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Abstract: Context-oriented programming (COP) is a new technique for programming that allows changing the 

context in which commands execute as a program executes. Compared to object-oriented programming (aspect-

oriented programming), COP is more flexible (modular and structured). This paper presents a precise syntax-

directed operational semantics for context-oriented programming with layers, as realized by COP languages like 

ContextJ* and ContextL. Our language model is built on Java enriched with layer concepts and activation and 

deactivation of layer scopes. The paper also presents a static type system that guarantees that typed programs do not 

get stuck. Using the means of the proposed semantics, the mathematical correctness of the type system is presented 

in the paper.  
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1. Introduction 

              Modularity of performance alterations relies 

on the dynamic environment of program executions. 

Context-oriented programming (COP) (Hirschfeld, 

Costanza & Nierstrasz, 2008) emerged as a 

programming technique to enhance this modularity. 

Classically these performance alterations are 

distributed among program modules and usually 

complex engineering is necessary to back dynamic 

combination of the modules. Smalltalk (Golubski & 

Lippe, 1995), Java (Campione, Walrath & Huml, 2000), 

JavaScript (Flanagan, 2012), and Common Lisp 

(Costanza, Herzeel & D’Hondt, 2009) are examples of 

languages on which COP were established. The base 

languages for COP are typical object oriented 

languages. Main features of COP include (a) layers of 

variant procedures for introducing and classifying 

performance alterations and (b) an instrument for layer 

activation to endorsement and composition. A variant 

procedure is a procedure that can be executed around, 

after, or before the same (variant) procedure defined in 

a different part (class or layer) of the program. A layer 

is a set of variant procedures. A layer can be 

(de)activated in main function. Layers are meant to 

determine the specific semantics of objects for 

adaption with different applications.  

              In this paper, we present a new model for 

COP. The proposed model has basic language features. 

The model has the advantage of extending directly 

over well-studied Java features. The model is in-

complex yet articulates enough to include more 

language features. Besides typical Java features, the 

model provides overriding (i.e., around-type) variant 

procedures, layers activation and deactivation, and a 

call mechanism for proceed and super. This paper also 

presents an operation semantics that directly (without 

mapping to non-COP) models the meanings of basic 

COP constructs. For the core of COP languages, the 

proposed semantics can be used to provide precise 

specifications. The paper also presents a type system 

for COP. Typically; a type system statically ensures 

the absence of run-time errors such as procedure-not-

found and field-not-found errors. Noticeably, 

establishing the type system is not an easy task because 

in COP the existence of a procedure definition in a 

class may well rely upon whether a specific layer is 

activated. The paper also provides a mathematical 

proof for the soundness of the type system based on the 

proposed operational semantics. 

 

Example 

              Figure 1 provides a COP example. Class Cube 

defines three variables of type integer (length, width, 

and height) with a constructor for initialization. The 

class also includes the modify() procedure to modify 

different variables.  

              The first definition of modify() is the main one 

and modifies and shows length. This definition is 

included in the main layer which is effectual for all 

objects of Cube. The second definition of modify() is a 

refinement and is included in the layer Second_dim. 

This refinement modifies width and appends its new 

value (the second dimension of the cube) that might be 

needed for further calculations. This refinement is 

effective only when its layer is activated. The third 

definition of modify() is yet another refinement and is 

included in the layer Third_dim. 

              In the example of Figure 1, the refinements of 

modify() runs the command proceed(). This special 

command invokes all refinements of modify() included 
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in layers already activated ahead of the activation of 

the Second_dim or Third dim layer. This command 

also invokes the version of modify() included in the 

main layer. On the other hand, the super command 

included in our language model (Figure 2) starts the 

lookup for procedures from the super-class of the class 

containing the current procedure. 

              The with and without constructs are used in 

COP for layer activation and deactivation, respectively. 

We show their use on the following object of the class 

Cube. 

Cube c(1, 1, 1); 

While no layers are activated, the following 

standard command invokes the version of the main 

layer of modify() that modifies and returns only the 

length of the cube c.  

System.out.println(c); 

=> ”Length: 4” 

However, the following example activates 

Second_dim layer (via with). In this case, the printing 

command invokes first the version of modify() included 

in Second_dim and then invokes the version of the 

main layer of modify(). 

with Second_dim (System.out.println(c)); 

=>”Length: 4; width: 5;” 

Another example is the following: 

without Second dim (with Second dim 

(System.out.println(c))); 

=>”Length: 4;” 

 

Contributions 

              Contributions of this paper are the following: 

1. A precise operational semantics for a rich 

model of context-oriented programming languages. 

2. A static type system that is mathematically 

sound for context-oriented programming languages. 

 

Organization 

              The organization of the rest of the paper is as 

follows. Section 2 presents the language model and the 

operational semantics of the language. The type system 

together with its mathematical soundness proof is 

presented in Section 3. Related and future work is 

discussed in Section 4. 
               

2. Syntax and Operational Semantics   

              This section presents the model of our 

programming language together with an operational 

semantics for the language. Most basic object-oriented 

aspects as subtyping and inheritance are included in the 

language (dubbed J-COP) that we use in this paper. For 

the sake of readability, we followed the Java syntax for 

corresponding constructs. The syntax of J-COP is 

shown in Figure 2.  

              Bool and int are our primitive types. We 

assume that ℂ is a set of class names with typical 

element 𝐶. The set of types (Types) includes bool, int, 

andℂ. Moreover "Types" has reference and function 

types. We let 𝜏 be a typical element of the set of types. 

We let LVar denotes the set of local variables. Local 

variables are contained in procedures and are active as 

long as their hosting procedures are active. Local 

variables also serve as parameters for procedures. The 

set of instance variables of a class 𝐶  is denoted by 

𝑉𝑎𝑟𝐶 . The internal state of a class is stored via its 

instance variables. Typical elements of IVar and 𝐼𝑉𝑎𝑟𝐶  

are 𝑜  and 𝑣 , respectively. The sets of procedure and 

layer names are denoted by FunNames (typical element 

is 𝑓) and LayerNames (typical element is 𝑙), 
respectively. A layer expression is a sequence of layer 

activation/deactivation. A typical element of the set of 

layer expressions, denoted by LayerExpr, is denoted 

by 𝑙𝑒. 

              A program in J-COP consists of a set of 

classes and a main procedure triggering the program 

execution. A class contains definitions for a set of 

procedures and a set of layers each of which contains 

the definition of a procedure. A parameter, a statement, 

and an expression are the components of a procedure 

where the expression denotes the value returned by the 

procedure. 

              We use a state representation and a subtype 

relation to define an operational semantics for the 

language J-COP. We let 𝜏1 ≤ 𝜏2 denotes that 𝜏1  is a 

subtype of 𝜏2. The class definitions of a given program 

are used to build the relation ≤ which is introduced in 

Definition 1.  

 

Definition 1 

1. Types =  𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡,𝐶, 𝑟𝑒𝑓 𝜏, 𝜏1 → 𝜏2 .   
2. A class 𝐶 is a subclass of a class 𝐷 (denoted 

by 𝐶 ≪ 𝐷) if 𝐶 inherits 𝐷 by definition of 𝐶. 

The relation ≤𝐶  on the set of classes is the 

reflexive transitive closure of ≪. A class 𝐷  is 

a superclass of 𝐶, if 𝐶 is a subclass of  𝐷. 

    

1- Class Cube{ 

2-      int length, width, height; 

3-      cube(int val1, int val2, int val2) 

4-         { length:=val1; wedith:=val2; height:=val3; } 

5-      modify() 

6-          { length:= 4; return ”Length:” + length; } 

7-      layer Second_dim 

8-          { modify() 

9-              { width:= 5; return 

proceed+ ”;Width:  ”+width;     }} 

10-   layer Third_dim 

11-       { modify() 

12-          { height:= 6; return proceed+”; Height:”+height;  

}}} 

Figure 1: A COP program 
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3. The order ≤ on the set of types is defined as: 

≤C∪ {τ ≤ τ ∣ τ ∈  int, bool, ref τ, τ1 → τ2 } 

                  Definition 2 introduces necessary 

components towards introducing the states of the 

operational semantics. The symbol 𝒜  denotes an 

infinite set of memory addresses with α as a typical 

element of 𝒜. 

