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Abstract: Economic Lot Scheduling Problem (ELSP) has been an area of active research for many years. Different 

approaches have been proposed to find the optimal solution for the problem. Traditionally, researchers have used a 

single algorithm to find the solution. In this paper, we argue that better results can be obtained for the ELSP 

problem, if we use a hybridization scheme instead of the traditional single algorithm approach. In this context, we 

suggest multiple hybridization of an “intelligent” technique with Golden Section Search (GSS) to solve ELSP using 

basic period approach. We have used three hybrid approaches based on Simulated Annealing (SA), Cuckoo Search 

(CS), and Particle Swarm Optimization (PSO) to find the optimum value of integer multiple ki’s and GSS to find the 

optimum value of basic period T. The proposed hybridized schemes are applied on Bomberger’s dataset [1], random 

data generated using distribution given in Dobson’s [2] and also on random data generated using new distribution 

derived from Bomberger’s dataset [1]. Comparative analyses are presented in which the hybridized algorithms based 

on SA, CS and PSO incorporated with GSS are compared. These hybridized schemes were found efficient for both 

low and high machine utilization.  
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1. Introduction 

The ELSP has been under research for more 

than four decades. The problem is computationally 

very complex and has been classified as NP-hard 

problem [1]. Despite its complexity the ELSP has 

been encountered in most production planning 

scenarios [3]. Due to the NP hard nature of the 

problem many researchers have developed heuristic 

solutions to the problem. There are four approaches 

to solve the ELSP problem: common cycle [4]; basic 

period [5]; extended basic approach [6]; and time 

varying lot size approach [2].  

As the ELSP is generally viewed as NP-

hard, the focus of most research efforts has been 

towards generating near optimal repetitive 

schedule(s). To date, several heuristic solutions [5, 7, 

10, 11, 12, 13, 14, 15, 18, 19] have been proposed 

using any one of the common cycle, basic period, 

extended basic approach, or time-varying lot size 

approaches. The common cycle approach always 

produces a feasible schedule and is the simplest to 

implement, however, in some cases the solution when 

compared to the lower bound is of poor quality [16]. 

Unlike the common cycle approach, the basic period 

approach allows different cycle times for different 

products, however, the cycle times must be an integer 

multiple of a basic period. Although the basic period 

approach generally produces a better solution to 

ELSP than common cycle approach, but getting a 

feasible schedule is NP-hard [1]. The basic period 

approach assumes that the production runs of all 

products shall be made in each basic period. 

Therefore, the basic period must be long enough to 

accommodate the production of all the products. This 

is a rather restrictive condition which usually results 

in suboptimal solutions. The extended basic period 

approach removes this restriction and admits the 

possibility that in any basic period only a subset of 

the products shall be produced [17, 18]. This obviates 

the waste of capacity of the production facility. 

Lastly, the time-varying lot size approach allows for 

different lot sizes for the different products in a cycle 

[16]. Dobson [2] showed that the time-varying lot 

size approach always produced a feasible schedule.  

The proposed research is motivated by the 

recent success [3, 5, 8, 9, 10, 22, 25, 26, 27] of the 

meta-heuristics to solve ELSP. Therefore, this 

research investigates the use of meta-heuristics to 

solve the ELSP problem using basic period approach. 

We applied PSO, CS, and SA to find the solution. 

The meta-heuristics will be compared in order to 

calibrate their performance in regards to solution 

quality produced and computation time needed.  

The rest of the paper is organized as follows: 

Section 2 outlines the problem statement. Section 3 

describes the theory behind basic period approach to 
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ELSP. Section 4 describes the proposed hybrid 

approach. Section 5 gives an introduction to the GSS 

algorithm. Section 6 gives the reason behind the 

selection of hybridization of intelligent techniques 

with GSS. Section 7 gives an introduction to the PSO 

algorithm and our proposed hybridization scheme 

using PSO and GSS. Similarly, Section 8 gives an 

introduction CS algorithm and our proposed 

hybridization scheme using CS and GSS. Section 9 

presents our hybridization scheme using SA and 

GSS. In Section 10, we compare the results of our 

proposed approaches with other results. We present 

our discussions and conclusions in Section 11. 

 

2. Problem Statement  

The ELSP is to schedule the production of 

several different items in the same facility on 

repetitive basis. The facility is such that only one 

item can be produced at a time, there is a setup cost 

and a setup time associated with each item, the 

demand rate for each item is constant over an infinite 

planning horizon, and no shortages are allowed [1, 5]. 

A feasible production schedule is defined as the one 

in which: (a) at most one item is produced by the 

facility at any time (b) the total time load on the 

facility does not exceed the available time capacity; 

and (c) demand is satisfied without shortages. 

 

3. Basic Period Approach to ELSP 

We present ELSP model [1] which is based on 

the basic period approach. We have to produce m 

distinct products on single production facility with 

the following assumptions. 

 The competing products for production facility 

do not have any precedence over each other.  

 Back-orders are not allowed.  

 An item is considered for production only if its 

inventory is depleted to the zero level. This rule 

is known as Zero-Switching-Rule (ZSR). 

 The production facility is assumed to be failure 

free and to always produce perfect quality 

products.  

The solution of the ELSP is based on 

specifying an inventory cycle for each part, subject to 

following conditions: 

 The quantity of a part produced during its cycle 

must be sufficient to meet demand over the 

cycle. 

 The length of the cycle must be sufficient to 

permit the production of other parts scheduled 

during the cycle. 

A schedule is feasible if the above conditions 

are met. This feasible solution becomes optimal if the 

total cost minimizes. 

