
Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2515

A new model for Context-Oriented Programs

Mohamed A. El-Zawawy
1,2

, Eisa A. Aleisa
1

1
College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh, Kingdom of Saudi Arabia
2
Department of Mathematics, Faculty of Science, Cairo University, 12613, Giza, Egypt

maelzawawy@ccis.imamu.edu.sa

Abstract: Context-oriented programming (COP) is a new technique for programming that allows changing the

context in which commands execute as a program executes. Compared to object-oriented programming (aspect-

oriented programming), COP is more flexible (modular and structured). This paper presents a precise syntax-

directed operational semantics for context-oriented programming with layers, as realized by COP languages like

ContextJ* and ContextL. Our language model is built on Java enriched with layer concepts and activation and

deactivation of layer scopes. The paper also presents a static type system that guarantees that typed programs do not

get stuck. Using the means of the proposed semantics, the mathematical correctness of the type system is presented

in the paper.

[El-Zawawy MA, Aleisa EA. A new model for Context-Oriented Programs. Life Sci J 2013; 10(2): 2515-2523].

(ISSN: 1097-8135). http://www.lifesciencesite.com. 349

Keywords: Context-oriented programming; operational semantics; type systems; layers activation and deactivation

1. Introduction

 Modularity of performance alterations relies

on the dynamic environment of program executions.

Context-oriented programming (COP) (Hirschfeld,

Costanza & Nierstrasz, 2008) emerged as a

programming technique to enhance this modularity.

Classically these performance alterations are

distributed among program modules and usually

complex engineering is necessary to back dynamic

combination of the modules. Smalltalk (Golubski &

Lippe, 1995), Java (Campione, Walrath & Huml, 2000),

JavaScript (Flanagan, 2012), and Common Lisp

(Costanza, Herzeel & D’Hondt, 2009) are examples of

languages on which COP were established. The base

languages for COP are typical object oriented

languages. Main features of COP include (a) layers of

variant procedures for introducing and classifying

performance alterations and (b) an instrument for layer

activation to endorsement and composition. A variant

procedure is a procedure that can be executed around,

after, or before the same (variant) procedure defined in

a different part (class or layer) of the program. A layer

is a set of variant procedures. A layer can be

(de)activated in main function. Layers are meant to

determine the specific semantics of objects for

adaption with different applications.

 In this paper, we present a new model for

COP. The proposed model has basic language features.

The model has the advantage of extending directly

over well-studied Java features. The model is in-

complex yet articulates enough to include more

language features. Besides typical Java features, the

model provides overriding (i.e., around-type) variant

procedures, layers activation and deactivation, and a

call mechanism for proceed and super. This paper also

presents an operation semantics that directly (without

mapping to non-COP) models the meanings of basic

COP constructs. For the core of COP languages, the

proposed semantics can be used to provide precise

specifications. The paper also presents a type system

for COP. Typically; a type system statically ensures

the absence of run-time errors such as procedure-not-

found and field-not-found errors. Noticeably,

establishing the type system is not an easy task because

in COP the existence of a procedure definition in a

class may well rely upon whether a specific layer is

activated. The paper also provides a mathematical

proof for the soundness of the type system based on the

proposed operational semantics.

Example

 Figure 1 provides a COP example. Class Cube

defines three variables of type integer (length, width,

and height) with a constructor for initialization. The

class also includes the modify() procedure to modify

different variables.

 The first definition of modify() is the main one

and modifies and shows length. This definition is

included in the main layer which is effectual for all

objects of Cube. The second definition of modify() is a

refinement and is included in the layer Second_dim.

This refinement modifies width and appends its new

value (the second dimension of the cube) that might be

needed for further calculations. This refinement is

effective only when its layer is activated. The third

definition of modify() is yet another refinement and is

included in the layer Third_dim.

 In the example of Figure 1, the refinements of

modify() runs the command proceed(). This special

command invokes all refinements of modify() included

mailto:maelzawawy@ccis.imamu.edu.sa
http://www.lifesciencesite.com/

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2516

in layers already activated ahead of the activation of

the Second_dim or Third dim layer. This command

also invokes the version of modify() included in the

main layer. On the other hand, the super command

included in our language model (Figure 2) starts the

lookup for procedures from the super-class of the class

containing the current procedure.

 The with and without constructs are used in

COP for layer activation and deactivation, respectively.

We show their use on the following object of the class

Cube.

Cube c(1, 1, 1);

While no layers are activated, the following

standard command invokes the version of the main

layer of modify() that modifies and returns only the

length of the cube c.

System.out.println(c);

=> ”Length: 4”

However, the following example activates

Second_dim layer (via with). In this case, the printing

command invokes first the version of modify() included

in Second_dim and then invokes the version of the

main layer of modify().

with Second_dim (System.out.println(c));

=>”Length: 4; width: 5;”

Another example is the following:

without Second dim (with Second dim

(System.out.println(c)));

=>”Length: 4;”

Contributions

 Contributions of this paper are the following:

1. A precise operational semantics for a rich

model of context-oriented programming languages.

2. A static type system that is mathematically

sound for context-oriented programming languages.

Organization

 The organization of the rest of the paper is as

follows. Section 2 presents the language model and the

operational semantics of the language. The type system

together with its mathematical soundness proof is

presented in Section 3. Related and future work is

discussed in Section 4.

2. Syntax and Operational Semantics

 This section presents the model of our

programming language together with an operational

semantics for the language. Most basic object-oriented

aspects as subtyping and inheritance are included in the

language (dubbed J-COP) that we use in this paper. For

the sake of readability, we followed the Java syntax for

corresponding constructs. The syntax of J-COP is

shown in Figure 2.

 Bool and int are our primitive types. We

assume that ℂ is a set of class names with typical

element 𝐶. The set of types (Types) includes bool, int,

andℂ. Moreover "Types" has reference and function

types. We let 𝜏 be a typical element of the set of types.

We let LVar denotes the set of local variables. Local

variables are contained in procedures and are active as

long as their hosting procedures are active. Local

variables also serve as parameters for procedures. The

set of instance variables of a class 𝐶 is denoted by

𝑉𝑎𝑟𝐶 . The internal state of a class is stored via its

instance variables. Typical elements of IVar and 𝐼𝑉𝑎𝑟𝐶

are 𝑜 and 𝑣 , respectively. The sets of procedure and

layer names are denoted by FunNames (typical element

is 𝑓) and LayerNames (typical element is 𝑙),
respectively. A layer expression is a sequence of layer

activation/deactivation. A typical element of the set of

layer expressions, denoted by LayerExpr, is denoted

by 𝑙𝑒.

 A program in J-COP consists of a set of

classes and a main procedure triggering the program

execution. A class contains definitions for a set of

procedures and a set of layers each of which contains

the definition of a procedure. A parameter, a statement,

and an expression are the components of a procedure

where the expression denotes the value returned by the

procedure.

 We use a state representation and a subtype

relation to define an operational semantics for the

language J-COP. We let 𝜏1 ≤ 𝜏2 denotes that 𝜏1 is a

subtype of 𝜏2. The class definitions of a given program

are used to build the relation ≤ which is introduced in

Definition 1.

Definition 1

1. Types = 𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡,𝐶, 𝑟𝑒𝑓 𝜏, 𝜏1 → 𝜏2 .
2. A class 𝐶 is a subclass of a class 𝐷 (denoted

by 𝐶 ≪ 𝐷) if 𝐶 inherits 𝐷 by definition of 𝐶.

The relation ≤𝐶 on the set of classes is the

reflexive transitive closure of ≪. A class 𝐷 is

a superclass of 𝐶, if 𝐶 is a subclass of 𝐷.

1- Class Cube{

2- int length, width, height;

3- cube(int val1, int val2, int val2)

4- { length:=val1; wedith:=val2; height:=val3; }

5- modify()

6- { length:= 4; return ”Length:” + length; }

7- layer Second_dim

8- { modify()

9- { width:= 5; return

proceed+ ”;Width: ”+width; }}

10- layer Third_dim

11- { modify()

12- { height:= 6; return proceed+”; Height:”+height;

}}}

Figure 1: A COP program

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2517

3. The order ≤ on the set of types is defined as:

≤C∪ {τ ≤ τ ∣ τ ∈ int, bool, ref τ, τ1 → τ2 }

 Definition 2 introduces necessary

components towards introducing the states of the

operational semantics. The symbol 𝒜 denotes an

infinite set of memory addresses with α as a typical

element of 𝒜.