 

Definition 2 

1. For a class 𝐶 , 𝐼𝑉𝑎𝑟𝐶and 𝐹𝑢𝑛𝐶denote the set of 

instance variables and the set of functions of 𝐶, 

respectively. The set of layer names of a class 𝐶 

is denoted by 𝐿𝑎𝑦𝑒𝑟𝐶 . 

2. ℘ = ℤ ∪ 𝒜 ∪ {⊥}. 

3. 𝑆𝑡𝑎𝑐𝑘𝑠 = {𝑠 ∣  𝑠: 𝐿𝑉𝑎𝑟 → ℘}.  

4. 𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 = {𝐼 𝐶 ,𝑛 ∣ 𝐼 𝐶,𝑛 : 𝐼𝑉𝑎𝑟𝐶 → ℘,𝐶   

∈ ℂ,𝑛 ∈ ℕ}. 

5. Heaps = {h ∣ h: 𝒜 →𝑝 { 𝐶,𝑛, 𝐼 𝐶,𝑛  ∣ 𝐶 ∈ ℂ,𝑛 ∈

ℕ} . 
6. 𝑆𝑡𝑎𝑡𝑒𝑠 = { 𝑠, , 𝐿𝑠 ∣  𝑠 ∈ 𝑠𝑡𝑎𝑐𝑘𝑠,  ∈ 𝐻𝑒𝑎𝑝𝑠,   

              𝐿𝑠 ⊆ 𝐿𝑎𝑦𝑒𝑟𝑁𝑎𝑚𝑒𝑠}. 
              Model values are elements of the set ℘ . A 

semantic state is a triple of a stack, a heap, and a set of 

layer names that are active at that program point (state). 

The set of local variables includes the special variable 

this which points at the current active object. For an 

address 𝛼 ∈ 𝑑𝑜𝑚  , 𝑖(𝛼)denotes the i
th

 component 

of the triple (𝛼), where 𝑖 = 1,2,3. 

              Definition 3 introduces the notations 𝐹𝐶  and 

𝐿𝐶 . For a class 𝐶, 𝐹𝐶  maps each procedure name in 𝐶 

to the triple consisting of the parameter variable of the 

procedure, procedure body, and returned expression of 

procedure. For a class 𝐶, 𝐼𝐶  maps each layer name in 𝐶 

to the components of its procedure. 

 

Definition 3 

1. 𝐹𝑢𝑛𝐵𝑜𝑑𝑖𝑒𝑠 = {𝐹𝐶 ∣  𝐹𝐶:𝐹𝑢𝑛𝐶 → 𝐿𝑉𝑎𝑟 ×

𝑆𝑡𝑚𝑡 × 𝐸𝑥𝑝𝑟; 𝑓 ↦  𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓 }. 

2. 𝐿𝑎𝑦𝑒𝑟𝑠 = {𝐿𝐶 ∣  𝐿𝐶 : 𝐿𝑎𝑦𝑒𝑟𝐶 → 𝐹𝑢𝑛𝐶 ×

𝐿𝑉𝑎𝑟 × 𝑆𝑡𝑚𝑡 × 𝐸𝑥𝑝𝑟;𝑓 ↦  𝑓, 𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓 }. 

 

Figure 3 presents inference rules of four 

procedures that are used in the inference rules of the 

operational semantics.  

              For a given list of layer names Ls and a layer 

expression le, Figure 3 presents the procedure layer 

which adds the layers activated by le to Ls and 

removes the layers deactivated by le from Ls. The 

definition of the class procedure is presented in Figure 

3. This procedure finds whether a given variable 

belongs to a given class or to any of its ancestor classes. 

The procedure super, which for a function name and a 

class name searches for the first ancestor of the class 

that contains a definition for the function, is outlined in 

the same figure which as well presents the definition of 

the procedure clslyrs. This procedure determines which 

members of a given list of active layers (L) contain a 

definition for a given procedure, f.  

              The semantics of the J-COP expressions is 

presented in Figure 4. Some comments on the figure 

are in order. The variable 𝑣 of the class pointed-to by 𝑒 

is denoted by 𝑒. 𝑣. We assume that the set of variables 

in a class does not intersect with the set of the variables 

of any of the class's ancestors. We also assume that for 

a class 𝐶 , the domain of 𝐼𝑉𝑎𝑟𝐶  includes all the 

variables of 𝐶 and its ancestors. Hence the rule 𝑖𝑛𝑠𝑡1
𝑠 

ensures that 𝑣 is a member of the class pointed-to by 𝑒 

or is a member of any of the class's ancestors (via 

calling the class procedure). The semantic of 𝑒 is the 

address of the triple in memory representing the meant 

class object. The third component of this triple is 

denoted by I (which is a map representing the values of 

the object's variables). The rule 𝑐𝑎𝑠𝑡1
𝑠says that the cast 

of the expression 𝑒 in the form of a class 𝐶 aborts only 

if 𝑒 points to a triple in the memory that represents a 

class 𝐷 that is not a descendant of 𝐶. 

              Definition 4 formalizes the case when a 

statement aborts execution. 

 

Definition 4 

A statement 𝑆  aborts at a state (𝑠, , 𝐿𝑠) , 

denoted by 𝑆:  𝑠, , 𝐿𝑠 → 𝑎𝑏𝑜𝑟𝑡 , if it not possible 

(provided that 𝑆 is not stuck in an infinite loop) to find 

a state (𝑠′ , ′, 𝐿𝑠 ′)  such that 𝑆:  𝑠, , 𝐿𝑠 → (𝑠′ , ′, 𝐿𝑠′)   

according to inference rules of Figure 5.  

              The semantics of the statements of the J-COP 

language is shown in Figure 5. Some comments on the 

rules are as follows. The rule (≔𝑒
𝑠)  modifies the 

variable 𝑣 of the object referenced by 𝑒1. This is done 

via updating the third component of   𝑒1  𝑠,   and 

keeping the first two components (2([ 𝑒1  𝑠,  ) and 

𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 ∶≔ 𝑖𝑛𝑡 ∣ 𝑏𝑜𝑜𝑙 ∣ 𝐶 ∣ 𝑟𝑒𝑓 𝜏 ∣ 𝜏1  → 𝜏2  
𝑒 ∈ 𝐸𝑥𝑝𝑟𝑠 ∶≔ 𝑛 ∣   𝐶 𝑒 ∣ 𝑡𝑖𝑠 ∣  𝑜 ∣  𝑒. 𝑣 ∣  𝑒1  𝑖𝑜𝑝  𝑒2 

𝑏 ∈ 𝐵𝑒𝑥𝑝𝑟𝑠 ∶≔ 𝑡𝑟𝑢𝑒 ∣ 𝑓𝑎𝑙𝑠𝑒 ∣  𝑒1𝑐𝑜𝑝  𝑒2 ∣   𝑏1𝑏𝑜𝑝𝑏2      

𝑙𝑒 ∈ 𝐿𝑎𝑦𝑒𝑟𝐸𝑥𝑝𝑟𝑠 ∶≔ 𝑤𝑖𝑡 𝑙 ∣ without 𝑙 ∣ 𝜖 ∣  𝑙𝑒 𝑙𝑒      
𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 ∶≔ 𝑒1 . 𝑣 ≔ 𝑒2 ∣  𝑜1 ≔ 𝑙𝑒 𝑜2 . 𝑓 𝑒 ∣  𝑜1

≔ 𝑜2 . 𝑓 𝑒 ∣  𝑜1 ≔ 𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒  𝑜1

≔ 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2 . 𝑓 𝑒 ∣ 𝑜 ≔ 𝑛𝑒𝑤 𝐶
∣  𝑆1; 𝑆2 ∣ 𝑖𝑓 𝑏 𝑡𝑒𝑛 𝑆𝑡𝑒𝑙𝑠𝑒 𝑆𝑓
∣  𝑤𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆𝑡   