The following notations and equations (1-14) 

are used to find the solution of ELSP [1, 5]: 

i : An item index, i ={1,2, …,n} 

Di : Annual demand for item i (units/ year) 

Pi : Annual production rate for item i 

(units/year) 

Hi : Holding cost for item i ($/unit-year) 

Si : Setup cost for item i ($/setup) 

τi : Setup time for item i (years) 

Qi : Production quantity for item i, a decision 

variable (units) 

Ti : Cycle time for item i, a decision variable 

(in days) 

TCi : Total annual holding and setup cost for 

item i ($/year) 

TC : Total annual holding and setup cost for all 

item ($/year) 

The total cost for an item i is: 

    
  

 
(  

  
  

⁄ )     (
  

  
⁄ )    (1) 

The total annual cost of all n items is: 
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The ELSP is formulated as follows: 

Minimize TC 

               ∑((
  

  
⁄ )    

  

  

)   

 

   

 (3) 

No two items are produced at the same time (4) 

The first constraint ensures that the time 

spent setting up the machine and producing the items 

does not exceed the time available. Solving the 

unconstrained problem results a loose lower bound 

known as the independent solution (IS). The optimal 

order quantity for item i is: 

  Substituting from equation (5) into equation 

(2) gives IS lower bound on the ELSP as follows: 

     ∑√
          

(     )  

 

   

 (6) 

  Alternatively, a tighter lower bound (TCL) 

can be obtained by minimizing the total cost (TC) 

subject to constraint in equation (3): 
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And satisfying:  

In case if the production facility in under-

utilized, the capacity constraint will not be binding 

and TCL will be same as TCIS. However, with the 

higher utilization, TCL is higher than the IS lower 

bound. The increase in TC and TCL relative to TCIS 

at high utilization is due to production quantities 

becoming larger to reduce the time spend on setup, 

which substantially increases the holding cost.  

Now, we discuss an analytical approach 

which allows achieving the optimal solution to a 

restricted version of the original problem mentioned 

in [6, 19]. The approach is called basic period 

approach. In basic period approach, the cycle time for 

every item i is an integer multiple ki of a fundamental 

cycle T. Thus, the cycle time for an item i is: 

       (9) 

Also the production quantity for an item i will 

becomes: 

       (10) 

The total cost incurred under basic period 

approach (TCBP) is obtained from substituting Ti and 

Qi into equation (2). Thus, the total cost is: 

TCBP established in Equation (11) is now a 

function of T and ki's. Once TCBP is established, the 

ELSP under BP approach is: 

Minimize TCBP 

               ∑(    
       

  

)   

 

   

 (12) 

  The constraint in the above optimization 

problem ensures that the fundamental cycle is long 

enough to accommodate the production of all items 

even though not every item has to be produced during 

every fundamental cycle. The constraint guarantees 

the feasibility but may result in a suboptimal solution 

to the original problem. In [1], it is shown that the 

above problem can be formulated and solved as a 

Dynamic Programming (DP) problem. The main idea 

of [1] was to fix T, and solve the DP problem to 

obtain the optimal ki's and then use the information to 

get a better estimate of the optimal T. Thus, this 

approach requires solving a number of DP problems 

to find the optimal T.  

  In a nutshell this approach requires a one-

dimensional search on T. In each of the iteration of 

the search, a DP problem must be solved. Thus, a 

more precise estimate of the optimal T requires larger 

number of the DP problems to be solved that makes 

the use of meta-heuristics even more attractive 

alternate to solve the problem. The above formulation 

very well suits meta-heuristics. GA [5] suggested that 

both the T and ki's are simultaneously determined 

leaving no need to solve DP problems repeatedly 

with different values of T. Furthermore, the curse of 

dimensionality due to DP is not encountered in using 

GA. 

 

4. Proposed Hybridized Approach 

In this research; we suggest multiple 

hybridization of an “intelligent” technique with GSS 

to solve ELSP using basic period approach. We have 

used three hybrid approaches based on SA, CS, and 

PSO to find the optimum value of integer multiple 

ki's and GSS to find the optimum value of basic 

period T. The proposed hybridized schemes are 

analyzed using Bomberger’s dataset [1], random data 

generated using distribution given in Dobson [2], and 

random data generated using new distribution derived 

from Bomberger’s dataset [1]. 

 

5. Golden Section Search 

GSS [20] is an optimization technique that 

finds the optimum (i.e., minimum/maximum) of a 

function in one dimensional search space. In order to 

understand the working of GSS algorithm, we first 

need to understand Bisection Method (BM) for 

finding root of a function. Given an interval [a, b] 

such that f(a) * f(b)< 0 and also function is 

continuous in the given interval, BM finds the root of 

a function in an iterative manner by first computing 

the midpoint m of the interval [a, b] so that we have 

two intervals [a, m] and [m, b], it then selects the 

interval which is closer to the root of the function. 

The BM algorithm will repeat the same procedure 

until f(m) = 0 or abs(b - a)< tolerance value (i.e., 

abs() function will always give positive value).   

GSS algorithm is also similar to BM 

algorithm. We first need to provide an interval [a, c] 

in which we want to find the minimum of the 

function (i.e. for maximum we can just take the 

negative of the function). GSS is only able to find 

minimum of the function if we have a triplet of points 

a<b<c, such that f(b)<f(a) and f(b)<f(c). In this case 

we are sure that the function (if it is smooth) has a 

minimum in the interval [a, c]. 

The basic working of the GSS can be 

described as follows: 

 Given an interval [a, c], GSS first bracket the 

minimum of the function with a triplet a<b<c, 

such that f(b)<f(a) and f(b)<f(c). 

 (∑
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 The optimal bracketing interval (a, b, c) has its 

middle b a fractional distance 0.38197 from one 

end (say a), and 0.61803 from the other end (say 

b). These fractions are known as golden mean or 

golden section. 

 Repeat the following step until the minimum of 

the function converged to the desired tolerance 

level. 

 Using the current bracketing triplet of points, the 

next point to be tried is a fraction 0.38197 into 

the larger of the two intervals (measuring from 

the central point of the triplet). If it starts out 

with a bracketing triplet whose segments are not 

in the golden ratios, the procedure of choosing 

successive points at the golden mean point of the 

larger segment will quickly converge to the 

proper self-replicating ratios. 

