastly, the time-varying lot size approach allows for

different lot sizes for the different products in a cycle

[16]. Dobson [2] showed that the time-varying lot

size approach always produced a feasible schedule.

The proposed research is motivated by the

recent success [3, 5, 8, 9, 10, 22, 25, 26, 27] of the

meta-heuristics to solve ELSP. Therefore, this

research investigates the use of meta-heuristics to

solve the ELSP problem using basic period approach.

We applied PSO, CS, and SA to find the solution.

The meta-heuristics will be compared in order to

calibrate their performance in regards to solution

quality produced and computation time needed.

The rest of the paper is organized as follows:

Section 2 outlines the problem statement. Section 3

describes the theory behind basic period approach to

http://www.lifesciencesite.com/

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2993

ELSP. Section 4 describes the proposed hybrid

approach. Section 5 gives an introduction to the GSS

algorithm. Section 6 gives the reason behind the

selection of hybridization of intelligent techniques

with GSS. Section 7 gives an introduction to the PSO

algorithm and our proposed hybridization scheme

using PSO and GSS. Similarly, Section 8 gives an

introduction CS algorithm and our proposed

hybridization scheme using CS and GSS. Section 9

presents our hybridization scheme using SA and

GSS. In Section 10, we compare the results of our

proposed approaches with other results. We present

our discussions and conclusions in Section 11.

2. Problem Statement

The ELSP is to schedule the production of

several different items in the same facility on

repetitive basis. The facility is such that only one

item can be produced at a time, there is a setup cost

and a setup time associated with each item, the

demand rate for each item is constant over an infinite

planning horizon, and no shortages are allowed [1, 5].

A feasible production schedule is defined as the one

in which: (a) at most one item is produced by the

facility at any time (b) the total time load on the

facility does not exceed the available time capacity;

and (c) demand is satisfied without shortages.

3. Basic Period Approach to ELSP

We present ELSP model [1] which is based on

the basic period approach. We have to produce m

distinct products on single production facility with

the following assumptions.

 The competing products for production facility

do not have any precedence over each other.

 Back-orders are not allowed.

 An item is considered for production only if its

inventory is depleted to the zero level. This rule

is known as Zero-Switching-Rule (ZSR).

 The production facility is assumed to be failure

free and to always produce perfect quality

products.

The solution of the ELSP is based on

specifying an inventory cycle for each part, subject to

following conditions:

 The quantity of a part produced during its cycle

must be sufficient to meet demand over the

cycle.

 The length of the cycle must be sufficient to

permit the production of other parts scheduled

during the cycle.

A schedule is feasible if the above conditions

are met. This feasible solution becomes optimal if the

total cost minimizes.

The following notations and equations (1-14)

are used to find the solution of ELSP [1, 5]:

i : An item index, i ={1,2, …,n}

Di : Annual demand for item i (units/ year)

Pi : Annual production rate for item i

(units/year)

Hi : Holding cost for item i ($/unit-year)

Si : Setup cost for item i ($/setup)

τi : Setup time for item i (years)

Qi : Production quantity for item i, a decision

variable (units)

Ti : Cycle time for item i, a decision variable

(in days)

TCi : Total annual holding and setup cost for

item i ($/year)

TC : Total annual holding and setup cost for all

item ($/year)

The total cost for an item i is:

(

⁄) (

⁄) (1)

The total annual cost of all n items is:

 ∑[

(

⁄) (

⁄)]

 (2)

The ELSP is formulated as follows:

Minimize TC

 ∑((

⁄)

)

 (3)

No two items are produced at the same time (4)

The first constraint ensures that the time

spent setting up the machine and producing the items

does not exceed the time available. Solving the

unconstrained problem results a loose lower bound

known as the independent solution (IS). The optimal

order quantity for item i is:

 Substituting from equation (5) into equation

(2) gives IS lower bound on the ELSP as follows:

 ∑√

()

 (6)

 Alternatively, a tighter lower bound (TCL)

can be obtained by minimizing the total cost (TC)

subject to constraint in equation (3):

 √

 ()

 ()
 (7)

 √

 (

⁄)

 (5)

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2994

And satisfying:

In case if the production facility in under-

utilized, the capacity constraint will not be binding

and TCL will be same as TCIS. However, with the

higher utilization, TCL is higher than the IS lower

bound. The increase in TC and TCL relative to TCIS

at high utilization is due to production quantities

becoming larger to reduce the time spend on setup,

which substantially increases the holding cost.

Now, we discuss an analytical approach

which allows achieving the optimal solution to a

restricted version of the original problem mentioned

in [6, 19]. The approach is called basic period

approach. In basic period approach, the cycle time for

every item i is an integer multiple ki of a fundamental

cycle T. Thus, the cycle time for an item i is:

 (9)

Also the production quantity for an item i will

becomes:

 (10)

The total cost incurred under basic period

approach (TCBP) is obtained from substituting Ti and

Qi into equation (2). Thus, the total cost is:

TCBP established in Equation (11) is now a

function of T and ki's. Once TCBP is established, the

ELSP under BP approach is:

Minimize TCBP

 ∑(

)

 (12)

 The constraint in the above optimization

problem ensures that the fundamental cycle is long

enough to accommodate the production of all items

even though not every item has to be produced during

every fundamental cycle. The constraint guarantees

the feasibility but may result in a suboptimal solution

to the original problem. In [1], it is shown that the

above problem can be formulated and solved as a

Dynamic Programming (DP) problem. The main idea

of [1] was to fix T, and solve the DP problem to

obtain the optimal ki's and then use the information to

get a better estimate of the optimal T. Thus, this

approach requires solving a number of DP problems

to find the optimal T.

 In a nutshell this approach requires a one-

dimensional search on T. In each of the iteration of

the search, a DP problem must be solved. Thus, a

more precise estimate of the optimal T requires larger

number of the DP problems to be solved that makes

the use of meta-heuristics even more attractive

alternate to solve the problem. The above formulation

very well suits meta-heuristics. GA [5] suggested that

both the T and ki's are simultaneously determined

leaving no need to solve DP problems repeatedly

with different values of T. Furthermore, the curse of

dimensionality due to DP is not encountered in using

GA.