𝑓𝑢𝑛 ∈ 𝐹𝑢𝑛𝑠 ∶≔ 𝑓 𝑝 {𝑆; 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒 ; }      
𝑙𝑎𝑦𝑒𝑟 ∈ 𝐿𝑎𝑦𝑒𝑟𝑠 ∶≔ 𝐿𝑎𝑦𝑒𝑟 𝑙 {𝑓𝑢𝑛}  
𝑖𝑛𝑟𝑡 ∈ 𝐼𝑛𝑒𝑟𝑖𝑡𝑠 ∶≔ 𝜖 ∣  𝑖𝑛𝑒𝑟𝑖𝑡𝑠  𝐶        

𝑐𝑙𝑎𝑠𝑠 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠:
≔ 𝑐𝑙𝑎𝑠𝑠  𝐶 𝑖𝑛𝑟𝑡 { 𝑓𝑢𝑛∗ 𝑙𝑎𝑦𝑒𝑟∗}        

𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔𝑠 ∶≔ 𝑐𝑙𝑎𝑠𝑠∗𝑚𝑎𝑖𝑛(){ 𝑆 }       

 
Figure 2: The programming language J-COP 
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3([ 𝑒1  𝑠,  ))) of the triple unchanged. The semantics 

of executing the function 𝑓of the object referenced by 

𝑜2  on the input 𝑒 is captured by the rule (≔𝑜 .𝑓
𝑠 ). The 

expression le of the statement 𝑜1 ≔  𝑜2 . 𝑓 𝑒  
activates/deactivates some specific layers. The 

semantic of the statement is given via the rule (≔𝑙 .𝑜 .𝑓
𝑠 ). 

This rule first adds (removes) activated (deactivated) 

layers of le to 𝐿𝑠 to produce 𝐿1
𝑠 (via calling the 

procedure layer). The rule then finds the sub-list of 𝐿1
𝑠  

whose elements contain a definition for the function 𝑓. 

Then the rule sequentially executes these functions. 

The execution of a function definition considers the 

previous execution via modifying 𝑜1 to the 
 𝑒𝑖−1  𝑠𝑖 , 𝑖 . The rule (𝑠𝑢𝑝𝑠)   expresses the 

semantics of the statement 𝑜1 ≔  𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒  which 

executes the procedure 𝑓 defined in an ancestor of the 

current class. This ancestor that hosts 𝑓 is found using 

the procedure super. The rule (𝑝𝑟𝑜𝑠)  introduces the 

semantics of the statement 𝑜1 ≔  𝑝𝑟𝑜𝑐𝑒𝑒𝑑  𝑜2 . 𝑓 𝑒  
which executes all functions named 𝑓 and contained in 

an active layer of the object pointed-to by 𝑜2 . The 

procedure clylyrs is used in this rule to decide which of 

the currently active layers (𝐿𝑠) contains a definition for 

𝑓 and is a member of the object pointed-to by 𝑜2. 

 

3. Type System   

              This section presents a type system for the 

language J-COP. The function of the type system is to 

statically detect type errors like variable-not-found and 

procedure-not-found. Our type system also assures 

success of proceed() and super()calls. The concept of 

layer activation/deactivation makes developing such 

type system is not an easy task. This is so because 

layer activation/deactivation affects the list of 

procedures to be considered included in a given class. 

Definition 5 presents the context definition. 

Definition 5. 1. 𝑉𝑎𝑟 = 𝐿𝑉𝑎𝑟 ∪  (∪ { 𝐶, 𝑣 ∣  𝑣 ∈
 𝐼𝑉𝑎𝑟𝑐  𝑎𝑛𝑑 𝐶  𝑖𝑠 𝑎 𝑐𝑙𝑎𝑠𝑠}). 

2. The set of contexts is defined as { 𝛤,𝐿𝑡 ∣ 𝛤:𝑉𝑎𝑟 →𝑝  

  𝑖𝑛𝑡, 𝑟𝑒𝑓  𝐶 𝑎𝑛𝑑  𝐿𝑡 ⊆  𝐿𝑎𝑦𝑒𝑟𝑁𝑎𝑚𝑒𝑠}.  

              The proposed type system for the J-COP 

language is shown in Figure 6. Some comments on the 

rules are as follows. For expressions, the type 

judgment has the form 𝛤 ⊨  𝑒: 𝜏, read '' 𝑒  is of type τ 

under 𝛤   where 𝛤   denotes a finite function from 

variables to the set {int, ref C}. For class procedures, 

the type judgment has the form  𝛤, 𝐿𝑡 ⊨   𝐶, 𝑓 : 𝜏1 →
𝜏2 , read ''the procedure 𝑓  of the class 𝐶  is of type 

𝜏1 → 𝜏2  under 𝛤  and 𝐿𝑡  '' where 𝐿𝑡  denotes a set of 

active layers. For layer procedures, the type judgment 

has the form   𝛤, 𝐿𝑡 ⊨   𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜏2 , read ''the 

procedure f  of the layer l contained in the class C is of 

type 𝜏1 → 𝜏2under 𝛤 and 𝐿𝑡 ''. For statements, the type 

judgment has the form   𝛤, 𝐿𝑡 ⊨  𝑆:𝑊𝐹 , read ''𝑆  is 

well formed and safe to be executed under 𝐶 and 𝐿𝑡 ''. 

The precondition of the rule (𝐶. 𝑓𝑡) requires that the 

body 𝑆  of the procedure 𝑓  to be well formed. The 

precondition also requires the existence of a common 

type that covers any overloading for𝑓. The first part of 

the precondition of the rule  (≔𝑙 .𝑜 .𝑓
𝑡 ) requires that all 

procedures named 𝑓 inside layers of the class 𝐶 to have 

an upper bound type. Among others requirements, the 

precondition of this rule also ensures that the set 𝐿𝑡  is 

in line with the expression ≤ (𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑡 = 𝐿𝑡). The 

rule (𝑝𝑟𝑜𝑡)  uses the rule (≔𝑙 .𝑜 .𝑓
𝑡 )  to determine types 

for all instances of 𝑓  in layers of the class𝐶. In line 

with expectation of the rules for non-atomic statements 

like  𝑖𝑓𝑡 ,  𝑤𝑖𝑙𝑒𝑡 , 𝑎𝑛𝑑 (𝑠𝑒𝑟𝑡) , these rules require 

their sub-statements to be well formed.  

              Definition 6 presents the condition when a 

state respects a context denoted by  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡). 

Definition 6.  

1.  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡) ⇔𝑑𝑒𝑓       
(a) 𝐿𝑠 ⊆  𝐿𝑡 , 
(b)∀ 𝑜 ∈  𝑑𝑜𝑚 Γ . Γ 𝑜 = 𝑖𝑛𝑡 ⇒  𝑠 𝑎 ∈ ℤ , 

(c) ∀ 𝑜 ∈  𝑑𝑜𝑚 Γ .  Γ 𝑜 = 𝑟𝑒𝑓𝐶 ⇒  (𝑠(𝑜)) = (𝐶,𝑛, 
𝐼(𝐶,𝑛)), and 

(d) ∀𝑎 ∈ 𝒜. 𝑎 ∈ 𝑑𝑜𝑚  ⇒ 3 𝑎 ∼(𝑠,) Γ.  

(Definition 6.2) 

2. 𝐼(𝐶,𝑛) ∼(𝑠,) Γ ⇔𝑑𝑒𝑓 ∀ 𝐷. 𝑖𝑓 𝐶 ≤  𝐷, 𝑡𝑒𝑛                    

(a) Γ  𝐷, 𝑣  = 𝑖𝑛𝑡 ⇒  𝐼 𝐶,𝑛  𝑣 ∈  ℤ, and 

(b) Γ  𝐷, 𝑣  = 𝑟𝑒𝑓𝐸 ⇒ (𝐼 𝐶,𝑛 (𝑣)) = (𝐸,𝑚, 𝐼 𝐸 ,𝑚 ) 

𝑎𝑛𝑑 𝐼 𝐸 ,𝑚 ∼(𝑠,) Γ. 