Definition 2

1. For a class 𝐶 , 𝐼𝑉𝑎𝑟𝐶and 𝐹𝑢𝑛𝐶denote the set of

instance variables and the set of functions of 𝐶,

respectively. The set of layer names of a class 𝐶

is denoted by 𝐿𝑎𝑦𝑒𝑟𝐶 .

2. ℘ = ℤ ∪ 𝒜 ∪ {⊥}.

3. 𝑆𝑡𝑎𝑐𝑘𝑠 = {𝑠 ∣ 𝑠: 𝐿𝑉𝑎𝑟 → ℘}.

4. 𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 = {𝐼 𝐶 ,𝑛 ∣ 𝐼 𝐶,𝑛 : 𝐼𝑉𝑎𝑟𝐶 → ℘,𝐶

∈ ℂ,𝑛 ∈ ℕ}.

5. Heaps = {h ∣ h: 𝒜 →𝑝 { 𝐶,𝑛, 𝐼 𝐶,𝑛 ∣ 𝐶 ∈ ℂ,𝑛 ∈

ℕ} .
6. 𝑆𝑡𝑎𝑡𝑒𝑠 = { 𝑠, , 𝐿𝑠 ∣ 𝑠 ∈ 𝑠𝑡𝑎𝑐𝑘𝑠, ∈ 𝐻𝑒𝑎𝑝𝑠,

 𝐿𝑠 ⊆ 𝐿𝑎𝑦𝑒𝑟𝑁𝑎𝑚𝑒𝑠}.
 Model values are elements of the set ℘ . A

semantic state is a triple of a stack, a heap, and a set of

layer names that are active at that program point (state).

The set of local variables includes the special variable

this which points at the current active object. For an

address 𝛼 ∈ 𝑑𝑜𝑚 , 𝑖(𝛼)denotes the i
th

 component

of the triple (𝛼), where 𝑖 = 1,2,3.

 Definition 3 introduces the notations 𝐹𝐶 and

𝐿𝐶 . For a class 𝐶, 𝐹𝐶 maps each procedure name in 𝐶

to the triple consisting of the parameter variable of the

procedure, procedure body, and returned expression of

procedure. For a class 𝐶, 𝐼𝐶 maps each layer name in 𝐶

to the components of its procedure.

Definition 3

1. 𝐹𝑢𝑛𝐵𝑜𝑑𝑖𝑒𝑠 = {𝐹𝐶 ∣ 𝐹𝐶:𝐹𝑢𝑛𝐶 → 𝐿𝑉𝑎𝑟 ×

𝑆𝑡𝑚𝑡 × 𝐸𝑥𝑝𝑟; 𝑓 ↦ 𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓 }.

2. 𝐿𝑎𝑦𝑒𝑟𝑠 = {𝐿𝐶 ∣ 𝐿𝐶 : 𝐿𝑎𝑦𝑒𝑟𝐶 → 𝐹𝑢𝑛𝐶 ×

𝐿𝑉𝑎𝑟 × 𝑆𝑡𝑚𝑡 × 𝐸𝑥𝑝𝑟;𝑓 ↦ 𝑓, 𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓 }.

Figure 3 presents inference rules of four

procedures that are used in the inference rules of the

operational semantics.

 For a given list of layer names Ls and a layer

expression le, Figure 3 presents the procedure layer

which adds the layers activated by le to Ls and

removes the layers deactivated by le from Ls. The

definition of the class procedure is presented in Figure

3. This procedure finds whether a given variable

belongs to a given class or to any of its ancestor classes.

The procedure super, which for a function name and a

class name searches for the first ancestor of the class

that contains a definition for the function, is outlined in

the same figure which as well presents the definition of

the procedure clslyrs. This procedure determines which

members of a given list of active layers (L) contain a

definition for a given procedure, f.

 The semantics of the J-COP expressions is

presented in Figure 4. Some comments on the figure

are in order. The variable 𝑣 of the class pointed-to by 𝑒

is denoted by 𝑒. 𝑣. We assume that the set of variables

in a class does not intersect with the set of the variables

of any of the class's ancestors. We also assume that for

a class 𝐶 , the domain of 𝐼𝑉𝑎𝑟𝐶 includes all the

variables of 𝐶 and its ancestors. Hence the rule 𝑖𝑛𝑠𝑡1
𝑠

ensures that 𝑣 is a member of the class pointed-to by 𝑒

or is a member of any of the class's ancestors (via

calling the class procedure). The semantic of 𝑒 is the

address of the triple in memory representing the meant

class object. The third component of this triple is

denoted by I (which is a map representing the values of

the object's variables). The rule 𝑐𝑎𝑠𝑡1
𝑠says that the cast

of the expression 𝑒 in the form of a class 𝐶 aborts only

if 𝑒 points to a triple in the memory that represents a

class 𝐷 that is not a descendant of 𝐶.

 Definition 4 formalizes the case when a

statement aborts execution.

Definition 4

A statement 𝑆 aborts at a state (𝑠, , 𝐿𝑠) ,

denoted by 𝑆: 𝑠, , 𝐿𝑠 → 𝑎𝑏𝑜𝑟𝑡 , if it not possible

(provided that 𝑆 is not stuck in an infinite loop) to find

a state (𝑠′ , ′, 𝐿𝑠 ′) such that 𝑆: 𝑠, , 𝐿𝑠 → (𝑠′ , ′, 𝐿𝑠′)

according to inference rules of Figure 5.

 The semantics of the statements of the J-COP

language is shown in Figure 5. Some comments on the

rules are as follows. The rule (≔𝑒
𝑠) modifies the

variable 𝑣 of the object referenced by 𝑒1. This is done

via updating the third component of 𝑒1 𝑠, and

keeping the first two components (2([𝑒1 𝑠,) and

𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 ∶≔ 𝑖𝑛𝑡 ∣ 𝑏𝑜𝑜𝑙 ∣ 𝐶 ∣ 𝑟𝑒𝑓 𝜏 ∣ 𝜏1 → 𝜏2
𝑒 ∈ 𝐸𝑥𝑝𝑟𝑠 ∶≔ 𝑛 ∣ 𝐶 𝑒 ∣ 𝑡𝑖𝑠 ∣ 𝑜 ∣ 𝑒. 𝑣 ∣ 𝑒1 𝑖𝑜𝑝 𝑒2

𝑏 ∈ 𝐵𝑒𝑥𝑝𝑟𝑠 ∶≔ 𝑡𝑟𝑢𝑒 ∣ 𝑓𝑎𝑙𝑠𝑒 ∣ 𝑒1𝑐𝑜𝑝 𝑒2 ∣ 𝑏1𝑏𝑜𝑝𝑏2

𝑙𝑒 ∈ 𝐿𝑎𝑦𝑒𝑟𝐸𝑥𝑝𝑟𝑠 ∶≔ 𝑤𝑖𝑡 𝑙 ∣ without 𝑙 ∣ 𝜖 ∣ 𝑙𝑒 𝑙𝑒
𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 ∶≔ 𝑒1 . 𝑣 ≔ 𝑒2 ∣ 𝑜1 ≔ 𝑙𝑒 𝑜2 . 𝑓 𝑒 ∣ 𝑜1

≔ 𝑜2 . 𝑓 𝑒 ∣ 𝑜1 ≔ 𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 𝑜1

≔ 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2 . 𝑓 𝑒 ∣ 𝑜 ≔ 𝑛𝑒𝑤 𝐶
∣ 𝑆1; 𝑆2 ∣ 𝑖𝑓 𝑏 𝑡𝑒𝑛 𝑆𝑡𝑒𝑙𝑠𝑒 𝑆𝑓
∣ 𝑤𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆𝑡

𝑓𝑢𝑛 ∈ 𝐹𝑢𝑛𝑠 ∶≔ 𝑓 𝑝 {𝑆; 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒 ; }
𝑙𝑎𝑦𝑒𝑟 ∈ 𝐿𝑎𝑦𝑒𝑟𝑠 ∶≔ 𝐿𝑎𝑦𝑒𝑟 𝑙 {𝑓𝑢𝑛}
𝑖𝑛𝑟𝑡 ∈ 𝐼𝑛𝑒𝑟𝑖𝑡𝑠 ∶≔ 𝜖 ∣ 𝑖𝑛𝑒𝑟𝑖𝑡𝑠 𝐶

𝑐𝑙𝑎𝑠𝑠 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠:
≔ 𝑐𝑙𝑎𝑠𝑠 𝐶 𝑖𝑛𝑟𝑡 { 𝑓𝑢𝑛∗ 𝑙𝑎𝑦𝑒𝑟∗}

𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔𝑠 ∶≔ 𝑐𝑙𝑎𝑠𝑠∗𝑚𝑎𝑖𝑛(){ 𝑆 }

Figure 2: The programming language J-COP

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2518

3([𝑒1 𝑠,))) of the triple unchanged. The semantics

of executing the function 𝑓of the object referenced by

𝑜2 on the input 𝑒 is captured by the rule (≔𝑜 .𝑓
𝑠). The

expression le of the statement 𝑜1 ≔ 𝑜2 . 𝑓 𝑒
activates/deactivates some specific layers. The

semantic of the statement is given via the rule (≔𝑙 .𝑜 .𝑓
𝑠).