4. Proposed Hybridized Approach

In this research; we suggest multiple

hybridization of an “intelligent” technique with GSS

to solve ELSP using basic period approach. We have

used three hybrid approaches based on SA, CS, and

PSO to find the optimum value of integer multiple

ki's and GSS to find the optimum value of basic

period T. The proposed hybridized schemes are

analyzed using Bomberger’s dataset [1], random data

generated using distribution given in Dobson [2], and

random data generated using new distribution derived

from Bomberger’s dataset [1].

5. Golden Section Search

GSS [20] is an optimization technique that

finds the optimum (i.e., minimum/maximum) of a

function in one dimensional search space. In order to

understand the working of GSS algorithm, we first

need to understand Bisection Method (BM) for

finding root of a function. Given an interval [a, b]

such that f(a) * f(b)< 0 and also function is

continuous in the given interval, BM finds the root of

a function in an iterative manner by first computing

the midpoint m of the interval [a, b] so that we have

two intervals [a, m] and [m, b], it then selects the

interval which is closer to the root of the function.

The BM algorithm will repeat the same procedure

until f(m) = 0 or abs(b - a)< tolerance value (i.e.,

abs() function will always give positive value).

GSS algorithm is also similar to BM

algorithm. We first need to provide an interval [a, c]

in which we want to find the minimum of the

function (i.e. for maximum we can just take the

negative of the function). GSS is only able to find

minimum of the function if we have a triplet of points

a<b<c, such that f(b)<f(a) and f(b)<f(c). In this case

we are sure that the function (if it is smooth) has a

minimum in the interval [a, c].

The basic working of the GSS can be

described as follows:

 Given an interval [a, c], GSS first bracket the

minimum of the function with a triplet a<b<c,

such that f(b)<f(a) and f(b)<f(c).

 (∑

 ∑

) (8)

 ∑ (

)

 (11)

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2995

 The optimal bracketing interval (a, b, c) has its

middle b a fractional distance 0.38197 from one

end (say a), and 0.61803 from the other end (say

b). These fractions are known as golden mean or

golden section.

 Repeat the following step until the minimum of

the function converged to the desired tolerance

level.

 Using the current bracketing triplet of points, the

next point to be tried is a fraction 0.38197 into

the larger of the two intervals (measuring from

the central point of the triplet). If it starts out

with a bracketing triplet whose segments are not

in the golden ratios, the procedure of choosing

successive points at the golden mean point of the

larger segment will quickly converge to the

proper self-replicating ratios.

6. Why Hybridization with Golden Section Search

In this paper three nature inspired

optimization techniques including SA, PSO, and CS

are hybridized with GSS technique to find the

optimum value for integer value ki's and basic Period

T respectively. In this proposed technique we first

find the value of ki's using SA/CS/PSO and then used

these values to find the value of T. It is important to

observe that for a given value of ki's the ELSP cost

function becomes one variable uni-modal function as

shown in Fig 1. For one variable uni-modal scenario,

we don’t need to apply any complex optimization

technique instead we can apply GSS to efficiently

find the minima of the function (i.e., the value of T

where cost is minimum).

Figure 1. ELSP cost function for specific ki’s

7. Particle Swarm Optimization

Particle swarm optimization is a population

based swarm intelligence algorithm. It was originally

proposed by Kennedy [26] as a simulation of the

social behavior of social organisms, such as bird

flocking and fish schooling. PSO uses the physical

movements of the individuals (particles) in the swarm

and has a flexible and well balanced mechanism to

enhance and adapt to global and local exploration

abilities. The PSO algorithm is widely used in many

optimization problems due to the intrinsic simplicity

of the algorithm itself. It does not require

mathematical computation like derivatives or

complex encoding like Genetic Algorithm. PSO

maintain best solution of each particle along with the

global best solution of the whole population and

therefore it is less sensitive to local minima problem.

The PSO algorithm works by selecting a set

of P particles and initialized by placing it into

random positions in the solution space. The position

of each particle represents a solution to the problem

and its performance is evaluated by objective

function specific to a particular problem. The

velocity of the each particle vj is defined as the

change of its position. The direction of movement of

each particle is the active interaction of individual

and whole swarm flying experiences. Each particle

adjusts its path towards the solution based on its own

previous best position and previous best position of

the whole population, namely pj and pg. The

velocities and positions of particles are updated using

the following formulas:

 () () (())

 (())
(13)

 () () ()

(14)

Where t is the previous iteration and t+1 is

the current iteration to compute; cj and cg are the

acceleration coefficients; randj, randg are random

numbers between 0 and 1 inclusive associated with

the best solution of a particular particle and the best

solution of the whole swarm. cj and cg are used to

provide the maximum distance a particle will move

in a single iteration. The objective function is than

computed using particles placed in new positions at

iteration t+1. The same equations (13) and (14) are

repeated until the maximum iteration becomes

reached or until a convergence criterion has been

met. At the end of all iterations the best solution

found by the whole swarm is returned.

A. Proposed GSS-PSO Hybridization Scheme

 The proposed hybridized PSO with GSS

algorithm is discussed below:

 The nonlinear objective function given in equation

(11) is minimized subject to constraint given in

equation (12).

 Computes lower and upper bounds of T and ki’s

using following equations [5],

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2996

 ∑

 (15)

{

√((∑

) ∑ ())

(∑) ()

 }

 (16)

 (17)

 ⌈((

))(∑

)⌉ (18)

 Initializes ki’s randomly between [

], i =

1, 2, …, n

 Given the initial ki’s, the TCBP subject to

constraint (12) can be minimized by performing

a one dimensional search on T based on GSS as

discussed in Section 5 [20].

 Repeat the following steps until the maximum

iteration becomes reached or until a convergence

criterion has been met.

 Apply PSO algorithm as earlier using equation

(13) and (14) to generate the new positions of P

particles in k-dimensional search space. Here, the

position of each particle in each dimension

represents one ki and the whole particle

represents one complete possible solution to

ELSP problem

 Updates ki’s associated with each particle that do

not fulfill lower and upper bound requirements

with randomly generated values between

[

].

 Given newly generated ki’s associated with each

particle in k-dimensional search space; apply a

one dimensional search on T based on GSS as

discussed in section V [20] to minimize TCBP

subject to constraint (12).

 Updates current best ki’s and T that minimize

TCBP.

 Updates best position (solution) pj of each

particle in the swarm.

 Updates best position pg of the whole swarm

using best solution of all the particles in the

swarm.