 

             Now we prove the soundness of the type 

system. 

Lemma 1 
              Typed expressions of the language J-COP do 

not abort (go wrong). Moreover:  

(a) If 𝛤 ⊨  𝑒: 𝑖𝑛𝑡 and  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡), then  

             𝑒  𝑠,  ∈  ℤ . 

(b)  If 𝛤 ⊨  𝑒: 𝑟𝑒𝑓 𝐶  and  𝑠, ,𝐿𝑠 ∼   𝛤, 𝐿𝑡 , then 

1  𝑒  𝑠,   = 𝐷  and 𝐷 ≤ 𝐶. 

Proof 

             Suppose that e is an expression of the language 

J-COP such that 𝛤 ⊨  𝑒: 𝜏 and 𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡). We 

show that  𝑒  𝑠,  ≠⊥ and we show (a) and (b) above. 

This is shown by induction on 𝛤 ⊨  𝑒: 𝜏   with case 

analysis on the last inference rule applied. Main cases 

are only shown below: 

Case  𝑜𝑡 : 
              In this case 𝛤 𝑜 = 𝜏. We have two subcases. 

In the first sub-case 𝛤 𝑜 = 𝑖𝑛𝑡  which implies 

 𝑠 𝑜 ∈  ℤ  because  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡) . In the second 

sub-case Γ 𝑜 = 𝑟𝑒𝑓𝐶  which implies 𝑠 𝑜 ∈ 𝑑𝑜𝑚()  
because  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡) . Hence in both subcases 

  𝑒  𝑠,  ≠⊥ and clearly (a) and (b) are satisfied. 

Case (𝑐𝑎𝑠𝑡1
𝑡): 

              In this case 𝑒 =  𝐶 𝑒′, 𝛤 ⊨  𝑒′: 𝑖𝑛𝑡,   𝛤 ⊨
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 𝐶 𝑒′: 𝑖𝑛𝑡  and 𝑠, , 𝐿𝑠 ∼   𝛤, 𝐿𝑡 .  Hence by induction 

hypothesis,   𝑒  𝑠,  ∈  ℤ. Since  𝑒  𝑠,  ∉ 𝒜 , By 
 𝑐𝑎𝑠𝑡2

𝑠 ,  (𝐶)𝑒′  𝑠,  =  𝑒′  𝑠,  ∈  ℤ. This 

completes the proof for this case. 

 

Case (𝑐𝑎𝑠𝑡2
𝑡 ): 

             In this case 𝑒 =  𝐶 𝑒′, 𝛤 ⊨  𝑒′: 𝑟𝑒𝑓 𝐷,   𝛤 ⊨
  𝐶 𝑒′: 𝑟𝑒𝑓𝐶,𝐷 ≤ 𝐶, and  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡). Hence by 

induction hypothesis, h1  𝑒′  𝑠,   = 𝐸  and 𝐸 ≤

𝐷 implying 𝐸 ≤ 𝐶 . By (𝑐𝑎𝑠𝑡2
𝑠) ,  (𝐶)𝑒′  𝑠,  =

 𝑒′  𝑠,  . Hence 1(  𝐶 𝑒′  𝑠,  ) = 1( 𝑒′  𝑠,  ) = 

E and 𝐸 ≤ 𝐶. This completes the proof for this case. 

Case (𝑒. 𝑣𝑡 ): 

              In this case  𝑒 = 𝑒′. 𝑣, 𝛤 ⊨  𝑒′: 𝑟𝑒𝑓 𝐶 ,     
𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐷, 𝛤((𝐷, 𝑣)) = 𝜏, and   𝑠, , 𝐿𝑠 ∼

  𝛤, 𝐿𝑡 . Hence by induction hypothesis,    

1  𝑒′  𝑠,   = 𝐸  and𝐸 ≤ 𝐶 . Hence 𝐸 ≤ 𝐷  because 

𝐶 ≤ D. We also have 𝐼 = 3  𝑒′  𝑠,   and 𝑣 ∈

𝑑𝑜𝑚(𝐼)  because 𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑣 = 𝐷. Hence 

by  𝑖𝑛𝑠𝑡1
𝑠 ,    𝑒′. 𝑣  𝑠,  = 𝐼 𝑣 ≠⊥. Now 

𝐼 ∼(𝑠,) Γ because  𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡). Hence  

1. 𝛤  𝐷, 𝑣  = 𝑖𝑛𝑡 ⇒  𝐼 𝑣 ∈ ℤ, and 

2. 𝛤  𝐷, 𝑣  = 𝑟𝑒𝑓  𝐸 ⇒  (𝐼(𝑣)) = (𝐸,𝑚, 𝐼(𝐸 ,𝑚))  and 

𝐼(𝐸 ,𝑚) ∼(𝑠,) Γ. This completes the proof for this case. 

              The proof of the following lemma is similar to 

that of the previous one. 

Lemma 2 

              Typed Boolean expressions of the language J-

COP do not abort (go wrong). 

𝑙𝑒 = 𝜖

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠
(𝑙𝑦𝑟1)     

𝑙𝑒 = 𝑤𝑖𝑡 𝑙   𝑙 ∉ 𝐿𝑠

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 =  𝑙 ∣ 𝐿𝑠  
 𝑙𝑦𝑟2 

𝑙𝑒 = 𝑤𝑖𝑡 𝑙 𝑙 ∈ 𝐿𝑠

 𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠
(𝑙𝑦𝑟3) 

𝑙𝑒 = 𝑤𝑖𝑡𝑜𝑢𝑡 𝑙    𝑟𝑒𝑚𝑜𝑣𝑒(𝐿𝑠, 𝑙) = 𝐿𝑠′

𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠′
(𝑙𝑦𝑟4)    

𝑙𝑒 = 𝑙𝑒1𝑙𝑒2     𝑙𝑎𝑦𝑒𝑟 𝑙𝑒1 , 𝐿𝑠 = 𝐿𝑠′′    𝑙𝑎𝑦𝑒𝑟(𝑙𝑒2 , 𝐿𝑠′′) = 𝐿𝑠′

𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑠 = 𝐿𝑠′
(𝑙𝑦𝑟5) 

𝑥 ∈  𝐼𝑉𝑎𝑟𝐶
𝑐𝑙𝑎𝑠𝑠 𝐶 , 𝑥 = 𝐶

(𝑐𝑙𝑎𝑠𝑠1)   
𝑥 ∉  𝐼𝑉𝑎𝑟𝐶      𝐷 ≪  𝐶     𝑐𝑙𝑎𝑠𝑠 𝐷, 𝑥 = 𝐸 

𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑥 = 𝐸
(𝑐𝑙𝑎𝑠𝑠2) 

𝑓 ∈  𝐹𝐶
𝑠𝑢𝑝𝑒𝑟 𝐶, 𝑓 = 𝐶

(𝑠𝑢𝑝𝑒𝑟1)   
f ∉  𝐹𝐶      𝐷 ≪  𝐶     𝑠𝑢𝑝𝑒𝑟 𝐷, 𝑓 = 𝐸 

𝑠𝑢𝑝𝑒𝑟 𝐶 , 𝑓 = 𝐸
(𝑠𝑢𝑝𝑒𝑟2) 

𝐿𝐶(𝑙) = (𝑔, _, _, _)         𝑔 ≠  𝑓

𝑙𝑦𝑟𝑓𝑢𝑛(𝐶, 𝑓, 𝑙, 𝐿) = 𝐿
 𝑙𝑦𝑟𝑓𝑢𝑛1      

𝐿𝐶(𝑙) = (𝑓, _, _, _)         𝑔 ≠  𝑓

𝑙𝑦𝑟𝑓𝑢𝑛 𝐶 , 𝑓, 𝑙, 𝐿 = [𝐿 ∣ 𝑙]
 𝑙𝑦𝑟𝑓𝑢𝑛2  

𝑑𝑜𝑚 Lc =  l1 ,… , lk                    L1 = []        