 

6. Why Hybridization with Golden Section Search 

In this paper three nature inspired 

optimization techniques including SA, PSO, and CS 

are hybridized with GSS technique to find the 

optimum value for integer value ki's and basic Period 

T respectively. In this proposed technique we first 

find the value of ki's using SA/CS/PSO and then used 

these values to find the value of T. It is important to 

observe that for a given value of ki's the ELSP cost 

function becomes one variable uni-modal function as 

shown in Fig 1. For one variable uni-modal scenario, 

we don’t need to apply any complex optimization 

technique instead we can apply GSS to efficiently 

find the minima of the function (i.e., the value of T 

where cost is minimum). 

Figure 1. ELSP cost function for specific ki’s 

7. Particle Swarm Optimization  

Particle swarm optimization is a population 

based swarm intelligence algorithm. It was originally 

proposed by Kennedy [26] as a simulation of the 

social behavior of social organisms, such as bird 

flocking and fish schooling. PSO uses the physical 

movements of the individuals (particles) in the swarm 

and has a flexible and well balanced mechanism to 

enhance and adapt to global and local exploration 

abilities. The PSO algorithm is widely used in many 

optimization problems due to the intrinsic simplicity 

of the algorithm itself. It does not require 

mathematical computation like derivatives or 

complex encoding like Genetic Algorithm.  PSO 

maintain best solution of each particle along with the 

global best solution of the whole population and 

therefore it is less sensitive to local minima problem. 

The PSO algorithm works by selecting a set 

of P particles and initialized by placing it into 

random positions in the solution space.  The position 

of each particle represents a solution to the problem 

and its performance is evaluated by objective 

function specific to a particular problem. The 

velocity of the each particle vj is defined as the 

change of its position. The direction of movement of 

each particle is the active interaction of individual 

and whole swarm flying experiences. Each particle 

adjusts its path towards the solution based on its own 

previous best position and previous best position of 

the whole population, namely pj and pg. The 

velocities and positions of particles are updated using 

the following formulas: 

  (   )     ( )         (     ( ))

        (     ( )) 
(13) 

  (   )     ( )    (   ) 
 

(14) 
 

Where t is the previous iteration and t+1 is 

the current iteration to compute; cj and cg are the 

acceleration coefficients; randj, randg are random 

numbers between 0 and 1 inclusive associated with 

the best solution of a particular particle and the best 

solution of the whole swarm. cj and cg are used to 

provide the maximum distance a particle will move 

in a single iteration. The objective function is than 

computed using particles placed in new positions at 

iteration t+1. The same equations (13) and (14) are 

repeated until the maximum iteration becomes 

reached or until a convergence criterion has been 

met. At the end of all iterations the best solution 

found by the whole swarm is returned. 

 

A. Proposed GSS-PSO Hybridization Scheme 

  The proposed hybridized PSO with GSS 

algorithm is discussed below: 

 The nonlinear objective function given in equation 

(11) is minimized subject to constraint given in 

equation (12). 

 Computes lower and upper bounds of T and ki’s 

using following equations [5], 
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 Initializes ki’s randomly between [  
     

  ], i = 

1, 2, …, n 

 Given the initial ki’s, the TCBP subject to 

constraint (12) can be minimized by performing 

a one dimensional search on T based on GSS as 

discussed in Section 5 [20]. 

 Repeat the following steps until the maximum 

iteration becomes reached or until a convergence 

criterion has been met. 

 Apply PSO algorithm as earlier using equation 

(13) and (14) to generate the new positions of P 

particles in k-dimensional search space. Here, the 

position of each particle in each dimension 

represents one ki and the whole particle 

represents one complete possible solution to 

ELSP problem   

 Updates ki’s associated with each particle that do 

not fulfill lower and upper bound requirements 

with randomly generated values between 

[  
     

  ]. 

 Given newly generated ki’s associated with each 

particle in k-dimensional search space; apply a 

one dimensional search on T based on GSS as 

discussed in section V [20] to minimize TCBP 

subject to constraint (12). 

 Updates current best ki’s and T that minimize 

TCBP. 

 Updates best position (solution) pj of each 

particle in the swarm. 

 Updates best position pg of the whole swarm 

using best solution of all the particles in the 

swarm. 

 

8. Cuckoo Search Optimization 

CS is a population based optimization 

algorithm. It was originally proposed by Yang [21] 

for solving optimization problems. CS is based on the 

obligate brood parasitic behavior of some cuckoo 

species in combination with the Lévy Flight behavior 

of some birds and fruit flies. The CS is comparatively 

simpler than other meta-heuristic techniques. During 

each iteration CS computes fitness function and 

based on the output worst nests are abandoned (i.e., 

nest which does not provide good solution). In each 

generation CS moves towards global optimum by 

replacing the possible solutions with the good ones 

and at the end of the execution optimum solution is 

obtained. 

The basic working of the CS algorithm can 

be described as follows:  
 Initializes N random host nest. 

 The number of available host nests is fixed.  

 Each cuckoo lays one egg at a time and dumps it 

in a randomly chosen nest.  

 Generates new N nests using the Lévy Walk 

around the best solution obtained so far this will 

speed up the local search.  

 Compares old nests with corresponding new 

nests and selects the best N nests from them. 

 A host can discover an alien egg with a 

probability pi. If the pi>pa (i.e., pa is the 

probability of discovering alien eggs) then the 

host bird can either throw the egg away or 

abandon the nest. 

 For abandoned nests CS generates new random 

nests having locations far enough from the 

current best solution. This will make sure the 

system will not be trapped in a local optimum. 

 The best nests with high quality of eggs (i.e. 

solutions) will be carried over to the next 

generations. 

 

 A. Proposed GSS-CS Hybridization Scheme 

  The proposed hybridized CS with GSS 

algorithm is discussed below: 

 The nonlinear objective function given in equation 

(11) is minimized subject to constraint given in 

equation (12). 

 Computes lower and upper bounds of T and ki’s 

using equations (13, 14, 15, 16), 

 Initializes ki’s randomly between [  
     

  ], i = 1, 

2, …, n 

 Given the initial ki’s, the TCBP subject to 

constraint (12) can be minimized by performing a 

one dimensional search on T based on GSS as 

discussed in Section 5 [20]. 