8. Cuckoo Search Optimization

CS is a population based optimization

algorithm. It was originally proposed by Yang [21]

for solving optimization problems. CS is based on the

obligate brood parasitic behavior of some cuckoo

species in combination with the Lévy Flight behavior

of some birds and fruit flies. The CS is comparatively

simpler than other meta-heuristic techniques. During

each iteration CS computes fitness function and

based on the output worst nests are abandoned (i.e.,

nest which does not provide good solution). In each

generation CS moves towards global optimum by

replacing the possible solutions with the good ones

and at the end of the execution optimum solution is

obtained.

The basic working of the CS algorithm can

be described as follows:
 Initializes N random host nest.

 The number of available host nests is fixed.

 Each cuckoo lays one egg at a time and dumps it

in a randomly chosen nest.

 Generates new N nests using the Lévy Walk

around the best solution obtained so far this will

speed up the local search.

 Compares old nests with corresponding new

nests and selects the best N nests from them.

 A host can discover an alien egg with a

probability pi. If the pi>pa (i.e., pa is the

probability of discovering alien eggs) then the

host bird can either throw the egg away or

abandon the nest.

 For abandoned nests CS generates new random

nests having locations far enough from the

current best solution. This will make sure the

system will not be trapped in a local optimum.

 The best nests with high quality of eggs (i.e.

solutions) will be carried over to the next

generations.

 A. Proposed GSS-CS Hybridization Scheme

 The proposed hybridized CS with GSS

algorithm is discussed below:

 The nonlinear objective function given in equation

(11) is minimized subject to constraint given in

equation (12).

 Computes lower and upper bounds of T and ki’s

using equations (13, 14, 15, 16),

 Initializes ki’s randomly between [

], i = 1,

2, …, n

 Given the initial ki’s, the TCBP subject to

constraint (12) can be minimized by performing a

one dimensional search on T based on GSS as

discussed in Section 5 [20].

 Repeat the following steps until the maximum

number of iteration is reached or until a

convergence criterion is met.

 Apply CS algorithm as discussed earlier to

generate/select N nests in k-dimensional search

space. Here, the position of each nest in each

dimension represents one ki and the whole nest

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2997

represents one complete possible solution to

ELSP problem

 Updates ki’s associated with each particle that do

not fulfill lower and upper bound requirements

with randomly generated values between

[

].

 Given newly generated ki’s associated with each

nest in k-dimensional search space; apply a one

dimensional search on T based on GSS as

discussed in Section 5 [20] to minimize TCBP

subject to constraint (12).

 Updates current best ki’s and T that minimize

TCBP

9. Simulated Annealing Optimization

Simulated annealing is a popular meta-

heuristic algorithm for addressing optimization

problems. The highlighting factor of this algorithm is

its ability to escape the local optima by broadening its

search area in order to find the global optimum. It

derives its name from the physical process of

annealing with solid ores, where the crystalline solids

are heated and then they are cooled slowly until they

achieve a configuration of crystals free of defects.

Simulated Annealing uses these principles to search

for global optimums of optimization problems. The

basic pseudo-code [23, 24] of this algorithm is shown

below:

Select an initial solution
Select the temperature change counter k=0
Select a temperature cooling schedule, tk
Select an initial temperature T = to >= 0
Select a repetition schedule Mk that defines the

number of iterations executed at each temperature tk
Repeat
Set repetition counter m = 0

Repeat
Generate a solution ()
Calculate () ()
 If
If with

probability ()
m m + 1

Until m = Mk

k k + 1

Until stopping criterion is met.

A. Proposed GSS-SA Hybridization Scheme

 The proposed hybridized SA with GSS

algorithm is discussed below:

 The nonlinear objective function given in equation

(11) is minimized subject to constraint given in

equation (12).

 Computes lower and upper bounds of T and ki’s

using equations (13, 14, 15, 16),

 Initializes ki’s randomly between [

], i = 1,

2, …, n

 Given the initial ki’s, the TCBP subject to

constraint (12) can be minimized by performing a

one dimensional search on T based on GSS as

discussed in section V [20].

 Repeat the following steps until the maximum

number of iteration is reached or until a

convergence criterion is met.

 Apply SA algorithm as discussed earlier to

generate/select metropolis in k-dimensional search

space. Here, the position of metropolis in each

dimension represents one ki and the whole nest

represents one complete possible solution to

ELSP problem

 Updates ki’s associated with each particle that do

not fulfill lower and upper bound requirements

with randomly generated values between

[

].

 Given newly generated ki’s associated with

metropolis in k-dimensional search space; apply a

one dimensional search on T based on GSS as

discussed in Section 5 [20] to minimize TCBP

subject to constraint (12).

 Updates current best ki’s and T that minimize

TCBP.

10. Results

In this study we performed three different

computational analysis using SA, CS, and PSO. First

analysis is based on [1] dataset as shown in Table 1,

second analysis is based on random data generated

using three distribution given in [2] as shown in

Table 2, and the third analysis is based on random

data generated using [1] as shown in Table 3.

A. Numerical Experiment 1

The results obtained from first analysis are

shown in Table 4, Table 5, Table 6, and Table 7.

Table 4 compares the cost obtained by solving [1]

problem using SA, CS, PSO and GA [5] algorithms.

Table 5 compares the (i) relative deviation from

tighter lower bound (TCL), (ii) improvement

achieved through SA, CS, and PSO algorithms over

results obtained through GA algorithm [5], (iii)

efficiency in terms of execution time taken by TS,

SA, CS, and PSO algorithms. Table 6 and Table 7

compare the detailed solution found by CS, and PSO

with GA solution [5].

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2998

Table 4 shows that 77% of CS solutions are either

better or similar to best result obtained from any

other algorithm, 71% of PSO solutions are either

better or similar to best result obtained from any

other algorithm, 48% of SA solutions are either better

or similar to best result obtained from any other

algorithm, while only 41% of GA solution are better

or similar to best result obtained from any other

algorithm. So, in majority of cases CS performed

better than all other algorithms. Table 5 shows that

the best average relative deviation from TCL is

19.542% using CS and worst average relative

deviation from TCL is 21.261% using GA algorithm.