This rule first adds (removes) activated (deactivated)

layers of le to 𝐿𝑠 to produce 𝐿1
𝑠 (via calling the

procedure layer). The rule then finds the sub-list of 𝐿1
𝑠

whose elements contain a definition for the function 𝑓.

Then the rule sequentially executes these functions.

The execution of a function definition considers the

previous execution via modifying 𝑜1 to the
 𝑒𝑖−1 𝑠𝑖 , 𝑖 . The rule (𝑠𝑢𝑝𝑠) expresses the

semantics of the statement 𝑜1 ≔ 𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 which

executes the procedure 𝑓 defined in an ancestor of the

current class. This ancestor that hosts 𝑓 is found using

the procedure super. The rule (𝑝𝑟𝑜𝑠) introduces the

semantics of the statement 𝑜1 ≔ 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2 . 𝑓 𝑒
which executes all functions named 𝑓 and contained in

an active layer of the object pointed-to by 𝑜2 . The

procedure clylyrs is used in this rule to decide which of

the currently active layers (𝐿𝑠) contains a definition for

𝑓 and is a member of the object pointed-to by 𝑜2.

3. Type System

 This section presents a type system for the

language J-COP. The function of the type system is to

statically detect type errors like variable-not-found and

procedure-not-found. Our type system also assures

success of proceed() and super()calls. The concept of

layer activation/deactivation makes developing such

type system is not an easy task. This is so because

layer activation/deactivation affects the list of

procedures to be considered included in a given class.

Definition 5 presents the context definition.

Definition 5. 1. 𝑉𝑎𝑟 = 𝐿𝑉𝑎𝑟 ∪ (∪ { 𝐶, 𝑣 ∣ 𝑣 ∈
 𝐼𝑉𝑎𝑟𝑐 𝑎𝑛𝑑 𝐶 𝑖𝑠 𝑎 𝑐𝑙𝑎𝑠𝑠}).

2. The set of contexts is defined as { 𝛤,𝐿𝑡 ∣ 𝛤:𝑉𝑎𝑟 →𝑝

 𝑖𝑛𝑡, 𝑟𝑒𝑓 𝐶 𝑎𝑛𝑑 𝐿𝑡 ⊆ 𝐿𝑎𝑦𝑒𝑟𝑁𝑎𝑚𝑒𝑠}.

 The proposed type system for the J-COP

language is shown in Figure 6. Some comments on the

rules are as follows. For expressions, the type

judgment has the form 𝛤 ⊨ 𝑒: 𝜏, read '' 𝑒 is of type τ

under 𝛤 where 𝛤 denotes a finite function from

variables to the set {int, ref C}. For class procedures,

the type judgment has the form 𝛤, 𝐿𝑡 ⊨ 𝐶, 𝑓 : 𝜏1 →
𝜏2 , read ''the procedure 𝑓 of the class 𝐶 is of type

𝜏1 → 𝜏2 under 𝛤 and 𝐿𝑡 '' where 𝐿𝑡 denotes a set of

active layers. For layer procedures, the type judgment

has the form 𝛤, 𝐿𝑡 ⊨ 𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜏2 , read ''the

procedure f of the layer l contained in the class C is of

type 𝜏1 → 𝜏2under 𝛤 and 𝐿𝑡 ''. For statements, the type

judgment has the form 𝛤, 𝐿𝑡 ⊨ 𝑆:𝑊𝐹 , read ''𝑆 is

well formed and safe to be executed under 𝐶 and 𝐿𝑡 ''.

The precondition of the rule (𝐶. 𝑓𝑡) requires that the

body 𝑆 of the procedure 𝑓 to be well formed. The

precondition also requires the existence of a common

type that covers any overloading for𝑓. The first part of

the precondition of the rule (≔𝑙 .𝑜 .𝑓
𝑡) requires that all

procedures named 𝑓 inside layers of the class 𝐶 to have

an upper bound type. Among others requirements, the

precondition of this rule also ensures that the set 𝐿𝑡 is

in line with the expression ≤ (𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑡 = 𝐿𝑡). The

rule (𝑝𝑟𝑜𝑡) uses the rule (≔𝑙 .𝑜 .𝑓
𝑡) to determine types

for all instances of 𝑓 in layers of the class𝐶. In line

with expectation of the rules for non-atomic statements

like 𝑖𝑓𝑡 , 𝑤𝑖𝑙𝑒𝑡 , 𝑎𝑛𝑑 (𝑠𝑒𝑟𝑡) , these rules require

their sub-statements to be well formed.

 Definition 6 presents the condition when a

state respects a context denoted by 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡).

Definition 6.

1. 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡) ⇔𝑑𝑒𝑓
(a) 𝐿𝑠 ⊆ 𝐿𝑡 ,
(b)∀ 𝑜 ∈ 𝑑𝑜𝑚 Γ . Γ 𝑜 = 𝑖𝑛𝑡 ⇒ 𝑠 𝑎 ∈ ℤ ,

(c) ∀ 𝑜 ∈ 𝑑𝑜𝑚 Γ . Γ 𝑜 = 𝑟𝑒𝑓𝐶 ⇒ (𝑠(𝑜)) = (𝐶,𝑛,
𝐼(𝐶,𝑛)), and

(d) ∀𝑎 ∈ 𝒜. 𝑎 ∈ 𝑑𝑜𝑚 ⇒ 3 𝑎 ∼(𝑠,) Γ.

(Definition 6.2)

2. 𝐼(𝐶,𝑛) ∼(𝑠,) Γ ⇔𝑑𝑒𝑓 ∀ 𝐷. 𝑖𝑓 𝐶 ≤ 𝐷, 𝑡𝑒𝑛

(a) Γ 𝐷, 𝑣 = 𝑖𝑛𝑡 ⇒ 𝐼 𝐶,𝑛 𝑣 ∈ ℤ, and

(b) Γ 𝐷, 𝑣 = 𝑟𝑒𝑓𝐸 ⇒ (𝐼 𝐶,𝑛 (𝑣)) = (𝐸,𝑚, 𝐼 𝐸 ,𝑚)

𝑎𝑛𝑑 𝐼 𝐸 ,𝑚 ∼(𝑠,) Γ.

 Now we prove the soundness of the type

system.

Lemma 1
 Typed expressions of the language J-COP do

not abort (go wrong). Moreover:

(a) If 𝛤 ⊨ 𝑒: 𝑖𝑛𝑡 and 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡), then

 𝑒 𝑠, ∈ ℤ .

(b) If 𝛤 ⊨ 𝑒: 𝑟𝑒𝑓 𝐶 and 𝑠, ,𝐿𝑠 ∼ 𝛤, 𝐿𝑡 , then

1 𝑒 𝑠, = 𝐷 and 𝐷 ≤ 𝐶.

Proof

 Suppose that e is an expression of the language

J-COP such that 𝛤 ⊨ 𝑒: 𝜏 and 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡). We

show that 𝑒 𝑠, ≠⊥ and we show (a) and (b) above.

This is shown by induction on 𝛤 ⊨ 𝑒: 𝜏 with case

analysis on the last inference rule applied. Main cases

are only shown below:

Case 𝑜𝑡 :
 In this case 𝛤 𝑜 = 𝜏. We have two subcases.