   𝑙𝑦𝑟𝑓𝑢𝑛(𝐶, 𝑓, 𝑙𝑖 , 𝐿𝑖) = 𝐿𝑖+1            𝐿′ = 𝐿𝑘+1    ∩ 𝐿 

𝑐𝑙𝑠𝑙𝑦𝑟𝑠(𝐶, 𝑓, 𝐿) = 𝐿′
(𝑐𝑙𝑠𝑙𝑦𝑟𝑠) 

 

 

 

 

 

Figure 3. Inference rules of necessary functions for semantics 

 𝑛  𝑠,  =  𝑛        𝑡𝑖𝑠  𝑠,  = 𝑠  𝑡𝑖𝑠         𝑜 (𝑠, ) = 𝑠  𝑜         𝑡𝑟𝑢𝑒 (𝑠, ) =  𝑡𝑟𝑢𝑒      

 𝑓𝑎𝑙𝑠𝑒  𝑠,  =  𝑓𝑎𝑙𝑠𝑒         𝑒1 𝑖0𝑝  𝑒2 (𝑠, ) =  
 𝑒1 (𝑠, )𝑖0𝑝   𝑒2 (𝑠, )        𝑖𝑓  𝑒1 (𝑠, )𝑖0𝑝   𝑒2 (𝑠, )  ∈  ℤ,

⊥                            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
     

 𝑒1  𝑐0𝑝  𝑒2  𝑠, =  
 𝑒1  𝑠,  𝑐0𝑝   𝑒2  𝑠,         𝑖𝑓  𝑒1  𝑠, ,  𝑒2  𝑠,  ∈  ℤ,

⊥                 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
     

 𝑏1 𝑏0𝑝  𝑏2 (𝑠, ) =  
 𝑒1  𝑠,  𝑏0𝑝   𝑒2  𝑠,         𝑖𝑓  𝑒1  𝑠,  ,  𝑒2  𝑠,  ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒},

⊥                            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
     

           

 𝑒  𝑠, ∈ 𝑑𝑜𝑚  

      1  𝑒  𝑠,   = 𝐷         𝑛𝑜𝑡 𝐷 ≤ 𝐶 

 𝐶 𝑒    𝑠,  =⊥
 𝑐𝑎𝑠𝑡1

𝑠   
𝑝𝑟𝑒𝑠𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓   𝑐𝑎𝑠𝑡1

𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

  𝐶 𝑒    𝑠,  =  𝑒  𝑠,  
 𝑐𝑎𝑠𝑡2

𝑠  

                 

𝑐𝑙𝑎𝑠𝑠(1( 𝑒  𝑠,  ), 𝑣) = 𝐷

      𝐼 = 3  𝑒  𝑠,           𝑣 ∈ 𝑑𝑜𝑚(𝐼)

 𝑒. 𝑣   𝑠,  = 𝐼(𝑣)
(𝑖𝑛𝑠𝑡1

𝑠)  
𝑝𝑟𝑒𝑠𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓  (𝑖𝑛𝑠𝑡1

𝑠) 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

  𝑒. 𝑣   𝑠,  =⊥
(𝑖𝑛𝑠𝑡2

𝑠) 

 

 

 

 

 

 

Figure 4. Semantics of J-COP expressions 



Life Science Journal 2013; 10(2)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com                              lifesciencej@gmail.com 2520 

 

Theorem 1  
             Well-formed statements of the language J-COP 

do not abort (go wrong). 

 

Proof 

              Suppose that S is a statement of the J-COP 

language. Suppose that the maps 𝐹𝐶  and 𝐿𝐶  and the 

relation ≤ describing the classes used in S are given 

along with S. Suppose also that  𝛤, 𝐿𝑡 ⊨  𝑆:𝑊𝐹  

and   𝑠, , 𝐿𝑠 ∼  (𝛤, 𝐿𝑡) . We show that if S does not 

contain infinite loop then¬(𝑆:  𝑠, , 𝐿𝑠 → 𝑎𝑏𝑜𝑟𝑡), i.e. 

there is a state (s′, h′, Ls ′)  such that 𝑆:  𝑠, , 𝐿𝑠 →

 𝑠′, ′, 𝐿𝑠 ′ .  Moreover we show that in this case 

  𝑠′, ′, 𝐿𝑠 ′ ∼  (𝛤′, 𝐿𝑡)  where 𝛤 ′ = 𝛤⌉(𝑑𝑜𝑚 𝛤 ∖
{𝑡𝑖𝑠, 𝑝}).  This is shown by induction on  𝛤, 𝐿𝑡 ⊨
 𝑆:𝑊𝐹 with case analysis on the last type rule applied. 

Outlines of main cases are shown below. 

 

Case   ≔𝑒
𝑡      

 

 

 

                

𝑐𝑙𝑎𝑠𝑠 1  𝑒1  𝑠,   ,𝑣 = 𝐷    

 𝐼 = 3  𝑒1  𝑠,                𝐼′ = 𝐼[𝑣 ↦   𝑒2  𝑠,  ]

 𝑒1 . 𝑣 ≔  𝑒2:  𝑠, , 𝐿𝑠 → (𝑠, [ 𝑒1  𝑠,  ↦

(1( 𝑒1  𝑠,  ), _2( 𝑒1  𝑠,  ), 𝐼′)], 𝐿𝑠   )

  (≔𝑒
𝑠)      

                

𝐹1  𝑒2  𝑠,   𝑓 =  𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓    

 𝑆𝑓 :  𝑠 𝑡𝑖𝑠 ↦  𝑠 𝑜2 , 𝑝𝑓 ↦  𝑒  𝑠,   , , 𝐿𝑠 →   𝑠 ′ ,′ , 𝐿𝑠′ 

𝑜1 ≔  𝑜2. 𝑓 𝑒 :  𝑠, , 𝐿𝑠 →   𝑠 ′  𝑜1 ↦   𝑒𝑓  𝑠
′ ,′  ,′ , 𝐿𝑠′ 

   ≔𝑜.𝑓
𝑠       

                

𝑠1 = 𝑠       1 =        𝑙𝑎𝑦𝑒𝑟(𝑙𝑒,𝐿𝑠) = 𝐿1
𝑠     

  𝑙1 …  𝑙𝑚  ⊆  𝐿1
𝑠  𝑠𝑢𝑐 𝑡𝑎𝑡 ∀ 1 ≤ 𝑖 ≤  𝑚   𝐿1  𝑜2   𝑠,   𝑙𝑖 =  𝑓, 𝑆𝑖 , 𝑒𝑖 , 𝑝𝑖  

𝑆1:  𝑠1 𝑡𝑖𝑠 ↦  𝑠1 𝑜2 , 𝑝1 ↦   𝑒  𝑠1, 1  , 1, 𝐿1
𝑠  →   𝑠2, 2, 𝐿2

𝑠  

∀ 𝑖 > 1.  𝑆𝑖 :  𝑠𝑖 𝑜1 ↦  𝑒𝑖−1  𝑠𝑖 ,𝑖 , 𝑡𝑖𝑠 ↦  𝑠𝑖 𝑜2 , 𝑝𝑖 ↦  𝑒  𝑠𝑖 , 𝑖  , 𝑖 ,𝐿𝑖
𝑠 → 𝑎 (𝑠𝑖+1, 𝑖+1, 𝐿𝑖+1

𝑠 )

𝑜1 ≔  𝑙𝑒 𝑜2.𝑓 𝑒 :  𝑠, , 𝐿𝑠 →  (𝑠𝑚+1[𝑜1 ↦   𝑒𝑚  𝑠𝑚+1, 𝑚+1 ],𝑚+1, 𝐿𝑚+1
𝑠 )

  (≔𝑙.𝑜 .𝑓
𝑠 )      