Best average improvement over GA is 0.966% using

CS, and best average CPU utilization time is 5.192

sec using SA. It is also important to note that CS, and

PSO all have same relative deviation from TCL for

high utilization and only differs in low utilization

cases. However, GA differs with other algorithms for

high utilization as well as low utilization cases. GA

found worst relative deviation from TCL for higher

utilization but results for lower utilization cases are

comparatively closed to other algorithms.

Table 6 shows the detail comparison of

values for T and ki (i.e., i=1,2,…10) using GA and

SA algorithm, Table 7 shows the detail comparison

of values for T and ki (i.e., i=1,2,…10) using GA and

CS algorithm, while Table 8 shows the detailed

comparison of values obtained for T and ki using GA

and PSO algorithm. For low utilization cases 50 to 92

ki have different values but for high utilization cases

95 to 99 all ki have same value ‘1’. CS and PSO

Table 1: Data of Bomberger’s problem.

Product

index, i
1 2 3 4 5 6 7 8 9 10

Base

Demand
24,000 24,000 48,000 96,000 4800 4800 1440 20,400 20,400 24,000

Setup cost

(Si): $
15 20 30 10 110 50 310 130 200 5

Production

rate (Pi):

units/day

30,000 8000 9500 7500 2000 6000 2400 1300 2000 15,000

Setup time

(τi) : h 1 1 2 1 4 2 8 4 6 1

Holding

cost (Hi):

$/unit-year

0.00065 0.01775 0.01275 0.01000 0.27850 0.02675 0.15000 0.59000 0.09000 0.00400

Table 2: Distribution for randomly generated data by Dobson [2].

Parameters Set 1 Set 2 Set 3

Number of items (units) [5, 15] [5, 15] [5, 15]

Production rate (units/unit-time) [2000, 20000] [4000, 20000] [1500, 30000]

Demand rate (units/unit-time) [1500, 2000] [1000, 2000] [500, 2000]

Set-up time (time/unit) [1, 4] [1, 4] [1, 8]

Setup cost ($) [50, 100] [50, 100] [10, 350]

Holding cost ($) [1/240, 6/240] [1/240, 6/240] [5/240000, 5/240]

Table 3: Distribution for randomly generated data using

Bomberger’s problem [1].

Parameters Range

Number of items (units) [10, 30]

Production rate (units/unit-time) [31,2000, 720,0000]

Demand rate (units/unit-time) [1440, 96,000]

Set-up time (time/unit) [1/1920, 8/1920]

Setup cost ($) [5, 310]

Holding cost ($) [0.00065, 0.59000]

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2999

found same value for T and ki which gives low

deviation from TCL. GA found the same value for ki

but failed to found value for T similar to other

algorithms and therefore it results in high deviation

from TCL.

Table 4: Comparison of TSIS, TCL, GA, SA, CS, and PSO solutions for Bomberger’s problem [1, 5].

Utilization (%) TSIS TCL GA SA CS PSO Best Cost Best Algorithm(s)

50 5960.445 5960.445 6038.410 6036.513 6032.225 6036.513 6032.225 CS

55 6218.253 6218.253 6328.670 6372.022 6328.086 6328.086 6328.086 CS,PSO

60 6459.905 6459.905 6621.750 6619.799 6618.572 6618.572 6618.572 CS,PSO

65 6687.131 6687.131 6914.700 6914.837 6914.837 6914.837 6914.700 GA

66.18 6738.810 6738.810 7024.110 7124.987 7024.100 7024.100 7024.100 GA,CS,PSO

70 6901.335 6901.335 7395.460 7395.467 7395.466 7395.466 7395.460 All

75 7103.674 7103.674 7789.630 7917.524 7794.202 7794.202 7789.630 GA

80 7295.114 7295.114 8096.010 8181.051 8085.485 8085.485 8085.485 CS,PSO

83 7405.090 7405.090 8250.290 8250.290 8250.290 8250.290 8250.290 GA,SA,CS,PSO

86 7511.593 7511.593 8553.310 8483.945 8483.945 8483.945 8483.945 SA,CS,PSO

88.24 7588.934 7588.934 8782.420 8782.289 8782.289 8782.289 8782.289 SA,CS,PSO

89 7614.763 7614.763 8874.550 8874.803 8874.803 8874.803 8874.550 GA

92 7714.729 7714.729 9745.800 9746.356 9746.356 10086.443 9745.800 GA

95 7811.608 8418.885 12018.080 11949.646 11949.646 11949.646 11949.646 SA,CS,PSO

97 7874.534 11290.966 17143.000 17134.260 17134.260 17134.260 17134.260 SA,CS,PSO

98 7905.510 15681.535 24533.820 24457.541 24457.541 24457.541 24457.541 SA,CS,PSO

99 7936.166 29942.667 55544.470 47550.735 47550.735 47550.735 47550.735 SA,CS,PSO

Table 5: Comparison of Relative Deviation from TCL, Improvement over GA, and CPU time taken by algorithms

for Bomberger’s problem [1, 5].

% Relative Deviation from TCL % Improvement over GA CPU time (sec.)

Utilization (%) GA SA CS PSO SA CS PSO SA CS PSO

50 1.308 1.276 1.204 1.276 0.031 0.102 0.031 7.281 12.852 15.189

55 1.776 2.473 1.766 1.766 0 0.009 0.009 7.178 12.572 15.019

60 2.505 2.475 2.456 2.456 0.029 0.048 0.048 7.409 12.533 15.489

65 3.403 3.405 3.405 3.405 0 0 0 7.731 12.789 15.690

66.18 4.234 5.731 4.234 4.234 0 0 0 5.81 12.829 15.972

70 7.160 7.160 7.160 7.160 0 0 0 4.946 12.544 16.059

75 9.656 11.457 9.721 9.721 0 0 0 20.023 12.168 16.060

80 10.979 12.144 10.834 10.834 0 0.130 0.130 2.838 12.184 15.561

83 11.414 11.414 11.414 11.414 0 0 0 2.815 12.274 16.205

86 13.868 12.945 12.945 12.945 0.811 0.811 0.811 2.686 12.291 14.813

88.24 15.727 15.725 15.725 15.725 0.001 0.001 0.001 2.791 12.239 13.786

89 16.544 16.547 16.547 16.547 0 0 0 2.742 11.983 13.465

92 26.327 26.334 26.334 30.743 0 0 0 2.788 12.319 11.131

95 42.751 41.939 41.939 41.939 0.569 0.569 0.569 2.553 10.964 11.075

97 51.829 51.752 51.752 51.752 0.051 0.051 0.051 2.71 10.919 11.283

98 56.450 55.964 55.964 55.964 0.311 0.311 0.311 2.753 10.876 11.140

99 85.503 58.806 58.806 58.806 14.392 14.392 14.392 3.205 10.890 11.063

Average 21.261 19.856 19.542 19.805 0.953 0.966 0.962 5.192 12.072 14.059

Min. 1.308 1.276 1.204 1.276 0 0 0 2.553 10.876 11.063

Max. 85.503 58.806 58.806 58.806 14.392 14.392 14.392 20.023 12.852 16.205

Std. Dev. 23.939 19.726 19.923 20.042 3.471 3.467 3.469 4.316 0.706 2.078

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3000

Table 7: Detailed result Comparison between GA and CS for Bomberger’s problem [1, 5].