In the first sub-case 𝛤 𝑜 = 𝑖𝑛𝑡 which implies

 𝑠 𝑜 ∈ ℤ because 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡) . In the second

sub-case Γ 𝑜 = 𝑟𝑒𝑓𝐶 which implies 𝑠 𝑜 ∈ 𝑑𝑜𝑚()
because 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡) . Hence in both subcases

 𝑒 𝑠, ≠⊥ and clearly (a) and (b) are satisfied.

Case (𝑐𝑎𝑠𝑡1
𝑡):

 In this case 𝑒 = 𝐶 𝑒′, 𝛤 ⊨ 𝑒′: 𝑖𝑛𝑡, 𝛤 ⊨

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2519

 𝐶 𝑒′: 𝑖𝑛𝑡 and 𝑠, , 𝐿𝑠 ∼ 𝛤, 𝐿𝑡 . Hence by induction

hypothesis, 𝑒 𝑠, ∈ ℤ. Since 𝑒 𝑠, ∉ 𝒜 , By
 𝑐𝑎𝑠𝑡2

𝑠 , (𝐶)𝑒′ 𝑠, = 𝑒′ 𝑠, ∈ ℤ. This

completes the proof for this case.

Case (𝑐𝑎𝑠𝑡2
𝑡):

 In this case 𝑒 = 𝐶 𝑒′, 𝛤 ⊨ 𝑒′: 𝑟𝑒𝑓 𝐷, 𝛤 ⊨
 𝐶 𝑒′: 𝑟𝑒𝑓𝐶,𝐷 ≤ 𝐶, and 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡). Hence by

induction hypothesis, h1 𝑒′ 𝑠, = 𝐸 and 𝐸 ≤

𝐷 implying 𝐸 ≤ 𝐶 . By (𝑐𝑎𝑠𝑡2
𝑠) , (𝐶)𝑒′ 𝑠, =

 𝑒′ 𝑠, . Hence 1(𝐶 𝑒′ 𝑠,) = 1(𝑒′ 𝑠,) =

E and 𝐸 ≤ 𝐶. This completes the proof for this case.

Case (𝑒. 𝑣𝑡):

 In this case 𝑒 = 𝑒′. 𝑣, 𝛤 ⊨ 𝑒′: 𝑟𝑒𝑓 𝐶 ,
𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐷, 𝛤((𝐷, 𝑣)) = 𝜏, and 𝑠, , 𝐿𝑠 ∼

 𝛤, 𝐿𝑡 . Hence by induction hypothesis,

1 𝑒′ 𝑠, = 𝐸 and𝐸 ≤ 𝐶 . Hence 𝐸 ≤ 𝐷 because

𝐶 ≤ D. We also have 𝐼 = 3 𝑒′ 𝑠, and 𝑣 ∈

𝑑𝑜𝑚(𝐼) because 𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑣 = 𝐷. Hence

by 𝑖𝑛𝑠𝑡1
𝑠 , 𝑒′. 𝑣 𝑠, = 𝐼 𝑣 ≠⊥. Now

𝐼 ∼(𝑠,) Γ because 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡). Hence

1. 𝛤 𝐷, 𝑣 = 𝑖𝑛𝑡 ⇒ 𝐼 𝑣 ∈ ℤ, and

2. 𝛤 𝐷, 𝑣 = 𝑟𝑒𝑓 𝐸 ⇒ (𝐼(𝑣)) = (𝐸,𝑚, 𝐼(𝐸 ,𝑚)) and

𝐼(𝐸 ,𝑚) ∼(𝑠,) Γ. This completes the proof for this case.

 The proof of the following lemma is similar to

that of the previous one.

Lemma 2

 Typed Boolean expressions of the language J-

COP do not abort (go wrong).

𝑙𝑒 = 𝜖

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠
(𝑙𝑦𝑟1)

𝑙𝑒 = 𝑤𝑖𝑡 𝑙 𝑙 ∉ 𝐿𝑠

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝑙 ∣ 𝐿𝑠
 𝑙𝑦𝑟2

𝑙𝑒 = 𝑤𝑖𝑡 𝑙 𝑙 ∈ 𝐿𝑠

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠
(𝑙𝑦𝑟3)

𝑙𝑒 = 𝑤𝑖𝑡𝑜𝑢𝑡 𝑙 𝑟𝑒𝑚𝑜𝑣𝑒(𝐿𝑠, 𝑙) = 𝐿𝑠′

𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠′
(𝑙𝑦𝑟4)

𝑙𝑒 = 𝑙𝑒1𝑙𝑒2 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒1 , 𝐿𝑠 = 𝐿𝑠′′ 𝑙𝑎𝑦𝑒𝑟(𝑙𝑒2 , 𝐿𝑠′′) = 𝐿𝑠′

𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠′
(𝑙𝑦𝑟5)

𝑥 ∈ 𝐼𝑉𝑎𝑟𝐶
𝑐𝑙𝑎𝑠𝑠 𝐶 , 𝑥 = 𝐶

(𝑐𝑙𝑎𝑠𝑠1)
𝑥 ∉ 𝐼𝑉𝑎𝑟𝐶 𝐷 ≪ 𝐶 𝑐𝑙𝑎𝑠𝑠 𝐷, 𝑥 = 𝐸

𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑥 = 𝐸
(𝑐𝑙𝑎𝑠𝑠2)

𝑓 ∈ 𝐹𝐶
𝑠𝑢𝑝𝑒𝑟 𝐶, 𝑓 = 𝐶

(𝑠𝑢𝑝𝑒𝑟1)
f ∉ 𝐹𝐶 𝐷 ≪ 𝐶 𝑠𝑢𝑝𝑒𝑟 𝐷, 𝑓 = 𝐸

𝑠𝑢𝑝𝑒𝑟 𝐶 , 𝑓 = 𝐸
(𝑠𝑢𝑝𝑒𝑟2)

𝐿𝐶(𝑙) = (𝑔, _, _, _) 𝑔 ≠ 𝑓

𝑙𝑦𝑟𝑓𝑢𝑛(𝐶, 𝑓, 𝑙, 𝐿) = 𝐿
 𝑙𝑦𝑟𝑓𝑢𝑛1

𝐿𝐶(𝑙) = (𝑓, _, _, _) 𝑔 ≠ 𝑓

𝑙𝑦𝑟𝑓𝑢𝑛 𝐶 , 𝑓, 𝑙, 𝐿 = [𝐿 ∣ 𝑙]
 𝑙𝑦𝑟𝑓𝑢𝑛2

𝑑𝑜𝑚 Lc = l1 ,… , lk L1 = []

 𝑙𝑦𝑟𝑓𝑢𝑛(𝐶, 𝑓, 𝑙𝑖 , 𝐿𝑖) = 𝐿𝑖+1 𝐿′ = 𝐿𝑘+1 ∩ 𝐿

𝑐𝑙𝑠𝑙𝑦𝑟𝑠(𝐶, 𝑓, 𝐿) = 𝐿′
(𝑐𝑙𝑠𝑙𝑦𝑟𝑠)

Figure 3. Inference rules of necessary functions for semantics

 𝑛 𝑠, = 𝑛 𝑡𝑖𝑠 𝑠, = 𝑠 𝑡𝑖𝑠 𝑜 (𝑠,) = 𝑠 𝑜 𝑡𝑟𝑢𝑒 (𝑠,) = 𝑡𝑟𝑢𝑒

 𝑓𝑎𝑙𝑠𝑒 𝑠, = 𝑓𝑎𝑙𝑠𝑒 𝑒1 𝑖0𝑝 𝑒2 (𝑠,) =
 𝑒1 (𝑠,)𝑖0𝑝 𝑒2 (𝑠,) 𝑖𝑓 𝑒1 (𝑠,)𝑖0𝑝 𝑒2 (𝑠,) ∈ ℤ,

⊥ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

 𝑒1 𝑐0𝑝 𝑒2 𝑠, =
 𝑒1 𝑠, 𝑐0𝑝 𝑒2 𝑠, 𝑖𝑓 𝑒1 𝑠, , 𝑒2 𝑠, ∈ ℤ,

⊥ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

 𝑏1 𝑏0𝑝 𝑏2 (𝑠,) =
 𝑒1 𝑠, 𝑏0𝑝 𝑒2 𝑠, 𝑖𝑓 𝑒1 𝑠, , 𝑒2 𝑠, ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒},