 Repeat the following steps until the maximum 

number of iteration is reached or until a 

convergence criterion is met. 

 Apply CS algorithm as discussed earlier to 

generate/select N nests in k-dimensional search 

space. Here, the position of each nest in each 

dimension represents one ki and the whole nest 
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represents one complete possible solution to 

ELSP problem   

 Updates ki’s associated with each particle that do 

not fulfill lower and upper bound requirements 

with randomly generated values between 

[  
     

  ]. 

 Given newly generated ki’s associated with each 

nest in k-dimensional search space; apply a one 

dimensional search on T based on GSS as 

discussed in Section 5 [20] to minimize TCBP 

subject to constraint (12). 

 Updates current best ki’s and T that minimize 

TCBP 

 

9. Simulated Annealing Optimization 

Simulated annealing is a popular meta-

heuristic algorithm for addressing optimization 

problems. The highlighting factor of this algorithm is 

its ability to escape the local optima by broadening its 

search area in order to find the global optimum. It 

derives its name from the physical process of 

annealing with solid ores, where the crystalline solids 

are heated and then they are cooled slowly until they 

achieve a configuration of crystals free of defects. 

Simulated Annealing uses these principles to search 

for global optimums of optimization problems. The 

basic pseudo-code [23, 24] of this algorithm is shown 

below: 

Select an initial solution        
Select the temperature change counter k=0  
Select a temperature cooling schedule, tk  
Select an initial temperature T = to >= 0  
Select a repetition schedule Mk that defines the 

number of iterations executed at each temperature tk  
Repeat  
Set repetition counter m = 0  

Repeat  
Generate a solution     ( )  
Calculate       (  )   ( )  
 If                   
If                  with 

probability     (        ) 
m m + 1 

Until m = Mk 

k  k + 1 

Until stopping criterion is met. 

 

A. Proposed GSS-SA Hybridization Scheme 

  The proposed hybridized SA with GSS 

algorithm is discussed below: 

 The nonlinear objective function given in equation 

(11) is minimized subject to constraint given in 

equation (12). 

 Computes lower and upper bounds of T and ki’s 

using equations (13, 14, 15, 16), 

 Initializes ki’s randomly between [  
     

  ], i = 1, 

2, …, n 

 Given the initial ki’s, the TCBP subject to 

constraint (12) can be minimized by performing a 

one dimensional search on T based on GSS as 

discussed in section V [20]. 

 Repeat the following steps until the maximum 

number of iteration is reached or until a 

convergence criterion is met. 

 Apply SA algorithm as discussed earlier to 

generate/select metropolis in k-dimensional search 

space. Here, the position of metropolis in each 

dimension represents one ki and the whole nest 

represents one complete possible solution to 

ELSP problem   

 Updates ki’s associated with each particle that do 

not fulfill lower and upper bound requirements 

with randomly generated values between 

[  
     

  ]. 

 Given newly generated ki’s associated with 

metropolis in k-dimensional search space; apply a 

one dimensional search on T based on GSS as 

discussed in Section 5 [20] to minimize TCBP 

subject to constraint (12). 

 Updates current best ki’s and T that minimize 

TCBP.  

 

10. Results 

In this study we performed three different 

computational analysis using SA, CS, and PSO. First 

analysis is based on [1] dataset as shown in Table 1,  

second analysis is based on random data generated 

using three distribution given in [2] as shown in 

Table 2, and the third analysis is based on random 

data generated using [1] as shown in Table 3. 

 

A. Numerical Experiment 1 

The results obtained from first analysis are 

shown in Table 4, Table 5, Table 6, and Table 7. 

Table 4 compares the cost obtained by solving [1] 

problem using SA, CS, PSO and GA [5] algorithms. 

Table 5 compares the (i) relative deviation from 

tighter lower bound (TCL), (ii) improvement 

achieved through SA, CS, and PSO algorithms over 

results obtained through GA algorithm [5], (iii) 

efficiency in terms of execution time taken by TS, 

SA, CS, and PSO algorithms. Table 6 and Table 7 

compare the detailed solution found by CS, and PSO 

with GA solution [5]. 
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Table 4 shows that 77% of CS solutions are either 

better or similar to best result obtained from any 

other algorithm, 71% of PSO solutions are either 

better or similar to best result obtained from any 

other algorithm, 48% of SA solutions are either better 

or similar to best result obtained from any other 

algorithm, while only 41% of GA solution are better 

or similar to best result obtained from any other 

algorithm. So, in majority of cases CS performed 

better than all other algorithms. Table 5 shows that 

the best average relative deviation from TCL is 

19.542% using CS and worst average relative 

deviation from TCL is 21.261% using GA algorithm. 

Best average improvement over GA is 0.966% using 

CS, and best average CPU utilization time is 5.192 

sec using SA. It is also important to note that CS, and 

 

 

 

 

 

 

 

 

 

PSO all have same relative deviation from TCL for 

high utilization and only differs in low utilization 

cases. However, GA differs with other algorithms for 

high utilization as well as low utilization cases. GA 

found worst relative deviation from TCL for higher 

utilization but results for lower utilization cases are 

comparatively closed to other algorithms.  

Table 6 shows the detail comparison of 

values for T and ki (i.e., i=1,2,…10) using GA and 

SA algorithm, Table 7 shows the detail comparison 

of values for T and ki (i.e., i=1,2,…10) using GA and 

CS algorithm, while Table 8 shows the detailed 

comparison of values obtained for T and ki using GA 

and PSO algorithm. For low utilization cases 50 to 92 

ki have different values but for high utilization cases 

95 to 99 all ki have same value ‘1’. CS and PSO 

Table 1: Data of Bomberger’s problem. 