Table 6: Detail comparison of GA and SA results for Bomberger’s problem [1, 5]

Utilization Meta-heuristic

 GA SA

50
T = 28.183

ki =[5,1,2,1,2,4,10,1,3,1]

T = 28.594

ki =[4,1,2,1,2,4,9,1,3,2]

55
T = 28.762

ki =[5,2,2,1,2,4,8,1,2,1]

T = 29.314

ki =[3,1,1,1,2,4,8,1,3,1]

60
T = 28.863

ki =[4,1,1,1,2,4,9,1,2,2]

T = 28.798

ki =[3,2,1,1,2,4,8,1,2,1]

65
T = 30.828

ki =[2,1,1,1,2,3,7,1,2,1]

T = 30.838

ki =[2,1,1,1,2,3,7,1,2,1]

66.18
T = 30.443

ki =[2,1,1,1,2,2,6,1,2,1]

T = 32.422

ki =[4,1,1,1,1,3,7,1,2,1]

70
T = 33.42

ki =[2,1,1,1,1,2,3,1,2,1]

T = 33.42

ki =[2,1,1,1,1,2,5,1,2,1]

75
T = 31.794

ki =[3,1,1,1,2,3,7,1,1,1]

T = 35.719

ki =[2,1,1,1,1,2,6,1,1,1]

80
T = 34.438

ki =[2,1,1,1,1,3,6,1,1,1]

T = 35.614

ki =[1,1,1,1,1,2,5,1,1,1]

83
T = 34.951

ki =[1,1,1,1,1,2,5,1,1,1]

T = 34.961

ki =[2,1,1,1,1,2,5,1,1,1]

86
T = 37.131

ki =[1,1,1,1,1,1,5,1,1,1]

T = 38.371

ki =[1,1,1,1,1,2,4,1,1,1]

88.24
T = 38.442

ki =[1,1,1,1,1,1,3,1,1,1]

T = 38.436

ki =[1,1,1,1,1,1,3,1,1,1]

89
T = 41.748

ki =[1,1,1,1,1,1,3,1,1,1]

T = 41.758

ki =[1,1,1,1,1,1,3,1,1,1]

92
T = 53.904

ki =[1,1,1,1,1,1,2,1,1,1]

T = 53.914

ki =[1,1,1,1,1,1,2,1,1,1]

95
T = 75.809

ki =[1,1,1,1,1,1,1,1,1,1]

T = 75

ki =[1,1,1,1,1,1,1,1,1,1]

97
T = 125.08

ki =[1,1,1,1,1,1,1,1,1,1]

T = 125

ki =[1,1,1,1,1,1,1,1,1,1]

98
T = 188.14

ki =[1,1,1,1,1,1,1,1,1,1]

T = 187.5

ki =[1,1,1,1,1,1,1,1,1,1]

99
T = 439.45

ki =[1,1,1,1,1,1,1,1,1,1]

T= 375

ki =[1,1,1,1,1,1,1,1,1,1]

Utilization Meta-heuristic

 GA CS

50
T = 28.183

ki =[5,1,2,1,2,4,10,1,3,1]

T = 28.594

ki =[3,2,2,1,2,4,8,1,3,1]

55
T = 28.762

ki =[5,2,2,1,2,4,8,1,2,1]

T = 29.439

ki =[5,2,2,1,2,4,9,1,2,1]

60
T = 28.863

ki =[4,1,1,1,2,4,9,1,2,2]

T = 29.306

ki =[5,1,1,1,2,4,8,1,2,2]

65
T = 30.828

ki =[2,1,1,1,2,3,7,1,2,1]

T = 30.838

ki =[2,1,1,1,2,3,7,1,2,1]

66.18
T = 30.443

ki =[2,1,1,1,2,2,6,1,2,1]

T = 30.449

ki =[2,1,1,1,2,2,6,1,2,1]

70
T = 33.42

ki =[2,1,1,1,1,2,3,1,2,1]

T = 33.42

ki =[2,1,1,1,1,2,5,1,2,1]

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3001

75
T = 31.794

ki =[3,1,1,1,2,3,7,1,1,1]

T = 32.11

ki =[3,1,1,1,2,4,6,1,1,1]

80
T = 34.438

ki =[2,1,1,1,1,3,6,1,1,1]

T = 35.28

ki =[3,1,1,1,1,3,6,1,1,1]

83
T = 34.951

ki =[1,1,1,1,1,2,5,1,1,1]

T = 34.961

ki =[2,1,1,1,1,2,5,1,1,1]

86
T = 37.131

ki =[1,1,1,1,1,1,5,1,1,1]

T = 38.371

ki =[1,1,1,1,1,2,4,1,1,1]

88.24
T = 38.442

ki =[1,1,1,1,1,1,3,1,1,1]

T = 38.436

ki =[1,1,1,1,1,1,3,1,1,1]

89
T = 41.748

ki =[1,1,1,1,1,1,3,1,1,1]

T = 41.758

ki =[1,1,1,1,1,1,3,1,1,1]

92
T = 53.904

ki =[1,1,1,1,1,1,2,1,1,1]

T = 53.914

ki =[1,1,1,1,1,1,2,1,1,1]

95
T = 75.809

ki =[1,1,1,1,1,1,1,1,1,1]

T = 75

ki =[1,1,1,1,1,1,1,1,1,1]

97
T = 125.08

ki =[1,1,1,1,1,1,1,1,1,1]

T = 125

ki =[1,1,1,1,1,1,1,1,1,1]

98
T = 188.14

ki =[1,1,1,1,1,1,1,1,1,1]

T = 187.5

ki =[1,1,1,1,1,1,1,1,1,1]

99
T = 439.45

ki =[1,1,1,1,1,1,1,1,1,1]

T = 375

ki =[1,1,1,1,1,1,1,1,1,1]

Table 8: Detailed result Comparison between GA and PSO for Bomberger’s problem [1, 5].