⊥ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

 𝑒 𝑠, ∈ 𝑑𝑜𝑚

 1 𝑒 𝑠, = 𝐷 𝑛𝑜𝑡 𝐷 ≤ 𝐶

 𝐶 𝑒 𝑠, =⊥
 𝑐𝑎𝑠𝑡1

𝑠
𝑝𝑟𝑒𝑠𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑠𝑡1

𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

 𝐶 𝑒 𝑠, = 𝑒 𝑠,
 𝑐𝑎𝑠𝑡2

𝑠

𝑐𝑙𝑎𝑠𝑠(1(𝑒 𝑠,), 𝑣) = 𝐷

 𝐼 = 3 𝑒 𝑠, 𝑣 ∈ 𝑑𝑜𝑚(𝐼)

 𝑒. 𝑣 𝑠, = 𝐼(𝑣)
(𝑖𝑛𝑠𝑡1

𝑠)
𝑝𝑟𝑒𝑠𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑖𝑛𝑠𝑡1

𝑠) 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

 𝑒. 𝑣 𝑠, =⊥
(𝑖𝑛𝑠𝑡2

𝑠)

Figure 4. Semantics of J-COP expressions

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2520

Theorem 1
 Well-formed statements of the language J-COP

do not abort (go wrong).

Proof

 Suppose that S is a statement of the J-COP

language. Suppose that the maps 𝐹𝐶 and 𝐿𝐶 and the

relation ≤ describing the classes used in S are given

along with S. Suppose also that 𝛤, 𝐿𝑡 ⊨ 𝑆:𝑊𝐹

and 𝑠, , 𝐿𝑠 ∼ (𝛤, 𝐿𝑡) . We show that if S does not

contain infinite loop then¬(𝑆: 𝑠, , 𝐿𝑠 → 𝑎𝑏𝑜𝑟𝑡), i.e.

there is a state (s′, h′, Ls ′) such that 𝑆: 𝑠, , 𝐿𝑠 →

 𝑠′, ′, 𝐿𝑠 ′ . Moreover we show that in this case

 𝑠′, ′, 𝐿𝑠 ′ ∼ (𝛤′, 𝐿𝑡) where 𝛤 ′ = 𝛤⌉(𝑑𝑜𝑚 𝛤 ∖
{𝑡𝑖𝑠, 𝑝}). This is shown by induction on 𝛤, 𝐿𝑡 ⊨
 𝑆:𝑊𝐹 with case analysis on the last type rule applied.

Outlines of main cases are shown below.

Case ≔𝑒
𝑡

𝑐𝑙𝑎𝑠𝑠 1 𝑒1 𝑠, ,𝑣 = 𝐷

 𝐼 = 3 𝑒1 𝑠, 𝐼′ = 𝐼[𝑣 ↦ 𝑒2 𝑠,]

 𝑒1 . 𝑣 ≔ 𝑒2: 𝑠, , 𝐿𝑠 → (𝑠, [𝑒1 𝑠, ↦

(1(𝑒1 𝑠,), _2(𝑒1 𝑠,), 𝐼′)], 𝐿𝑠)

 (≔𝑒
𝑠)

𝐹1 𝑒2 𝑠, 𝑓 = 𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓

 𝑆𝑓 : 𝑠 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝𝑓 ↦ 𝑒 𝑠, , , 𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′

𝑜1 ≔ 𝑜2. 𝑓 𝑒 : 𝑠, , 𝐿𝑠 → 𝑠 ′ 𝑜1 ↦ 𝑒𝑓 𝑠
′ ,′ ,′ , 𝐿𝑠′

 ≔𝑜.𝑓
𝑠

𝑠1 = 𝑠 1 = 𝑙𝑎𝑦𝑒𝑟(𝑙𝑒,𝐿𝑠) = 𝐿1
𝑠

 𝑙1 … 𝑙𝑚 ⊆ 𝐿1
𝑠 𝑠𝑢𝑐 𝑡𝑎𝑡 ∀ 1 ≤ 𝑖 ≤ 𝑚 𝐿1 𝑜2 𝑠, 𝑙𝑖 = 𝑓, 𝑆𝑖 , 𝑒𝑖 , 𝑝𝑖

𝑆1: 𝑠1 𝑡𝑖𝑠 ↦ 𝑠1 𝑜2 , 𝑝1 ↦ 𝑒 𝑠1, 1 , 1, 𝐿1
𝑠 → 𝑠2, 2, 𝐿2

𝑠

∀ 𝑖 > 1. 𝑆𝑖 : 𝑠𝑖 𝑜1 ↦ 𝑒𝑖−1 𝑠𝑖 ,𝑖 , 𝑡𝑖𝑠 ↦ 𝑠𝑖 𝑜2 , 𝑝𝑖 ↦ 𝑒 𝑠𝑖 , 𝑖 , 𝑖 ,𝐿𝑖
𝑠 → 𝑎 (𝑠𝑖+1, 𝑖+1, 𝐿𝑖+1

𝑠)

𝑜1 ≔ 𝑙𝑒 𝑜2.𝑓 𝑒 : 𝑠, , 𝐿𝑠 → (𝑠𝑚+1[𝑜1 ↦ 𝑒𝑚 𝑠𝑚+1, 𝑚+1],𝑚+1, 𝐿𝑚+1
𝑠)

 (≔𝑙.𝑜 .𝑓
𝑠)

𝐸 𝑖𝑠 𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 1 𝑠 𝑡𝑖𝑠

𝑠𝑢𝑝𝑒𝑟 𝐸, 𝑓 = 𝐷 𝐹𝐷 𝑓 = 𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓

𝑆𝑓 : 𝑠 𝑝𝑓 ↦ 𝑒 𝑠, , , 𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′

𝑜1 ≔ 𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 : 𝑠, , 𝐿𝑠 → 𝑠 ′ 𝑜1 ↦ 𝑒𝑓 𝑠 ′,′ ,′, 𝐿𝑠 ′
(𝑠𝑢𝑝𝑠)

 𝑎 ∈ 𝒜 ∖ 𝑑𝑜𝑚 𝑛 𝑖𝑠 𝑓𝑟𝑒𝑠

𝑜 ≔ 𝑛𝑒𝑤 𝐶: 𝑠, , 𝐿𝑠 → (𝑠[𝑜 ↦ 𝑎], [𝑎 ↦ (𝐶, 𝑛, { 𝑣, ⊥ ∣ 𝑣 ∈ 𝐼𝑉𝑎𝑟𝐶})], 𝐿𝑠)
(𝑛𝑒𝑤𝑠)

 𝑠1 , 1 , 𝐿1 = 𝑠, , 𝐿𝑠 𝑐𝑙𝑠𝑙𝑦𝑟𝑠(1(𝑠(𝑜2), 𝑓, 𝐿𝑠) = [𝑙1 … 𝑙𝑚]

∀ 1 ≤ 𝑖 ≤ 𝑚 (𝐿𝐶(𝑙𝑖)) = (𝑓, 𝑝𝑖 , 𝑆𝑖 , 𝑒𝑖))

𝑆1: 𝑠1 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝1 ↦ 𝑒 𝑠1 , 1 , 1 , 𝐿1
𝑠 → 𝑠2 , 2 , 𝐿2

𝑠

∀ 𝑖 > 1. 𝑆𝑖 : 𝑠𝑖 𝑜1 ↦ 𝑒𝑖−1 𝑠𝑖 , 𝑖 , 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝𝑖 ↦ 𝑒 𝑠𝑖 , 𝑖 , 𝑖 , 𝐿𝑖
𝑠 → 𝑠𝑖+1 , 𝑖+1 , 𝐿𝑖+1

𝑠

𝑜1 ≔ 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2. 𝑓 𝑒 : 𝑠, , 𝐿𝑠 → 𝑠𝑚+1 𝑜1 ↦ 𝑒𝑚 𝑠𝑚+1 , 𝑚+1 , 𝑚+1 , 𝐿𝑚+1
𝑠

(𝑝𝑟𝑜𝑠)

 𝑏 𝑠, = 𝑡𝑟𝑢𝑒 ∧ 𝑆𝑡 : 𝑠, ,𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′ ∨

 𝑏 𝑠, = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑆𝑓 : 𝑠, , 𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′