Product 

index, i 
1 2 3 4 5 6 7 8 9 10 

Base 

Demand 
24,000 24,000 48,000 96,000 4800 4800 1440 20,400 20,400 24,000 

Setup cost 

(Si): $ 
15 20 30 10 110 50 310 130 200 5 

Production 

rate (Pi): 

units/day 

30,000 8000 9500 7500 2000 6000 2400 1300 2000 15,000 

Setup time 

(τi) : h 1 1 2 1 4 2 8 4 6 1 

Holding 

cost (Hi): 

$/unit-year 

0.00065 0.01775 0.01275 0.01000 0.27850 0.02675 0.15000 0.59000 0.09000 0.00400 

Table 2: Distribution for randomly generated data by Dobson [2]. 

Parameters Set 1 Set 2 Set 3 

Number of items (units) [5, 15] [5, 15] [5, 15] 

Production rate (units/unit-time) [2000, 20000] [4000, 20000] [1500, 30000] 

Demand rate (units/unit-time) [1500, 2000] [1000, 2000] [500, 2000] 

Set-up time (time/unit) [1, 4] [1, 4] [1, 8] 

Setup cost ($) [50, 100] [50, 100] [10, 350] 

Holding cost ($) [1/240, 6/240] [1/240, 6/240] [5/240000, 5/240] 

 

Table 3: Distribution for randomly generated data using 

Bomberger’s problem [1]. 

Parameters Range  

Number of items (units) [10, 30] 

Production rate (units/unit-time) [31,2000, 720,0000] 

Demand rate (units/unit-time) [1440, 96,000] 

Set-up time (time/unit) [1/1920, 8/1920] 

Setup cost ($) [5, 310] 

Holding cost ($) [0.00065, 0.59000] 
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found same value for T and ki which gives low 

deviation from TCL. GA found the same value for ki 

but failed to found value for T similar to other 

algorithms and therefore it results in high deviation 

from TCL. 

 

Table 4: Comparison of TSIS, TCL, GA, SA, CS, and PSO solutions for Bomberger’s problem [1, 5]. 

Utilization (%) TSIS TCL GA SA CS PSO Best Cost Best Algorithm(s) 

50 5960.445 5960.445 6038.410 6036.513 6032.225 6036.513 6032.225 CS 

55 6218.253 6218.253 6328.670 6372.022 6328.086 6328.086 6328.086 CS,PSO 

60 6459.905 6459.905 6621.750 6619.799 6618.572 6618.572 6618.572 CS,PSO 

65 6687.131 6687.131 6914.700 6914.837 6914.837 6914.837 6914.700 GA 

66.18 6738.810 6738.810 7024.110 7124.987 7024.100 7024.100 7024.100 GA,CS,PSO 

70 6901.335 6901.335 7395.460 7395.467 7395.466 7395.466 7395.460 All 

75 7103.674 7103.674 7789.630 7917.524 7794.202 7794.202 7789.630 GA 

80 7295.114 7295.114 8096.010 8181.051 8085.485 8085.485 8085.485 CS,PSO 

83 7405.090 7405.090 8250.290 8250.290 8250.290 8250.290 8250.290 GA,SA,CS,PSO 

86 7511.593 7511.593 8553.310 8483.945 8483.945 8483.945 8483.945 SA,CS,PSO 

88.24 7588.934 7588.934 8782.420 8782.289 8782.289 8782.289 8782.289 SA,CS,PSO 

89 7614.763 7614.763 8874.550 8874.803 8874.803 8874.803 8874.550 GA 

92 7714.729 7714.729 9745.800 9746.356 9746.356 10086.443 9745.800 GA 

95 7811.608 8418.885 12018.080 11949.646 11949.646 11949.646 11949.646 SA,CS,PSO 

97 7874.534 11290.966 17143.000 17134.260 17134.260 17134.260 17134.260 SA,CS,PSO 

98 7905.510 15681.535 24533.820 24457.541 24457.541 24457.541 24457.541 SA,CS,PSO 

99 7936.166 29942.667 55544.470 47550.735 47550.735 47550.735 47550.735 SA,CS,PSO 

 

Table 5: Comparison of Relative Deviation from TCL, Improvement over GA, and CPU time taken by algorithms 

for Bomberger’s problem [1, 5]. 

 

% Relative Deviation from TCL % Improvement over GA CPU time (sec.) 

Utilization (%) GA SA CS PSO SA CS PSO SA CS PSO 

50 1.308 1.276 1.204 1.276 0.031 0.102 0.031 7.281 12.852 15.189 

55 1.776 2.473 1.766 1.766 0 0.009 0.009 7.178 12.572 15.019 

60 2.505 2.475 2.456 2.456 0.029 0.048 0.048 7.409 12.533 15.489 

65 3.403 3.405 3.405 3.405 0 0 0 7.731 12.789 15.690 

66.18 4.234 5.731 4.234 4.234 0 0 0 5.81 12.829 15.972 

70 7.160 7.160 7.160 7.160 0 0 0 4.946 12.544 16.059 

75 9.656 11.457 9.721 9.721 0 0 0 20.023 12.168 16.060 

80 10.979 12.144 10.834 10.834 0 0.130 0.130 2.838 12.184 15.561 

83 11.414 11.414 11.414 11.414 0 0 0 2.815 12.274 16.205 

86 13.868 12.945 12.945 12.945 0.811 0.811 0.811 2.686 12.291 14.813 

88.24 15.727 15.725 15.725 15.725 0.001 0.001 0.001 2.791 12.239 13.786 

89 16.544 16.547 16.547 16.547 0 0 0 2.742 11.983 13.465 

92 26.327 26.334 26.334 30.743 0 0 0 2.788 12.319 11.131 

95 42.751 41.939 41.939 41.939 0.569 0.569 0.569 2.553 10.964 11.075 

97 51.829 51.752 51.752 51.752 0.051 0.051 0.051 2.71 10.919 11.283 

98 56.450 55.964 55.964 55.964 0.311 0.311 0.311 2.753 10.876 11.140 

99 85.503 58.806 58.806 58.806 14.392 14.392 14.392 3.205 10.890 11.063 

Average 21.261 19.856 19.542 19.805 0.953 0.966 0.962 5.192 12.072 14.059 

Min. 1.308 1.276 1.204 1.276 0 0 0 2.553 10.876 11.063 

Max. 85.503 58.806 58.806 58.806 14.392 14.392 14.392 20.023 12.852 16.205 

Std. Dev. 23.939 19.726 19.923 20.042 3.471 3.467 3.469 4.316 0.706 2.078 
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Table 7: Detailed result Comparison between GA and CS for Bomberger’s problem [1, 5]. 