Utilization Meta-heuristic

 GA PSO

50
T = 28.183

ki =[5,1,2,1,2,4,10,1,3,1]

T = 28.594

ki =[4,1,2,1,2,4,9,1,3,2]

55
T = 28.762

ki =[5,2,2,1,2,4,8,1,2,1]

T = 29.439

ki =[5,2,2,1,2,4,9,1,2,1]

60
T = 28.863

ki =[4,1,1,1,2,4,9,1,2,2]

T = 29.306

ki =[5,1,1,1,2,4,8,1,2,2]

65
T = 30.828

ki =[2,1,1,1,2,3,7,1,2,1]

T = 30.838

ki =[2,1,1,1,2,3,7,1,2,1]

66.18
T = 30.443

ki =[2,1,1,1,2,2,6,1,2,1]

T = 30.449

ki =[2,1,1,1,2,2,6,1,2,1]

70
T = 33.42

ki =[2,1,1,1,1,2,3,1,2,1]

T = 33.42

ki =[2,1,1,1,1,2,5,1,2,1]

75
T = 31.794

ki =[3,1,1,1,2,3,7,1,1,1]

T = 32.11

ki =[3,1,1,1,2,4,6,1,1,1]

80
T = 34.438

ki =[2,1,1,1,1,3,6,1,1,1]

T = 35.28

ki =[3,1,1,1,1,3,6,1,1,1]

83
T = 34.951

ki =[1,1,1,1,1,2,5,1,1,1]

T = 34.961

ki =[2,1,1,1,1,2,5,1,1,1]

86
T = 37.131

ki =[1,1,1,1,1,1,5,1,1,1]

T = 38.371

ki =[1,1,1,1,1,2,4,1,1,1]

88.24
T = 38.442

ki =[1,1,1,1,1,1,3,1,1,1]

T = 38.436

ki =[1,1,1,1,1,1,3,1,1,1]

89
T = 41.748

ki =[1,1,1,1,1,1,3,1,1,1]

T = 41.758

ki =[1,1,1,1,1,1,3,1,1,1]

92
T = 53.904

ki =[1,1,1,1,1,1,2,1,1,1]

T = 46.875

ki =[1,1,1,1,1,1,1,1,1,1]

95
T = 75.809

ki =[1,1,1,1,1,1,1,1,1,1]

T = 75

ki =[1,1,1,1,1,1,1,1,1,1]

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3002

97
T = 125.08

ki =[1,1,1,1,1,1,1,1,1,1]

T = 125

ki =[1,1,1,1,1,1,1,1,1,1]

98
T = 188.14

ki =[1,1,1,1,1,1,1,1,1,1]

T = 187.5

ki =[1,1,1,1,1,1,1,1,1,1]

99
T = 439.45

ki =[1,1,1,1,1,1,1,1,1,1]

T = 375

ki =[1,1,1,1,1,1,1,1,1,1]

B. Numerical Experiment 2

The second analysis is based on random data

generated from set 1, set 2, and set 3 of [2] using SA,

CS and PSO. Table 9 obtained by solving hundred

distinct random generated problems of size between

five and eight and utilization between 90% and 99%

from set 1 of [6] using SA, CS and PSO. The results

obtained from all these algorithms are same (i.e.,

mean deviation from TCL 8.273, minimum deviation

from TCL 0.951, maximum deviation from TCL

20.905, and in almost all cases ki= 1). The higher

deviation from TCL is due to the higher utilization

factor. We can also refer to the first analysis using [1]

problem in which deviation from TCL increases with

the increase in utilization (i.e., for 90% utilization

relative deviation from TCL was 26.334% and all ki

(i.e., i=1,2,…10) have same value ‘1’).

Table 10 is obtained by solving hundred

distinct random data generated for problem size

between five and ten from set 2 of Dobson using SA,

CS and PSO. The result obtained from all algorithms

were same (i.e., mean deviation from TCL 7.154,

minimum deviation from TCL 0.834 and maximum

deviation from TCL 22.529 and in almost all cases

ki= 1).

Table 11 is obtained by solving hundred

distinct random data generated for problem size

between five and fifteen from set 3 of [6] using CS

and PSO. The result obtained from all these

algorithms were same (i.e., mean deviation from TCL

22.308, minimum deviation from TCL 5.347 and

maximum deviation from TCL 57.436 and in almost

all cases ki= 1).

Table 9: Comparison of relative deviation from TCL

for algorithms on randomly generated problems using

set 1 by Dobson [2].

Algorithms SA CS PSO

Mean 8.273 8.273 8.273

Min. 0.951 0.951 0.951

Max. 20.905 20.905 20.905

Std. Dev. 4.979 4.979 4.979

Table 10: Comparison of relative deviation from TCL

for algorithms on randomly generated problems using

set 2 by Dobson [2].
Algorithms SA CS PSO

Mean 7.154 7.154 7.154

Min. 0.834 0.834 0.834

Max. 22.529 22.529 22.529

Std. Dev. 4.165 4.165 4.165

Table 11: Comparison of relative deviation from

TCL for algorithms on randomly generated

problems using set 3 by Dobson [2].
Algorithms SA CS PSO

Mean 22.308 22.308 22.308

Min. 5.347 5.347 5.347

Max. 57.436 57.436 57.436

Std. Dev. 10.995 10.995 10.995

C. Numerical Experiment 3

The third analysis is based on random data

generated as shown in Table 3 from minimum and

maximum value of base demand, setup cost,

production rate, setup time, holding cost obtained

from [1]) problem. Ten data generated for each

problem size of ten, fifteen, twenty, twenty five and

thirty and for each utilization level of 65%, 70%,

75%, 80%, 85%, and 90%.