 𝑖𝑓 𝑏 𝑡𝑒𝑛 𝑆𝑡𝑒𝑙𝑠𝑒 𝑆𝑓 : 𝑠, , 𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′
(𝑖𝑓𝑠)

 𝑏 𝑠, = 𝑓𝑎𝑙𝑠𝑒

 𝑤𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆𝑡: 𝑠,, 𝐿𝑠 → 𝑠, , 𝐿𝑠
 (𝑤𝑖𝑙𝑒1

𝑠)

𝑆1: 𝑠,, 𝐿𝑠 → 𝑠′′ , ′′ , 𝐿𝑠′′

𝑆2: 𝑠 ′′ , ′′ ,𝐿𝑠′′ → 𝑠 ′ ,′ ,𝐿𝑠′

 𝑆1; 𝑆2: 𝑠, , 𝐿𝑠 → 𝑠 ′ ,′ , 𝐿𝑠′
 𝑆𝑒𝑞𝑠

 𝑏 𝑠, = 𝑡𝑟𝑢𝑒

𝑆𝑡 : 𝑠, , 𝐿𝑠 → 𝑠 ′′ , ′′ ,𝐿𝑠′′

𝑤𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆𝑡 : 𝑠 ′′ ,′′ , 𝐿𝑠′′ → 𝑠 ′ , ′ , 𝐿𝑠′

 𝑤𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆𝑡 : 𝑠, , 𝐿𝑠 → 𝑠 ′ , ′ , 𝐿𝑠′

(𝑤𝑖𝑙𝑒2
𝑠)

Figure 5. Inference rules of the operational semantics for J-COP constructs

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2521

 In this case:

a. 𝑆 = 𝑒1. 𝑣 ≔ 𝑒2.

b. 𝛤 ⊨ 𝑒1. 𝑣: 𝜏1 ,𝛤 ⊨ 𝑒2: 𝜏2 , 𝑎𝑛𝑑 𝜏2 ≤ 𝜏1 .
c. By the rule 𝑒. 𝑣𝑡 ,𝛤 ⊨ 𝑒1. 𝑣: 𝜏1 ⇒ 𝛤 ⊨

 𝑒1: 𝑟𝑒𝑓 𝐶, 𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐸, and 𝛤 𝐸, 𝑣 =

𝜏1.

 By Lemma 1, 𝑒1 𝑠, ∈ 𝑑𝑜𝑚() and

1 𝑒1 𝑠, ≤ 𝐶. Hence there is a class 𝐷 such that

𝑐𝑙𝑎𝑠𝑠(1(𝑒1 𝑠,), 𝑣) = 𝐷 because there is a class 𝐸

such that 𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐸 . Also by Lemma 1,

 𝑒2 𝑠, ≠⊥. Hence the state (𝑠′,′, 𝐿𝑠 ′) =

(𝑠, [𝑒1 𝑠, ↦ 1 𝑒1 𝑠, , 2 𝑒1 𝑠, , 𝐼′ ,

𝐿𝑠) is defined and the statement does not abort. Clearly

 𝑠′ , ′ , 𝐿𝑠′ ∼ (𝛤′, 𝐿𝑡).

Case (≔𝑜 .𝑓
𝑡)

 In this case:

𝛤 ⊨ 𝑛: 𝑖𝑛𝑡 𝑖𝑛𝑡𝑡
𝛤 𝑡𝑖𝑠 = 𝜏

 𝛤 ⊨𝑡𝑖𝑠: 𝜏
 (𝑡𝑖𝑠𝑡) 𝛤 ⊨ 𝑡𝑟𝑢𝑒: 𝑏𝑜𝑜𝑙 𝑡𝑟𝑢𝑒𝑡

𝛤 𝑜 = 𝜏

 𝛤 ⊨𝑜: 𝜏
(𝑜𝑡)

𝛤 ⊨ 𝑒1, 𝑒2: 𝑖𝑛𝑡

𝛤 ⊨ 𝑒1 𝑐𝑜𝑝 𝑒2:𝑏𝑜𝑜𝑙
(𝑐𝑜𝑝

𝑡)

𝛤 ⊨ 𝑏1 , 𝑏2: 𝑏𝑜𝑜𝑙

𝛤 ⊨ 𝑏1 𝑏𝑜𝑝𝑏2: 𝑏𝑜𝑜𝑙
(𝑏𝑜𝑝

𝑡)
 𝛤 ⊨ 𝑒: 𝑖𝑛𝑡

 𝛤 ⊨ : (𝐶)𝑒: 𝑖𝑛𝑡
(𝑐𝑎𝑠𝑡1

𝑡)
 𝛤 ⊨ 𝑒: 𝑟𝑒𝑓 𝐷 𝐷 ≤ 𝐶

 𝛤 ⊨ : (𝐶)𝑒: 𝑟𝑒𝑓 𝐶
(𝑐𝑎𝑠𝑡2

𝑡)

 𝛤 ⊨ 𝑒1 , 𝑒2: 𝑖𝑛𝑡

 𝛤 ⊨ 𝑒1𝑖𝑜𝑝 𝑒2: 𝑖𝑛𝑡
(𝑖𝑜𝑝

𝑡)
 𝛤 ⊨ 𝑒: 𝑟𝑒𝑓 𝐶 𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑣 = 𝐷 𝛤 𝐷,𝑣 = 𝜏

 𝛤 ⊨ 𝑒. 𝑣: 𝜏
(𝑒. 𝑣𝑡)

𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶 𝛤 ⊨ 𝑜1: 𝜏2
′ 𝜏1

′ ≤ 𝜏1

 𝛤, 𝐿𝑡 ⊨ 𝐶, 𝑓 : 𝜏1 → 𝜏2 𝛤 ⊨ 𝑒: 𝜏1
′ 𝜏2 ≤ 𝜏2 ′

 𝛤,𝐿𝑡 ⊨ 𝑜1 ≔ 𝑜2. 𝑓 𝑒 :𝑊𝐹
 (≔𝑜.𝑓

𝑡)

𝐹𝐶 𝑓 = 𝑝, 𝑆, 𝑒 ′ 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 , 𝐿𝑡 ⊨ 𝑆:𝑊𝐹

 𝛤 ⊨ 𝑝: 𝜏1 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨ 𝑒 ′: 𝜏2

 ∀ 𝐷. 𝐶 ≪ 𝐷 𝑖𝑡 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑡𝑎𝑡 𝛤, 𝐿𝑡 ⊨ 𝐷, 𝑓 : 𝜄1 → 𝜄2 ⇒ 𝜄1 = 𝜏1 𝑎𝑛𝑑 𝜏2 ≤ 𝜄2

 𝛤, 𝐿𝑡 ⊨ 𝐶, 𝑓 : 𝜏1 → 𝜏2
(𝐶. 𝑓𝑡)

 𝛤 ⊨ 𝑒1. 𝑣: 𝜏1 𝛤 ⊨ 𝑒2: 𝜏2 𝜏2 ≤ 𝜏1

 𝛤, 𝐿𝑡 ⊨ 𝑒1 . 𝑣 ≔ 𝑒2:𝑊𝐹
(≔𝑒

𝑡)

𝐿𝐶 𝑙 = 𝑓, 𝑝𝑙 ,𝑆𝑙 , 𝑒𝑙 𝛤 ⊨ 𝑝𝑙 : 𝜏1

 𝛤 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶, 𝑝 ↦ 𝜏1 , 𝐿
𝑡 ⊨ 𝑆1:𝑊𝐹

𝛤 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶, 𝑝 ↦ 𝜏1 ⊨ 𝑒: 𝜄𝑙
 𝛤, 𝐿𝑡 ⊨ 𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜄𝑙

(𝐶. 𝑙.𝑓𝑡)

∃𝜏1 , 𝜏2.∀ 𝑙 ∈ 𝐿𝑡 . 𝑖𝑓 𝐿𝐶 𝑙 = 𝑓, _, _, _ , 𝑡𝑒𝑛 𝛤,𝐿𝑡 ⊨ 𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜄𝑙 𝑎𝑛𝑑 𝜏2 ≤ 𝜄𝑙
𝛤 ⊨ 𝑜1: 𝜏2

′ 𝜏1
′ ≤ 𝜏1 𝜏2 ≤ 𝜏2

′ 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑡 = 𝐿𝑡 𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶 𝛤 ⊨ 𝑒: 𝜏 ′1