Table 6: Detail comparison of GA and SA results for Bomberger’s problem [1, 5] 

Utilization Meta-heuristic 

 GA SA 

50 
T = 28.183 

ki =[5,1,2,1,2,4,10,1,3,1] 

T = 28.594 

ki =[4,1,2,1,2,4,9,1,3,2] 

55 
T = 28.762 

ki =[5,2,2,1,2,4,8,1,2,1] 

T = 29.314 

ki =[3,1,1,1,2,4,8,1,3,1] 

60 
T = 28.863 

ki =[4,1,1,1,2,4,9,1,2,2] 

T = 28.798 

ki =[3,2,1,1,2,4,8,1,2,1] 

65 
T = 30.828 

ki =[2,1,1,1,2,3,7,1,2,1] 

T = 30.838 

ki =[2,1,1,1,2,3,7,1,2,1] 

66.18 
T = 30.443 

ki =[2,1,1,1,2,2,6,1,2,1] 

T = 32.422 

ki =[4,1,1,1,1,3,7,1,2,1] 

70 
T = 33.42 

ki =[2,1,1,1,1,2,3,1,2,1] 

T = 33.42 

ki =[2,1,1,1,1,2,5,1,2,1] 

75 
T = 31.794 

ki =[3,1,1,1,2,3,7,1,1,1] 

T = 35.719 

ki =[2,1,1,1,1,2,6,1,1,1] 

80 
T = 34.438 

ki =[2,1,1,1,1,3,6,1,1,1] 

T = 35.614 

ki =[1,1,1,1,1,2,5,1,1,1] 

83 
T = 34.951 

ki =[1,1,1,1,1,2,5,1,1,1] 

T = 34.961 

ki =[2,1,1,1,1,2,5,1,1,1] 

86 
T = 37.131 

ki =[1,1,1,1,1,1,5,1,1,1] 

T = 38.371 

ki =[1,1,1,1,1,2,4,1,1,1] 

88.24 
T = 38.442 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 38.436 

ki =[1,1,1,1,1,1,3,1,1,1] 

89 
T = 41.748 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 41.758 

ki =[1,1,1,1,1,1,3,1,1,1] 

92 
T = 53.904 

ki =[1,1,1,1,1,1,2,1,1,1] 

T = 53.914 

ki =[1,1,1,1,1,1,2,1,1,1] 

95 
T = 75.809 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 75 

ki =[1,1,1,1,1,1,1,1,1,1] 

97 
T = 125.08 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 125 

ki =[1,1,1,1,1,1,1,1,1,1] 

98 
T = 188.14 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 187.5 

ki =[1,1,1,1,1,1,1,1,1,1] 

99 
T = 439.45 

ki =[1,1,1,1,1,1,1,1,1,1] 

T= 375 

ki =[1,1,1,1,1,1,1,1,1,1] 

Utilization Meta-heuristic 

 GA CS 

50 
T = 28.183 

ki =[5,1,2,1,2,4,10,1,3,1] 

T = 28.594 

ki =[3,2,2,1,2,4,8,1,3,1] 

55 
T = 28.762 

ki =[5,2,2,1,2,4,8,1,2,1] 

T = 29.439 

ki =[5,2,2,1,2,4,9,1,2,1] 

60 
T = 28.863 

ki =[4,1,1,1,2,4,9,1,2,2] 

T = 29.306 

ki =[5,1,1,1,2,4,8,1,2,2] 

65 
T = 30.828 

ki =[2,1,1,1,2,3,7,1,2,1] 

T = 30.838 

ki =[2,1,1,1,2,3,7,1,2,1] 

66.18 
T = 30.443 

ki =[2,1,1,1,2,2,6,1,2,1] 

T = 30.449 

ki =[2,1,1,1,2,2,6,1,2,1] 

70 
T = 33.42 

ki =[2,1,1,1,1,2,3,1,2,1] 

T = 33.42 

ki =[2,1,1,1,1,2,5,1,2,1] 
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75 
T = 31.794 

ki =[3,1,1,1,2,3,7,1,1,1] 

T = 32.11 

ki =[3,1,1,1,2,4,6,1,1,1] 

80 
T = 34.438 

ki =[2,1,1,1,1,3,6,1,1,1] 

T = 35.28 

ki =[3,1,1,1,1,3,6,1,1,1] 

83 
T = 34.951 

ki =[1,1,1,1,1,2,5,1,1,1] 

T = 34.961 

ki =[2,1,1,1,1,2,5,1,1,1] 

86 
T = 37.131 

ki =[1,1,1,1,1,1,5,1,1,1] 

T = 38.371 

ki =[1,1,1,1,1,2,4,1,1,1] 

88.24 
T = 38.442 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 38.436 

ki =[1,1,1,1,1,1,3,1,1,1] 

89 
T = 41.748 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 41.758 

ki =[1,1,1,1,1,1,3,1,1,1] 

92 
T = 53.904 

ki =[1,1,1,1,1,1,2,1,1,1] 

T = 53.914 

ki =[1,1,1,1,1,1,2,1,1,1] 

95 
T = 75.809 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 75 

ki =[1,1,1,1,1,1,1,1,1,1] 

97 
T = 125.08 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 125 

ki =[1,1,1,1,1,1,1,1,1,1] 

98 
T = 188.14 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 187.5 

ki =[1,1,1,1,1,1,1,1,1,1] 

99 
T = 439.45 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 375 

ki =[1,1,1,1,1,1,1,1,1,1] 

 

Table 8: Detailed result Comparison between GA and PSO for Bomberger’s problem [1, 5]. 