𝐸 𝑖𝑠 𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝑜𝑓  1 𝑠 𝑡𝑖𝑠  

𝑠𝑢𝑝𝑒𝑟 𝐸, 𝑓 = 𝐷                     𝐹𝐷 𝑓 =   𝑝𝑓 , 𝑆𝑓 , 𝑒𝑓 

𝑆𝑓 :  𝑠 𝑝𝑓 ↦   𝑒   𝑠,   , , 𝐿𝑠 →  𝑠 ′ ,′ , 𝐿𝑠′ 

𝑜1 ≔  𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 :  𝑠, , 𝐿𝑠 → 𝑠 ′ 𝑜1 ↦   𝑒𝑓   𝑠 ′,′  ,′, 𝐿𝑠 ′ 
(𝑠𝑢𝑝𝑠)        

 𝑎 ∈ 𝒜 ∖ 𝑑𝑜𝑚                     𝑛  𝑖𝑠 𝑓𝑟𝑒𝑠

𝑜 ≔  𝑛𝑒𝑤 𝐶:  𝑠, , 𝐿𝑠 →  (𝑠[𝑜 ↦ 𝑎], [𝑎 ↦ (𝐶, 𝑛, { 𝑣, ⊥ ∣  𝑣 ∈ 𝐼𝑉𝑎𝑟𝐶})], 𝐿𝑠)
(𝑛𝑒𝑤𝑠)       

  𝑠1 , 1 , 𝐿1 =  𝑠, , 𝐿𝑠                         𝑐𝑙𝑠𝑙𝑦𝑟𝑠(1(𝑠(𝑜2), 𝑓, 𝐿𝑠) = [𝑙1 …  𝑙𝑚 ] 

∀ 1 ≤  𝑖 ≤  𝑚 (𝐿𝐶(𝑙𝑖)) = (𝑓, 𝑝𝑖 , 𝑆𝑖 , 𝑒𝑖))

𝑆1:  𝑠1 𝑡𝑖𝑠 ↦  𝑠 𝑜2 , 𝑝1 ↦  𝑒  𝑠1 , 1  , 1 , 𝐿1
𝑠 →   𝑠2 , 2 , 𝐿2

𝑠  

∀ 𝑖 > 1. 𝑆𝑖 :  𝑠𝑖 𝑜1 ↦  𝑒𝑖−1  𝑠𝑖 , 𝑖 , 𝑡𝑖𝑠 ↦ 𝑠 𝑜2 , 𝑝𝑖 ↦  𝑒  𝑠𝑖 , 𝑖  , 𝑖 , 𝐿𝑖
𝑠 →   𝑠𝑖+1 , 𝑖+1 , 𝐿𝑖+1

𝑠  

𝑜1 ≔  𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2. 𝑓 𝑒 :  𝑠, , 𝐿𝑠 →  𝑠𝑚+1 𝑜1 ↦  𝑒𝑚  𝑠𝑚+1 , 𝑚+1  , 𝑚+1 , 𝐿𝑚+1
𝑠    

(𝑝𝑟𝑜𝑠)    

  

  𝑏  𝑠, = 𝑡𝑟𝑢𝑒 ∧  𝑆𝑡 :  𝑠, ,𝐿𝑠 →  𝑠 ′ ,′ , 𝐿𝑠′  ∨

  𝑏  𝑠,  = 𝑓𝑎𝑙𝑠𝑒 ∧  𝑆𝑓 :  𝑠, , 𝐿𝑠 →  𝑠 ′ ,′ , 𝐿𝑠′  

 𝑖𝑓 𝑏 𝑡𝑒𝑛 𝑆𝑡𝑒𝑙𝑠𝑒 𝑆𝑓 :  𝑠, , 𝐿𝑠 →  𝑠 ′ ,′ , 𝐿𝑠′ 
(𝑖𝑓𝑠)    

 𝑏  𝑠,  = 𝑓𝑎𝑙𝑠𝑒       

 𝑤𝑖𝑙𝑒 𝑏  𝑑𝑜 𝑆𝑡:  𝑠,, 𝐿𝑠 →  𝑠, , 𝐿𝑠 
 (𝑤𝑖𝑙𝑒1

𝑠)    

      

𝑆1:  𝑠,, 𝐿𝑠 →  𝑠′′ , ′′ , 𝐿𝑠′′        

𝑆2:  𝑠 ′′ , ′′ ,𝐿𝑠′′  →  𝑠 ′ ,′ ,𝐿𝑠′ 

 𝑆1; 𝑆2:  𝑠, , 𝐿𝑠 →  𝑠 ′ ,′ , 𝐿𝑠′ 
 𝑆𝑒𝑞𝑠         

 𝑏  𝑠,  = 𝑡𝑟𝑢𝑒 

   
𝑆𝑡 :  𝑠, , 𝐿𝑠 →  𝑠 ′′ , ′′ ,𝐿𝑠′′        

𝑤𝑖𝑙𝑒 𝑏  𝑑𝑜 𝑆𝑡 :  𝑠 ′′ ,′′ , 𝐿𝑠′′  →  𝑠 ′ , ′ , 𝐿𝑠′ 
   

    
 𝑤𝑖𝑙𝑒 𝑏  𝑑𝑜 𝑆𝑡 :  𝑠, , 𝐿𝑠 →  𝑠 ′ , ′ , 𝐿𝑠′ 

(𝑤𝑖𝑙𝑒2
𝑠) 

  

 

 

 

 

 

 

 

Figure 5. Inference rules of the operational semantics for J-COP constructs 
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      In this case:  

a. 𝑆 = 𝑒1. 𝑣 ≔ 𝑒2. 

b. 𝛤 ⊨  𝑒1. 𝑣: 𝜏1  ,𝛤 ⊨ 𝑒2: 𝜏2 , 𝑎𝑛𝑑 𝜏2 ≤ 𝜏1 .  
c. By the rule  𝑒. 𝑣𝑡 ,𝛤 ⊨  𝑒1. 𝑣: 𝜏1 ⇒          𝛤 ⊨

 𝑒1: 𝑟𝑒𝑓 𝐶, 𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐸,  and  𝛤  𝐸, 𝑣  =

𝜏1. 

 

              By Lemma 1,  𝑒1  𝑠,  ∈ 𝑑𝑜𝑚()  and 

1  𝑒1  𝑠,   ≤ 𝐶. Hence there is a class 𝐷 such that 

𝑐𝑙𝑎𝑠𝑠(1( 𝑒1  𝑠,  ), 𝑣) = 𝐷 because there is a class 𝐸 

such that 𝑐𝑙𝑎𝑠𝑠(𝐶, 𝑣) = 𝐸 . Also by Lemma 1, 

 𝑒2  𝑠,  ≠⊥.  Hence the state (𝑠′,′, 𝐿𝑠 ′) =

(𝑠, [ 𝑒1  𝑠,  ↦  1  𝑒1  𝑠,   , 2  𝑒1  𝑠,   , 𝐼′ ,   

𝐿𝑠) is defined and the statement does not abort. Clearly 

 𝑠′ , ′ , 𝐿𝑠′ ∼ (𝛤′, 𝐿𝑡). 
 

Case (≔𝑜 .𝑓
𝑡 ) 

    In this case:  

𝛤 ⊨ 𝑛: 𝑖𝑛𝑡  𝑖𝑛𝑡𝑡        
𝛤 𝑡𝑖𝑠 = 𝜏

 𝛤 ⊨𝑡𝑖𝑠: 𝜏 
 (𝑡𝑖𝑠𝑡)     𝛤 ⊨ 𝑡𝑟𝑢𝑒: 𝑏𝑜𝑜𝑙  𝑡𝑟𝑢𝑒𝑡     

𝛤 𝑜 = 𝜏

 𝛤 ⊨𝑜: 𝜏
(𝑜𝑡)     

𝛤 ⊨  𝑒1, 𝑒2: 𝑖𝑛𝑡

𝛤 ⊨  𝑒1  𝑐𝑜𝑝 𝑒2:𝑏𝑜𝑜𝑙
(𝑐𝑜𝑝

𝑡 )   