Table 12, Table 13, and Table 14 obtained

by solving above randomly generated problem using

SA, CS and PSO respectively. CS algorithm found

the same solution for high utilization cases (i.e., 85%

and 90%) of all problem sizes (i.e., 10, 15, 20, 25,

and 30). However, the solution found by these

algorithms differs in low to medium utilization cases

(i.e., 65%, 70%, 75%, and 80%). Table 12, Table 13,

and Table 14 shows that 93% of solutions obtained

using SA are either better or similar to best result

obtained from any other algorithm, 63% of solutions

obtained using CS are either better or similar to best

result obtained from any other algorithm, while only

47% of solution obtained using PSO are either better

or similar to best result obtained using any other

algorithm.

It is important to note that in first analysis

77% of solution found by CS algorithm was better, in

second analysis all algorithm did equally well, in

third analysis 93% of solution found by SA are

better. The deviation of result between algorithms in

analysis 1 and analysis 3 is due to location of best

solution in the search space. CS and PSO algorithms

performed better when the best solution located far

from initial feasible solution in the search space (i.e.,

CS search follow levy distribution while PSO search

follows position and velocity to find the feasible

solution) but SA performed better if the best solution

is within the neighborhood of the initial feasible

solution. In analysis 1 either best solutions were

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3003

initial solution (i.e., for high utilization case where all

ki were ‘1’) or far from the initial solution (i.e., for

low utilization cases where ki have different values)

but in analysis 3 all best solutions are very closed to

initial feasible solution (i.e., most of the ki were either

‘1’ and some of them were ‘2’).

Table 12: SA algorithm’s relative deviation from TCL on randomly generated problems using distribution given in

Table 3.

Problem size\

Utilization

65 70 75 80 85 90

10

Mean 12.563 15.304 18.032 22.123 26.754 31.723

Min. 1.969 1.970 2.904 6.731 11.054 12.479

Max. 27.254 33.732 42.593 55.256 72.727 89.281

Std. Dev. 9.8223 12.528 14.520 16.880 19.615 22.569

15

Mean 11.904 13.397 15.448 17.928 20.228 22.509

Min. 5.092 5.661 6.152 6.542 6.839 7.142

Max. 22.538 24.649 26.537 34.957 42.550 51.049

Std. Dev. 5.062 5.730 6.966 8.909 10.646 12.815

20

Mean 14.043 15.746 17.573 19.356 20.990 22.284

Min. 8.142 9.542 10.992 12.357 13.517 14.383

Max. 18.585 20.692 23.511 26.521 30.533 33.727

Std. Dev. 3.427 3.620 4.048 4.742 5.515 6.192

25

Mean 15.851 17.597 19.332 20.991 22.428 23.511

Min. 11.233 12.636 13.829 14.513 15.098 15.533

Max. 25.098 27.789 29.908 31.805 33.420 34.620

Std. Dev. 4.444 4.831 5.088 5.356 5.632 5.871

30

Mean 19.795 21.811 23.819 25.693 27.276 28.449

Min. 11.074 11.786 12.427 12.965 13.382 13.673

Max. 41.068 48.401 55.387 61.848 67.291 71.323

Std. Dev. 9.609 11.422 13.139 14.725 16.061 17.051

Table 13: CS algorithm’s relative deviation from TCL on randomly generated problems using distribution given in

Table 3.

Problem size\

Utilization

65 70 75 80 85 90

10

Mean 12.563 15.141 17.967 22.156 26.754 31.723

Min. 1.969 1.970 2.904 6.731 11.054 12.479

Max. 27.254 33.557 42.130 55.256 72.727 89.281

Std. Dev. 9.822 12.327 14.417 16.901 19.615 22.569

15

Mean 12.321 13.916 15.836 18.052 20.228 22.509

Min. 6.073 5.953 6.152 6.542 6.839 7.142

Max. 22.538 25.151 27.553 35.735 42.550 51.049

Std. Dev. 4.832 5.812 7.417 9.122 10.646 12.815

20

Mean 14.295 15.855 17.573 19.356 20.99 22.284

Min. 8.142 9.542 10.992 12.357 13.517 14.383

Max. 19.183 20.692 23.511 26.521 30.533 33.727

Std. Dev. 3.707 3.614 4.048 4.742 5.515 6.192

25

Mean 16.013 17.612 19.336 20.991 22.428 23.511

Min. 11.233 12.635 13.829 14.513 15.098 15.533

Max. 25.985 27.901 29.908 31.805 33.420 34.620

Std. Dev. 4.667 4.858 5.088 5.356 5.632 5.871

30

Mean 19.849 21.811 23.819 25.693 27.276 28.449

Min. 11.074 11.786 12.427 12.965 13.382 13.673

Max. 41.408 48.401 55.387 61.848 67.291 71.323

Std. Dev. 9.688 11.422 13.139 14.725 16.061 17.051

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3004

11. Conclusion

This research presented hybridization

scheme based on multiple intelligent techniques with

GSS to solve the ELSP problem under basic period

approach. This hybrid technique used PSO, CS and

SA optimization to find the optimum value of ki’s,

followed by GSS to find the basic period T. The

feasibility of the solution is guaranteed with a

constraint that ensures the items assigned in each

period can be produced within the length of the

period. The experimental results indicate following

outcomes:

 The hybridization scheme was able to find

comparatively better basic period solutions than

GA [5] for the low utilization problems.

 The hybridization scheme was also able to find

comparatively better basic period solutions than

GA [5] for the high utilization problems.

 CS and PSO based hybridization algorithms

performed better than SA based hybridization

algorithm, if the best solution is located far from

initial feasible solution in the search space.

 SA based hybridization algorithm performed

better than CS and PSO based hybridization

algorithms, if the best solution is much closer to

the neighborhood of the initial feasible solution.

Acknowledgements:

The authors acknowledge the support of

Faculty of Engineering, Sciences & Technology, Iqra

University for providing research facilities and

financial assistance.

Corresponding Author:

Syed Hasan Adil

Department of Computer Science

Main Campus, Iqra University

Defence View,

Shaheed-e-Millat Road (Ext.)

Karachi-75500, Pakistan

E-mail: hasan.adil@iqra.edu.pk

References
[1] Bomberger E. A dynamic programming

approach to a lot size scheduling problem.
Management Science 1966; 12(11): 778–84.

[2] Dobson G. The Economic Lot Scheduling
Problem: Achieving Feasibility using Time-
Varying Lot Sizes. Operation Research 1987;
35(5): 764-71.