Utilization Meta-heuristic 

 GA PSO 

50 
T = 28.183 

ki =[5,1,2,1,2,4,10,1,3,1] 

T = 28.594 

ki =[4,1,2,1,2,4,9,1,3,2] 

55 
T = 28.762 

ki =[5,2,2,1,2,4,8,1,2,1] 

T = 29.439 

ki =[5,2,2,1,2,4,9,1,2,1] 

60 
T = 28.863 

ki =[4,1,1,1,2,4,9,1,2,2] 

T = 29.306 

ki =[5,1,1,1,2,4,8,1,2,2] 

65 
T = 30.828 

ki =[2,1,1,1,2,3,7,1,2,1] 

T = 30.838 

ki =[2,1,1,1,2,3,7,1,2,1] 

66.18 
T = 30.443 

ki =[2,1,1,1,2,2,6,1,2,1] 

T = 30.449 

ki =[2,1,1,1,2,2,6,1,2,1] 

70 
T = 33.42 

ki =[2,1,1,1,1,2,3,1,2,1] 

T = 33.42 

ki =[2,1,1,1,1,2,5,1,2,1] 

75 
T = 31.794 

ki =[3,1,1,1,2,3,7,1,1,1] 

T = 32.11 

ki =[3,1,1,1,2,4,6,1,1,1] 

80 
T = 34.438 

ki =[2,1,1,1,1,3,6,1,1,1] 

T = 35.28 

ki =[3,1,1,1,1,3,6,1,1,1] 

83 
T = 34.951 

ki =[1,1,1,1,1,2,5,1,1,1] 

T = 34.961 

ki =[2,1,1,1,1,2,5,1,1,1] 

86 
T = 37.131 

ki =[1,1,1,1,1,1,5,1,1,1] 

T = 38.371 

ki =[1,1,1,1,1,2,4,1,1,1] 

88.24 
T = 38.442 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 38.436 

ki =[1,1,1,1,1,1,3,1,1,1] 

89 
T = 41.748 

ki =[1,1,1,1,1,1,3,1,1,1] 

T = 41.758 

ki =[1,1,1,1,1,1,3,1,1,1] 

92 
T = 53.904 

ki =[1,1,1,1,1,1,2,1,1,1] 

T = 46.875 

ki =[1,1,1,1,1,1,1,1,1,1] 

95 
T = 75.809 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 75 

ki =[1,1,1,1,1,1,1,1,1,1] 
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97 
T = 125.08 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 125 

ki =[1,1,1,1,1,1,1,1,1,1] 

98 
T = 188.14 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 187.5 

ki =[1,1,1,1,1,1,1,1,1,1] 

99 
T = 439.45 

ki =[1,1,1,1,1,1,1,1,1,1] 

T = 375 

ki =[1,1,1,1,1,1,1,1,1,1] 

B. Numerical Experiment 2 

The second analysis is based on random data 

generated from set 1, set 2, and set 3 of [2] using SA, 

CS and PSO. Table 9 obtained by solving hundred 

distinct random generated problems of size between 

five and eight and utilization between 90% and 99% 

from set 1 of [6] using SA, CS and PSO. The results 

obtained from all these algorithms are same (i.e., 

mean deviation from TCL 8.273, minimum deviation 

from TCL 0.951, maximum deviation from TCL 

20.905, and in almost all cases ki= 1). The higher 

deviation from TCL is due to the higher utilization 

factor. We can also refer to the first analysis using [1] 

problem in which deviation from TCL increases with 

the increase in utilization (i.e., for 90% utilization 

relative deviation from TCL was 26.334% and all ki 

(i.e., i=1,2,…10) have same value ‘1’).           

Table 10 is obtained by solving hundred 

distinct random data generated for problem size 

between five and ten from set 2 of Dobson using SA, 

CS and PSO. The result obtained from all algorithms 

were same (i.e., mean deviation from TCL 7.154, 

minimum deviation from TCL 0.834 and maximum 

deviation from TCL 22.529 and in almost all cases 

ki= 1).  

Table 11 is obtained by solving hundred 

distinct random data generated for problem size 

between five and fifteen from set 3 of [6] using CS 

and PSO. The result obtained from all these 

algorithms were same (i.e., mean deviation from TCL 

22.308, minimum deviation from TCL 5.347 and 

maximum deviation from TCL 57.436 and in almost 

all cases ki= 1). 

Table 9: Comparison of relative deviation from TCL 

for algorithms on randomly generated problems using 

set 1 by Dobson [2]. 

Algorithms SA CS PSO 

Mean  8.273 8.273 8.273 

Min.  0.951 0.951 0.951 

Max.  20.905 20.905 20.905 

Std. Dev. 4.979 4.979 4.979 

Table 10: Comparison of relative deviation from TCL 

for algorithms on randomly generated problems using 

set 2 by Dobson [2]. 
Algorithms SA CS PSO 

Mean 7.154 7.154 7.154 

Min. 0.834 0.834 0.834 

Max. 22.529 22.529 22.529 

Std. Dev. 4.165 4.165 4.165 

 

Table 11: Comparison of relative deviation from 

TCL for algorithms on randomly generated 

problems using set 3 by Dobson [2]. 
Algorithms SA CS PSO 

Mean 22.308 22.308 22.308 

Min. 5.347 5.347 5.347 

Max. 57.436 57.436 57.436 

Std. Dev. 10.995 10.995 10.995 

 

C. Numerical Experiment 3 

The third analysis is based on random data 

generated as shown in Table 3 from minimum and 

maximum value of base demand, setup cost, 

production rate, setup time, holding cost obtained 

from [1]) problem. Ten data generated for each 

problem size of ten, fifteen, twenty, twenty five and 

thirty and for each utilization level of 65%, 70%, 

75%, 80%, 85%, and 90%. 