𝛤 ⊨  𝑏1 , 𝑏2: 𝑏𝑜𝑜𝑙

𝛤 ⊨  𝑏1  𝑏𝑜𝑝𝑏2: 𝑏𝑜𝑜𝑙
(𝑏𝑜𝑝

𝑡 )         
 𝛤 ⊨  𝑒: 𝑖𝑛𝑡

 𝛤 ⊨ : (𝐶)𝑒: 𝑖𝑛𝑡
(𝑐𝑎𝑠𝑡1

𝑡)     
  𝛤 ⊨  𝑒: 𝑟𝑒𝑓 𝐷      𝐷 ≤  𝐶

 𝛤 ⊨ : (𝐶)𝑒: 𝑟𝑒𝑓 𝐶 
(𝑐𝑎𝑠𝑡2

𝑡 )    

  𝛤 ⊨  𝑒1 , 𝑒2: 𝑖𝑛𝑡

 𝛤 ⊨  𝑒1𝑖𝑜𝑝  𝑒2: 𝑖𝑛𝑡  
(𝑖𝑜𝑝

𝑡 )   
  𝛤 ⊨  𝑒: 𝑟𝑒𝑓 𝐶       𝑐𝑙𝑎𝑠𝑠 𝐶, 𝑣 = 𝐷    𝛤  𝐷,𝑣  = 𝜏

 𝛤 ⊨ 𝑒. 𝑣: 𝜏 
(𝑒. 𝑣𝑡)   

  

𝛤 ⊨ 𝑜2: 𝑟𝑒𝑓 𝐶      𝛤 ⊨ 𝑜1: 𝜏2
′         𝜏1

′ ≤ 𝜏1

 𝛤, 𝐿𝑡 ⊨  𝐶, 𝑓 : 𝜏1 → 𝜏2          𝛤 ⊨ 𝑒: 𝜏1
′           𝜏2 ≤ 𝜏2 ′

  𝛤,𝐿𝑡 ⊨  𝑜1 ≔ 𝑜2. 𝑓 𝑒 :𝑊𝐹
 (≔𝑜.𝑓

𝑡 ) 

    

𝐹𝐶 𝑓 =  𝑝, 𝑆, 𝑒 ′                        𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 , 𝐿𝑡 ⊨  𝑆:𝑊𝐹         

  𝛤 ⊨  𝑝: 𝜏1                             𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨  𝑒 ′: 𝜏2

      ∀ 𝐷.  𝐶 ≪  𝐷 𝑖𝑡 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑡𝑎𝑡    𝛤, 𝐿𝑡 ⊨   𝐷, 𝑓 : 𝜄1 → 𝜄2 ⇒  𝜄1 = 𝜏1  𝑎𝑛𝑑 𝜏2 ≤ 𝜄2 

  𝛤, 𝐿𝑡 ⊨   𝐶, 𝑓 : 𝜏1 → 𝜏2
(𝐶. 𝑓𝑡)  

  
 𝛤 ⊨  𝑒1. 𝑣: 𝜏1        𝛤 ⊨  𝑒2: 𝜏2         𝜏2 ≤ 𝜏1

  𝛤, 𝐿𝑡 ⊨  𝑒1 . 𝑣 ≔ 𝑒2:𝑊𝐹 
(≔𝑒

𝑡 )         

𝐿𝐶 𝑙 =  𝑓, 𝑝𝑙 ,𝑆𝑙 , 𝑒𝑙       𝛤 ⊨  𝑝𝑙 : 𝜏1     

 𝛤 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶, 𝑝 ↦ 𝜏1 , 𝐿
𝑡 ⊨  𝑆1:𝑊𝐹

𝛤 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶, 𝑝 ↦ 𝜏1 ⊨  𝑒: 𝜄𝑙
  𝛤, 𝐿𝑡 ⊨   𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜄𝑙

(𝐶. 𝑙.𝑓𝑡) 

  

∃𝜏1 , 𝜏2.∀ 𝑙 ∈  𝐿𝑡 .  𝑖𝑓 𝐿𝐶 𝑙 =  𝑓, _, _, _ , 𝑡𝑒𝑛   𝛤,𝐿𝑡 ⊨  𝐶, 𝑓, 𝑙 : 𝜏1 → 𝜄𝑙   𝑎𝑛𝑑 𝜏2 ≤ 𝜄𝑙
𝛤 ⊨  𝑜1: 𝜏2

′          𝜏1
′ ≤ 𝜏1       𝜏2 ≤ 𝜏2

′        𝑙𝑎𝑦𝑒𝑟 𝑙𝑒, 𝐿𝑡 = 𝐿𝑡        𝛤 ⊨  𝑜2: 𝑟𝑒𝑓  𝐶       𝛤 ⊨  𝑒: 𝜏 ′1 

  𝛤, 𝐿𝑡 ⊨  𝑜1 ≔  𝑙𝑒 𝑜2. 𝑓 𝑒 :𝑊𝐹
(≔𝑙.𝑜 .𝑓

𝑡 )         

      

𝛤 ⊨  𝑡𝑖𝑠: 𝑟𝑒𝑓 𝐶      𝛤, 𝐿𝑡 ⊨  𝐷, 𝑓 : 𝜏1 → 𝜏2   

𝐶 ≪ 𝐷        𝛤 ⊨  𝑜1: 𝜏2
′           𝛤 ⊨  𝑒: 𝜏1

′       𝜏1
′ ≤ 𝜏1     𝜏2 ≤ 𝜏2

′    

 𝛤, 𝐿𝑡 ⊨  𝑜1 ≔  𝑠𝑢𝑝𝑒𝑟. 𝑓 𝑒 : 𝑊𝐹
(𝑠𝑢𝑝𝑡) 

      

∀ 𝑙 ∈ 𝐿. 𝑖𝑓 (𝐿𝐶 𝑙 =  𝑓,𝑝, 𝑆, 𝑒   𝑎𝑛𝑑  𝛤, 𝐿𝑡 ⊨  (𝐶,𝑓, 𝑙): 𝜄1 → 𝜄2 , 𝑡𝑒𝑛  (𝜄1 = 𝜏1  𝑎𝑛𝑑 𝜏2 ≤ 𝜄2) 

𝛤 ⊨  𝑜2: 𝑟𝑒𝑓 𝐶         𝛤 ⊨  𝑒: 𝜏1
′         𝜏1

′ ≤ 𝜏1         𝛤 ⊨ 𝑜1: 𝜏2
′        𝜏2 ≤ 𝜏2

′  

 𝛤,𝐿𝑡 ⊨  𝑜1 ≔  𝑝𝑟𝑜𝑐𝑒𝑒𝑑 𝑜2.𝑓 𝑒 :𝑊𝐹 
 𝑝𝑟𝑜𝑡  

  𝛤 ⊨  𝑜: 𝜏     𝜏 ≤  𝑟𝑒𝑓  𝐶

  𝛤, 𝐿𝑡 ⊨  𝑜 ≔  𝑛𝑒𝑤 𝐶:𝑊𝐹 
 𝑛𝑒𝑤𝑡      

  𝛤 ⊨  𝑏: 𝑏𝑜𝑜𝑙      𝛤, 𝐿𝑡 ⊨ 𝑆𝑡 ,𝑆𝑓 : 𝑊𝐹

  𝛤,𝐿𝑡 ⊨  𝑖𝑓  𝑏 𝑡𝑒𝑛 𝑆𝑡  𝑒𝑙𝑠𝑒  𝑆𝑓 :𝑊𝐹 
 𝑖𝑓𝑡  

  Γ ⊨  b: bool         Γ, Lt ⊨  St : WF

  Γ, Lt ⊨  while  b  do 𝑆𝑡 : 𝑊𝐹 
 𝑤𝑖𝑙𝑒𝑡              

  Γ, 𝐿𝑡 ⊨  𝑆1:𝑊𝐹        Γ,𝐿𝑡 ⊨ 𝑆2:𝑊𝐹

 Γ ⊨ 𝑆1; 𝑆2:𝑊𝐹 
 𝑠𝑒𝑞𝑡  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Type system for J-COP constructs. 
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a. 𝑆 = 𝑜1 ≔  𝑜2 . 𝑓(𝑒).  
b.  𝛤 ⊨  𝑜2: 𝑟𝑒𝑓 𝐶,𝛤 ⊨ 𝑜1: 𝜏2