[3] Bourland KE. Production planning and control
for the stochastic economic lot scheduling

Table 14: PSO algorithm’s relative deviation from TCL on randomly generated problems using

distribution given in Table 3.

Problem size\

Utilization

65 70 75 80 85 90

10

Mean 12.878 15.517 18.300 24.220 27.122 31.772

Min. 1.969 1.970 5.125 7.066 11.054 12.479

Max. 27.254 33.557 42.558 68.819 76.407 89.281

Std. Dev. 9.632 12.031 14.202 20.343 20.584 22.577

15

Mean 12.376 14.517 16.476 18.052 20.228 22.509

Min. 6.073 5.953 6.152 6.542 6.839 7.142

Max. 22.538 31.157 32.113 35.735 42.550 51.049

Std. Dev. 4.830 7.237 8.589 9.122 10.646 12.815

20

Mean 14.403 15.855 17.573 19.356 20.990 22.284

Min. 8.142 9.542 10.992 12.357 13.517 14.383

Max. 19.183 20.692 23.511 26.521 30.533 33.727

Std. Dev. 3.565 3.614 4.048 4.742 5.515 6.1916

25

Mean 16.013 17.612 19.336 20.991 22.428 23.511

Min. 11.233 12.635 13.829 14.513 15.098 15.533

Max. 25.985 27.901 29.908 31.805 33.42 34.62

Std. Dev. 4.667 4.858 5.088 5.3557 5.6319 5.8705

30

Mean 19.849 21.811 23.819 25.693 27.276 28.449

Min. 11.074 11.786 12.427 12.965 13.382 13.673

Max. 41.408 48.401 55.387 61.848 67.291 71.323

Std. Dev. 9.688 11.422 13.139 14.725 16.061 17.051

Life Science Journal 2013;10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3005

problem (scheduling). University of Michigan
1991.

[4] Hanssmann F. Operations Research in
Production and Inventory. John Wiley and Sons
1962; 158-60.

[5] Khouja M, Michalewicz Z, Wilmot M. The use
of genetic algorithms to solve the economic lot
size scheduling problem. European Journal of
Operational Research 1998; 110(3): 509-24.

[6] Elmaghraby SE. An Extended Basic Period
Approach to the Economic Lot Scheduling
Problem (ELSP). Production and Industrial
Systems: Future Development and the Role of
Industrial and Production Engineering, Taylor
and Francis 1977: 649–62.

[7] Aytug H, Khouja M, Vergara FE. Use of genetic
algorithm to solve production and operations
management problems: A review. International
Journal of Production Research 2003; 41(17):
3955–4009.

[8] Ben-daya M, Al-Fawzan M. A tabu search
approach for the flow shop scheduling problem.
European Journal of Operational Research 1998;
109(1): 88–95.

[9] Eglese RW. Simulated annealing: A tool for
operational research. European Journal of
Operational Research 1990; 46(3): 271–81.

[10] Jahanzaib M, Masood SA, Nadeem S, Akhtar K.
A Genetic Algorithm (GA) Approach for the
Formation of Manufacturing Cells in Group
Technology. Life Sci J 2013; 9(4):799-809.

[11] Zanoni S, Segerstedt A, Tang O, Mazzoldi L.
Multi-product economic lot scheduling problem
with manufacturing and remanufacturing using a
basic period policy. Computers & Industrial
Engineering 2012; 62(2): 1025-33.

[12] Bulut O, Tasgetiren MF, Fadiloglu MM. A
Genetic algorithm for the economic lot
scheduling problem under extended basic period
approach and power of two policy. Advanced
Intelligent Computing Theories and Applications
with Aspect of Artificial Intelligence, LNCS
2012; 6839(1): 57-65.

[13] Luo R. New algorithm for economic lot
scheduling problem. International Conference on
Logistics Systems and Intelligent Management
2010; 334-37.

[14] Zanoni S, Segerstedt A, Tang O, Mazzoldi L.
Multi-product economic lot scheduling problem
with manufacuring and remanufactuing using a

basic period policy. Computers and Industrial
Engineering 2012; 62(4): 1025-33.

[15] Chan HK, Chung SH, Chan TM. Combining
genetic approach and integer programming to
solve multi-facility economic lot scheduling
problem. Journal of Intelligent Manufacturing
2012; 23(6): 2397-2407.

[16] Raza SA, Akgunduz A. A comparative study of
heuristic algorithms on Economic Lot
Scheduling Problem. Computer & Industrial
Engineering 2008; 55(1), 94-109.

[17] Sun H, Huang H, Jaruphongsa W. A genetic
algorithm for the economic lot scheduling
problem under extended basic period and power-
of-two policy. CIRP Journal of Manufacturing
Science and Technology 2009; 2(1): 29-34.

[18] Tasgetiren MF, Bulut O, and Fadiloglu MM. A
discrete harmony search algorithm for the
economic lot scheduling problem with power of
two policy. IEEE World Congress on
Computational Intelligence 2012.

[19] Elmaghraby SE. The Economic Lot Scheduling
Problem (ELSP): Review and Extensions.
Management Science 1978; 24(6), 587–98.

[20] Press WH, Tehkolsky SA. Numerical Recipes
3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 2007.

[21] Yang XS, Deb S. Cuckoo search via L´evy
flights. Proc. World Congress on Nature &
Biologically Inspired Computing 2009; 210-14.

[22] Srinivasan TR, Shanmugalakshmi R. Optimizing
Grid Scheduling with Particle Swarm
Optimization. Life Sci J 2013; 10(4s): 559-563.

[23] Darrall H, Jacobson SH, Johnson AW. The
theory and practice of simulated annealing
Handbook of metaheuristics. Springer US 2003;.
287-319.

[24] Laarhoven PJ, Aarts EH. Simulated Annealing:
Theory and Applications. Springer 1987.

[25] Renukadevi NT, Thangaraj P. Improvements in
RBF Kernel using Evolutionary Algorithm for
Support Vector Machine Classifier. Life Sci J
2013; 10(7s): 454-459.

[26] Kennedy J, Eberhard RC. Swarm intelligence.
Morgan Kaufmann Publishers 2001.

[27] Gaafar L. Applying genetic algorithms to
dynamic lot sizing with batch ordering.
Computers & Industrial Engineering 2006;
51(3): 433–44.

6/22/2013