Table 12, Table 13, and Table 14 obtained 

by solving above randomly generated problem using 

SA, CS and PSO respectively. CS algorithm found 

the same solution for high utilization cases (i.e., 85% 

and 90%) of all problem sizes (i.e., 10, 15, 20, 25, 

and 30). However, the solution found by these 

algorithms differs in low to medium utilization cases 

(i.e., 65%, 70%, 75%, and 80%). Table 12, Table 13, 

and Table 14 shows that 93% of solutions obtained 

using SA are either better or similar to best result 

obtained from any other algorithm, 63% of solutions 

obtained using CS are either better or similar to best 

result obtained from any other algorithm, while only 

47% of solution obtained using PSO are either better 

or similar to best result obtained using any other 

algorithm.  

It is important to note that in first analysis 

77% of solution found by CS algorithm was better, in 

second analysis all algorithm did equally well, in 

third analysis 93% of solution found by SA are 

better. The deviation of result between algorithms in 

analysis 1 and analysis 3 is due to location of best 

solution in the search space. CS and PSO algorithms 

performed better when the best solution located far 

from initial feasible solution in the search space (i.e., 

CS search follow levy distribution while PSO search 

follows position and velocity to find the feasible 

solution) but SA performed better if the best solution 

is within the neighborhood of the initial feasible 

solution. In analysis 1 either best solutions were 
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initial solution (i.e., for high utilization case where all 

ki were ‘1’) or far from the initial solution (i.e., for 

low utilization cases where ki have different values) 

but in analysis 3 all best solutions are very closed to 

initial feasible solution (i.e., most of the ki were either 

‘1’ and some of them were ‘2’). 

 

 

Table 12: SA algorithm’s relative deviation from TCL on randomly generated problems using distribution given in 

Table 3. 

Problem size\ 

Utilization 

65 70 75 80 85 90 

10 

Mean 12.563 15.304 18.032 22.123 26.754 31.723 

Min. 1.969 1.970 2.904 6.731 11.054 12.479 

Max. 27.254 33.732 42.593 55.256 72.727 89.281 

Std. Dev. 9.8223 12.528 14.520 16.880 19.615 22.569 

15 

Mean 11.904 13.397 15.448 17.928 20.228 22.509 

Min. 5.092 5.661 6.152 6.542 6.839 7.142 

Max. 22.538 24.649 26.537 34.957 42.550 51.049 

Std. Dev. 5.062 5.730 6.966 8.909 10.646 12.815 

20 

Mean 14.043 15.746 17.573 19.356 20.990 22.284 

Min. 8.142 9.542 10.992 12.357 13.517 14.383 

Max. 18.585 20.692 23.511 26.521 30.533 33.727 

Std. Dev. 3.427 3.620 4.048 4.742 5.515 6.192 

25 

Mean 15.851 17.597 19.332 20.991 22.428 23.511 

Min. 11.233 12.636 13.829 14.513 15.098 15.533 

Max. 25.098 27.789 29.908 31.805 33.420 34.620 

Std. Dev. 4.444 4.831 5.088 5.356 5.632 5.871 

30 

Mean 19.795 21.811 23.819 25.693 27.276 28.449 

Min. 11.074 11.786 12.427 12.965 13.382 13.673 

Max. 41.068 48.401 55.387 61.848 67.291 71.323 

Std. Dev. 9.609 11.422 13.139 14.725 16.061 17.051 

Table 13: CS algorithm’s relative deviation from TCL on randomly generated problems using distribution given in 

Table 3. 

Problem size\ 

Utilization 

65 70 75 80 85 90 

10 

Mean 12.563 15.141 17.967 22.156 26.754 31.723 

Min. 1.969 1.970 2.904 6.731 11.054 12.479 

Max. 27.254 33.557 42.130 55.256 72.727 89.281 

Std. Dev. 9.822 12.327 14.417 16.901 19.615 22.569 

15 

Mean 12.321 13.916 15.836 18.052 20.228 22.509 

Min. 6.073 5.953 6.152 6.542 6.839 7.142 

Max. 22.538 25.151 27.553 35.735 42.550 51.049 

Std. Dev. 4.832 5.812 7.417 9.122 10.646 12.815 

20 

Mean 14.295 15.855 17.573 19.356 20.99 22.284 

Min. 8.142 9.542 10.992 12.357 13.517 14.383 

Max. 19.183 20.692 23.511 26.521 30.533 33.727 

Std. Dev. 3.707 3.614 4.048 4.742 5.515 6.192 

25 

Mean 16.013 17.612 19.336 20.991 22.428 23.511 

Min. 11.233 12.635 13.829 14.513 15.098 15.533 

Max. 25.985 27.901 29.908 31.805 33.420 34.620 

Std. Dev. 4.667 4.858 5.088 5.356 5.632 5.871 

30 

Mean 19.849 21.811 23.819 25.693 27.276 28.449 

Min. 11.074 11.786 12.427 12.965 13.382 13.673 

Max. 41.408 48.401 55.387 61.848 67.291 71.323 

Std. Dev. 9.688 11.422 13.139 14.725 16.061 17.051 
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11. Conclusion 

This research presented hybridization 

scheme based on multiple intelligent techniques with 

GSS to solve the ELSP problem under basic period 

approach. This hybrid technique used PSO, CS and 

SA optimization to find the optimum value of ki’s, 

followed by GSS to find the basic period T. The 

feasibility of the solution is guaranteed with a 

constraint that ensures the items assigned in each 

period can be produced within the length of the 

period. The experimental results indicate following 

outcomes: 

 The hybridization scheme was able to find 

comparatively better basic period solutions than 

GA [5] for the low utilization problems. 

 The hybridization scheme was also able to find 

comparatively better basic period solutions than 

GA [5] for the high utilization problems. 

 CS and PSO based hybridization algorithms 

performed better than SA based hybridization 

algorithm, if the best solution is located far from 

initial feasible solution in the search space. 

 SA based hybridization algorithm performed 

better than CS and PSO based hybridization 

algorithms, if the best solution is much closer to 

the neighborhood of the initial feasible solution.  
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