 𝛤, 𝐿𝑡 ⊨ 𝑜1 ≔ 𝑙𝑒 𝑜2. 𝑓 𝑒 :𝑊𝐹
(≔𝑙.𝑜 .𝑓

𝑡)

𝛤 ⊨ 𝑡𝑖𝑠: 𝑟𝑒𝑓 𝐶 𝛤, 𝐿𝑡 ⊨ 𝐷, 𝑓 : 𝜏1 → 𝜏2

𝐶 ≪ 𝐷 𝛤 ⊨ 𝑜1: 𝜏2
′ 𝛤 ⊨ 𝑒: 𝜏1

′ 𝜏1
′ ≤ 𝜏1 𝜏2 ≤ 𝜏2

′

 𝛤, 𝐿𝑡 ⊨ 𝑜1 ≔ 𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 : 𝑊𝐹
(𝑠𝑢𝑝𝑡)

∀ 𝑙 ∈ 𝐿. 𝑖𝑓 (𝐿𝐶 𝑙 = 𝑓,𝑝, 𝑆, 𝑒 𝑎𝑛𝑑 𝛤, 𝐿𝑡 ⊨ (𝐶,𝑓, 𝑙): 𝜄1 → 𝜄2 , 𝑡𝑒𝑛 (𝜄1 = 𝜏1 𝑎𝑛𝑑 𝜏2 ≤ 𝜄2)

𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶 𝛤 ⊨ 𝑒: 𝜏1
′ 𝜏1

′ ≤ 𝜏1 𝛤 ⊨ 𝑜1: 𝜏2
′ 𝜏2 ≤ 𝜏2

′

 𝛤,𝐿𝑡 ⊨ 𝑜1 ≔ 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2.𝑓 𝑒 :𝑊𝐹
 𝑝𝑟𝑜𝑡

 𝛤 ⊨ 𝑜: 𝜏 𝜏 ≤ 𝑟𝑒𝑓 𝐶

 𝛤, 𝐿𝑡 ⊨ 𝑜 ≔ 𝑛𝑒𝑤 𝐶:𝑊𝐹
 𝑛𝑒𝑤𝑡

 𝛤 ⊨ 𝑏: 𝑏𝑜𝑜𝑙 𝛤, 𝐿𝑡 ⊨ 𝑆𝑡 ,𝑆𝑓 : 𝑊𝐹

 𝛤,𝐿𝑡 ⊨ 𝑖𝑓 𝑏 𝑡𝑒𝑛 𝑆𝑡 𝑒𝑙𝑠𝑒 𝑆𝑓 :𝑊𝐹
 𝑖𝑓𝑡

 Γ ⊨ b: bool Γ, Lt ⊨ St : WF

 Γ, Lt ⊨ while b do 𝑆𝑡 : 𝑊𝐹
 𝑤𝑖𝑙𝑒𝑡

 Γ, 𝐿𝑡 ⊨ 𝑆1:𝑊𝐹 Γ,𝐿𝑡 ⊨ 𝑆2:𝑊𝐹

 Γ ⊨ 𝑆1; 𝑆2:𝑊𝐹
 𝑠𝑒𝑞𝑡

Figure 6. Type system for J-COP constructs.

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2522

a. 𝑆 = 𝑜1 ≔ 𝑜2 . 𝑓(𝑒).
b. 𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶,𝛤 ⊨ 𝑜1: 𝜏2

′ ,𝛤 ⊨ 𝑒: 𝜏1
′ , 𝜏1

′ ≤
𝜏1, and 𝜏2 ≤ 𝜏2′.

c. (𝑓) = (𝑝, 𝑆, 𝑒′) and 𝛤 ⊨ 𝑝: 𝜏1.
d. 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 , 𝐿𝑡 ⊨ 𝑆:𝑊𝐹 and

𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨ 𝑒′: 𝜏2.
e. ∀ 𝐷. 𝐶 ≪ 𝐷 it is true that:

 𝛤, 𝐿𝑡 ⊨ 𝐷, 𝑓 : 𝜄1 → 𝜄2 ⇒ (𝜄1 = 𝜏1𝑎𝑛𝑑 𝜏2

≤ 𝜄2).
 By Lemma 1, 𝑜2 𝑠, ∈ 𝑑𝑜𝑚() and

1 𝑜2 𝑠, ≤ 𝐶. Since 𝐹𝐶 𝑓 = 𝑝, 𝑆, 𝑒′ ,

 𝐹1 𝑜2 𝑠, 𝑓 = 𝑝, 𝑆, 𝑒′ . Now we notice that

 𝑠 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝 ↦ 𝑒 𝑠, , , 𝐿𝑠 ∼ (𝛤[𝑝 ↦ 𝜏1 ,
𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶],𝐿𝑡) . This is so because:

1. (𝑠(𝑡𝑖𝑠)) = (𝑠(𝑜2)) = (𝐶,𝑛, 𝐼(𝐶,𝑛)) because

𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶, and

2. 𝑠(𝑝) = 𝑠 𝑒 𝑠, and 𝛤 ⊨ 𝑒: 𝜏1
′ ≤ 𝜏1.

Therefore by induction hypothesis there is a state

 𝑠′, ′, 𝐿𝑠 ′ such that 𝑠′, ′, 𝐿𝑠 ′ ∼ (𝛤[𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦
𝑟𝑒𝑓 𝐶], 𝐿𝑡) and

𝑆 ∶ 𝑠 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝 ↦ 𝑒 𝑠, , , 𝐿𝑠
→ (𝑠′, ′, 𝐿𝑠 ′)

because

 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 , 𝐿𝑡 ⊨ 𝑆:𝑊𝐹.
This implies 𝑒′ 𝑠′, ′ ≠⊥because

𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨ 𝑒 ′ : 𝜏2.
Hence the state (𝑠[𝑜1 ↦ 𝑒′ 𝑠′, ′] , ′, 𝐿𝑠 ′) is

defined and satisfies 𝑠′ 𝑜1 ↦ 𝑒 ′ 𝑠′ , ′ , ′, 𝐿𝑠 ′
∼ (𝛤′, 𝐿𝑡). This completes the proof of this case.

Case (≔𝑙 .𝑜 .𝑓
𝑡)

 In this case

a. 𝑆 = 𝑜1 ≔ 𝑙𝑒 𝑜2 . 𝑓(𝑒).

b. 𝑙𝑎𝑦𝑒𝑟(𝑙𝑒, 𝐿𝑠) = 𝐿1
𝑠 and (𝑠1 , 1 , 𝐿1

𝑠) = (𝑠,, 𝐿).
c. 𝑙1 … 𝑙𝑚 ⊆ 𝐿1

𝑠 such that

∀ 1 ≤ 𝑖 ≤ 𝑚 𝐿 1 𝑜2 𝑠, 𝑙𝑖
= 𝑓, 𝑝𝑖 , 𝑆𝑖 , 𝑒𝑖 .

d. ∃𝜏1, 𝜏2 such that for all 𝑙 ∈ 𝐿𝑡 𝑖𝑓 𝐿𝐶 𝑙 =
 𝑓, 𝑝𝑙 , 𝑆𝑙 , 𝑒𝑙 , then

𝛤 ⊨ 𝑝𝑙 : 𝜏1 ,𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨ 𝑆𝑙 : 𝑊𝐹,

and 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨ 𝑒𝑙 : 𝜄𝑙 .
e. 𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶,𝛤 ⊨ 𝑒: 𝜏1

′ ,𝛤 ⊨ 𝑜1 ∶ 𝜏2
′ , 𝜏1

′ ≤
𝜏1, and 𝜏2 ≤ 𝜏2 ′.

 By Lemma 1, 𝑜2 𝑠, ∈ 𝑑𝑜𝑚() and

1 𝑜2 𝑠, ≤ 𝐶. If the list [𝐿1 … 𝐿𝑚] is empty then

the statement S does not abort and 𝑠′ , ′ , 𝐿𝑠 ′ =
 𝑠, , 𝐿𝑠 . For𝑙1 , we have 𝐿1 𝑜2 𝑠, (𝑙1) = (𝑓, 𝑝1 , 𝑆1

, 𝑒1). Similarly to the previous case, we conclude:

(𝑠1 𝑡𝑖𝑠 ↦ 𝑠1 𝑜2 , 𝑝1 ↦ 𝑒 𝑠1 , 1 , 1, 𝐿1
𝑠 ∼ (𝛤[𝑝1

↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶], 𝐿𝑡).
Then by induction hypothesis there exists a state

(𝑠2 , 2, 𝐿2
𝑠) such that) 𝑠2, 2 , 𝐿2

𝑠 ∼ 𝛤 ′ , 𝐿𝑡 and

𝑆1: (𝑠1 𝑡𝑖𝑠 ↦ 𝑠1 𝑜2 , 𝑝1 ↦ 𝑒 𝑠1 , 1 , 1 , 𝐿1)
→ (𝑠2 , 2, 𝐿2

𝑠).

Now clearly,

(s2[o1 ↦ 𝑒1 𝑠2 , 2 , this ↦ s2(o2), p2 ↦
 𝑒 𝑠2, 2], h2, L2

s) ∼ Γ p1 ↦ τ1 , this ↦ r𝑒𝑓 𝐶 , 𝐿𝑡 .
Then by induction hypothesis there exists a state

(𝑠3 , 3, 𝐿3
𝑠) such that) 𝑠3, 3 , 𝐿3

𝑠 ∼ 𝛤 ′ , 𝐿𝑡 and

𝑆2: (𝑠2 𝑜1 ↦ 𝑒1 𝑠2 , 2 , 𝑡𝑖𝑠 ↦ 𝑠2 𝑜2 , 𝑝2

↦ 𝑒 𝑠2 , 2 , 2, 𝐿2)
→ (𝑠3 , 3, 𝐿3

𝑠).
Therefore a simple induction on 𝑚 can prove that for

all 𝑖 there exists state (𝑠𝑖+1, 𝑖+1, 𝐿𝑖+1
𝑠) such that)

 𝑠𝑖+1, 𝑖+1, 𝐿𝑖+13
𝑠 ∼ 𝛤 ′ , 𝐿𝑡 and

∀𝑖 𝑆𝑖 : (s2 o1 ↦ 𝑒𝑖−1 𝑠𝑖 , 𝑖 , this ↦ si o2 , pi

↦ 𝑒 𝑠𝑖 , 𝑖 , h2, L2)
→ (si+1 , hi+1, Li+1

s).
Hence the sate 𝑠𝑚+1, 𝑚+1 , 𝐿𝑚+1

𝑠 is defined and

satisfies 𝑠𝑚+1, 𝑚+1, 𝐿𝑚+1
𝑠 ∼ 𝛤 ′ , 𝐿𝑡 . Now by

Lemma 1, 𝑒𝑚 𝑠𝑚+1, 𝑚+1 ≠⊥ and hence
 𝑠𝑚+1 𝑜1 ↦ 𝑒𝑚 𝑠𝑚+1 , 𝑚+1 , 𝑚+1, 𝐿𝑚+1

𝑠 is

defined and satisfies

 𝑠𝑚+1 𝑜1 ↦ 𝑒𝑚 𝑠𝑚+1 , 𝑚+1 , 𝑚+1, 𝐿𝑚+1
𝑠 ∼

 𝛤 ′ , 𝐿𝑡 which completes the proof of this case.

Case (𝑠𝑢𝑝𝑡):

 This case is similar to the case of (≔𝑜 .𝑓
𝑡).

Case (𝑝𝑟𝑜𝑡):

 This case is similar to the case of (≔𝑙 .𝑜 .𝑓
𝑡).

4. Discussions

 Related work: an operational semantics and a

type system for modeling and checking context-

oriented constructs are presented in (Hirschfeld,

Igarashi & Masuhara, 2011). While the language

model studied in (Hirschfeld et al., 2011) is functional,

our model is structural. The type system presented in

the current paper and that in (Hirschfeld et al., 2011)

stop the command proceed from executing faulty

procedures.

 An operational semantics, that is based on

delegation based calculus, is presented in (Schippers,

Janssens, Haupt & Hirschfeld, 2008) for the language

𝑐𝑗 , a context-oriented programming language. The

research in (Clarke & Sergey, 2009) presents a syntax-

based semantics for COP concepts as implemented by

ContextL, ContextJ*, and other examples. This paper

also introduces a type system that prevents program

from getting stuck. The semantics presented of most

related work uses general calculi to represent context-

dependent behavior of COP programs. Our semantics,

on the other hand, is built directly on an accurate

memory model which adds to the clarity and soundness

of our semantics and type system.

 Aiming at describing behavioral variations,

delta modules and layers are used by delta-oriented

programming (DOP) (Schaefer, Bettini, Bono,

Life Science Journal 2013; 10(2) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2523

Damiani & Tanzarella, 2010) and feature-oriented

programming (FOP) (Batory, Sarvela & Rauschmayer,

2004), respectively. In these manners, the static

composition of classes with layers creates many similar

software artifacts. Transitional semantics was

presented for DOP in (Schaefer, Bettini & Damiani,

2011) and for FOP in (Delaware, Cook & Batory,

2009). Noticeably, in these approaches new procedures

can be added by layers. This fact sophisticates any

accurate semantics and type system for DOP and FOP.

 Future work: it is intersecting to extend the

language of the current paper to allow layer inheritance

and layer dependency. This enables one layer to

require the presence of another layer. It also enables

expressing the condition that two layers cannot be

active simultaneously. Another direction for a future

work is to extend the language to associate candidate

procedures of the command proceed() with priorities

for execution.

Acknowledgements:

Foundation item: Al Imam University (IMSIU)

Project (No.: 330917). Authors are grateful to Al Imam

University (IMSIU), KSA for financial support to carry

out this work.

Corresponding Author:

Dr. Mohamed A. El-Zawawy

College of Computer and Information

Sciences, Al Imam Mohammad Ibn Saud

Islamic University (IMSIU), Riyadh,

Kingdom of Saudi Arabia.
E-mail: maelzawawy@cu.edu.eg

References

[1] Batory, D. S., Sarvela, J. N. & Rauschmayer, A.,

‘Scaling step-wise refinement’, IEEE Tran,.

Software En, 2004; 30(6), 355–371.

[2] Campione, M., Walrath, K. & Huml, A., The Java

Tutorial: A Short Course on the Basics, 3rd edn,

Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA. 2000.

[3] Clarke, D.&Sergey, I. ,Asemantics for context-

oriented programming with layers, in

‘International Workshop on Context-Oriented

Programming’, COP ’09, ACM, New York, NY,

USA, 2009, pp. 10:1–10:6.

[4] Costanza, P., Herzeel, C. & D’Hondt, T.,

Context-oriented software transactional memory

in common lisp, in J. Noble, ed., ‘DLS’, ACM,

2009, pp. 59–68.

[5] Delaware, B., Cook, W. R. & Batory, D. S., A

machine-checked model of safe composition, in

M. S ¨ udholt, ed., ‘FOAL’, ACM, 2009, pp. 31–

35.

[6] Flanagan, D., JavaScript - Pocket Reference:

Activate Your Web Pages, Third Edition, O’Reilly.

Golubski, W. & Lippe, W.-M. (1995), ‘A

complete semantics for smalltalk-80’, Comput.

Lang. 2012; 21(2), 67–79.

[7] Hirschfeld, R., Costanza, P. & Nierstrasz, O.,

‘Context-oriented programming’, Journal of

Object Technology, 2008; 7(3), 125–151.

[8] Hirschfeld, R., Igarashi, A. & Masuhara, H.,

Contextfj: a minimal core calculus for context-

oriented programming, in H. Rajan, ed., ‘FOAL’,

ACM, 2011, pp. 19–23.

[9] Schaefer, I., Bettini, L., Bono, V., Damiani, F. &

Tanzarella, N., Delta-oriented programming of

software product lines, in J. Bosch & J. Lee, eds,

‘SPLC’, Vol. 6287 of Lecture Notes in Computer

Science, Springer, 2010, pp. 77–91.

[10] Schaefer, I., Bettini, L. & Damiani, F.,

Compositional type-checking for deltaoriented

programming, in P. Borba & S. Chiba, eds,

‘AOSD’, ACM, 2011, pp. 43–56.

[11] Schippers, H., Janssens, D., Haupt, M. &

Hirschfeld, R., Delegation-based semantics for

modularizing crosscutting concerns, in G. E.

Harris, ed., ‘OOPSLA’, ACM, 2008, pp. 525–

542.

2/2/2013

mailto:maelzawawy@cu.edu.eg