′ ,𝛤 ⊨  𝑒: 𝜏1
′ , 𝜏1

′ ≤
𝜏1,  and 𝜏2 ≤ 𝜏2′. 

c. (𝑓) = (𝑝, 𝑆, 𝑒′)  and 𝛤 ⊨  𝑝: 𝜏1. 
d.  𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 , 𝐿𝑡 ⊨   𝑆:𝑊𝐹  and 

𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨  𝑒′: 𝜏2.              
e. ∀ 𝐷.  𝐶 ≪  𝐷  it is true that:  

  𝛤, 𝐿𝑡 ⊨  𝐷, 𝑓 : 𝜄1 → 𝜄2 ⇒ (𝜄1 = 𝜏1𝑎𝑛𝑑 𝜏2

≤ 𝜄2). 
              By Lemma 1,  𝑜2  𝑠,  ∈  𝑑𝑜𝑚()   and 

1  𝑜2  𝑠,   ≤ 𝐶. Since 𝐹𝐶 𝑓 =  𝑝, 𝑆, 𝑒′ ,  

 𝐹1  𝑜2  𝑠,   𝑓 =  𝑝, 𝑆, 𝑒′ . Now we notice that     

 𝑠 𝑡𝑖𝑠 ↦  𝑠 𝑜2 , 𝑝 ↦  𝑒  𝑠,   , , 𝐿𝑠 ∼ (𝛤[𝑝 ↦ 𝜏1 ,
𝑡𝑖𝑠 ↦  𝑟𝑒𝑓 𝐶],𝐿𝑡) . This is so because: 

1. (𝑠(𝑡𝑖𝑠)) = (𝑠(𝑜2)) = (𝐶,𝑛, 𝐼(𝐶,𝑛))  because     

𝛤 ⊨  𝑜2: 𝑟𝑒𝑓 𝐶, and 

2. 𝑠(𝑝) = 𝑠  𝑒  𝑠,   and 𝛤 ⊨  𝑒: 𝜏1
′ ≤ 𝜏1. 

Therefore by induction hypothesis there is a state     

 𝑠′, ′, 𝐿𝑠 ′  such that   𝑠′, ′, 𝐿𝑠 ′ ∼ (𝛤[𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦
𝑟𝑒𝑓 𝐶], 𝐿𝑡) and 

𝑆 ∶  𝑠 𝑡𝑖𝑠 ↦  𝑠 𝑜2 , 𝑝 ↦  𝑒  𝑠,   , , 𝐿𝑠 
→ (𝑠′, ′, 𝐿𝑠 ′) 

because   

 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ,  𝐿𝑡 ⊨ 𝑆:𝑊𝐹. 
This implies  𝑒′  𝑠′, ′ ≠⊥because 

𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨  𝑒 ′ : 𝜏2. 
Hence the state (𝑠[𝑜1 ↦   𝑒′  𝑠′, ′ ]   , ′, 𝐿𝑠 ′) is 

defined and satisfies  𝑠′  𝑜1 ↦  𝑒 ′  𝑠′ , ′  , ′, 𝐿𝑠 ′   
∼ (𝛤′, 𝐿𝑡). This completes the proof of this case. 

 

Case (≔𝑙 .𝑜 .𝑓
𝑡 ) 

        In this case  

a. 𝑆 = 𝑜1 ≔ 𝑙𝑒 𝑜2 . 𝑓(𝑒). 

b. 𝑙𝑎𝑦𝑒𝑟(𝑙𝑒, 𝐿𝑠) = 𝐿1
𝑠   and (𝑠1 , 1 , 𝐿1

𝑠 ) = (𝑠,, 𝐿). 
c.  𝑙1 …  𝑙𝑚  ⊆  𝐿1

𝑠  such that 

∀ 1 ≤  𝑖 ≤  𝑚 𝐿 1  𝑜2   𝑠,    𝑙𝑖 
=  𝑓, 𝑝𝑖 , 𝑆𝑖 , 𝑒𝑖  . 

d. ∃𝜏1, 𝜏2  such that for all 𝑙 ∈  𝐿𝑡  𝑖𝑓 𝐿𝐶 𝑙 =
 𝑓, 𝑝𝑙 , 𝑆𝑙 , 𝑒𝑙 ,  then  

𝛤 ⊨  𝑝𝑙 : 𝜏1 ,𝛤 𝑝 ↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶 ⊨  𝑆𝑙 : 𝑊𝐹,  

and 𝛤 𝑝 ↦ 𝜏1 , 𝑡𝑖𝑠 ↦  𝑟𝑒𝑓  𝐶 ⊨  𝑒𝑙 : 𝜄𝑙 .   
e. 𝛤 ⊨  𝑜2: 𝑟𝑒𝑓 𝐶,𝛤 ⊨  𝑒: 𝜏1

′ ,𝛤 ⊨ 𝑜1 ∶ 𝜏2
′ , 𝜏1

′ ≤
𝜏1,  and  𝜏2 ≤ 𝜏2 ′. 

              By Lemma 1,  𝑜2   𝑠,  ∈ 𝑑𝑜𝑚()  and 

1  𝑜2   𝑠,   ≤ 𝐶. If the list [𝐿1 …  𝐿𝑚 ] is empty then    

the statement S does not abort and  𝑠′ , ′ , 𝐿𝑠 ′ =
 𝑠, , 𝐿𝑠 .  For𝑙1 , we have  𝐿1  𝑜2   𝑠,  (𝑙1) = (𝑓, 𝑝1 , 𝑆1  

, 𝑒1). Similarly to the previous case, we conclude: 

(𝑠1 𝑡𝑖𝑠 ↦  𝑠1 𝑜2 , 𝑝1 ↦  𝑒   𝑠1 , 1 , 1, 𝐿1
𝑠  ∼ (𝛤[𝑝1

↦ 𝜏1, 𝑡𝑖𝑠 ↦ 𝑟𝑒𝑓 𝐶], 𝐿𝑡). 
Then by induction hypothesis there exists a state 

(𝑠2 , 2, 𝐿2
𝑠 ) such that)  𝑠2, 2 , 𝐿2

𝑠  ∼   𝛤 ′ , 𝐿𝑡  and   

𝑆1: (𝑠1 𝑡𝑖𝑠 ↦  𝑠1 𝑜2 , 𝑝1 ↦   𝑒   𝑠1 , 1  , 1 , 𝐿1)
→  (𝑠2 , 2, 𝐿2

𝑠 ). 

Now clearly, 

(s2[o1 ↦  𝑒1   𝑠2 , 2 , this ↦ s2(o2), p2 ↦
 𝑒   𝑠2, 2 ], h2, L2

s ) ∼  Γ p1 ↦ τ1 , this ↦ r𝑒𝑓 𝐶 , 𝐿𝑡 . 
Then by induction hypothesis there exists a state 

(𝑠3 , 3, 𝐿3
𝑠 ) such that)  𝑠3, 3 , 𝐿3

𝑠  ∼   𝛤 ′ , 𝐿𝑡  and   

𝑆2: (𝑠2 𝑜1 ↦  𝑒1   𝑠2 , 2 , 𝑡𝑖𝑠 ↦  𝑠2 𝑜2 , 𝑝2

↦   𝑒   𝑠2 , 2  , 2, 𝐿2)
→  (𝑠3 , 3, 𝐿3

𝑠 ). 
Therefore a simple induction on 𝑚 can prove that for 

all 𝑖   there exists state (𝑠𝑖+1, 𝑖+1, 𝐿𝑖+1
𝑠 )  such that) 

 𝑠𝑖+1, 𝑖+1, 𝐿𝑖+13
𝑠  ∼   𝛤 ′ , 𝐿𝑡  and   

∀𝑖 𝑆𝑖 : (s2 o1 ↦  𝑒𝑖−1   𝑠𝑖 , 𝑖 , this ↦  si o2 , pi

↦   𝑒   𝑠𝑖 , 𝑖  , h2, L2)
→  (si+1 , hi+1, Li+1

s ). 
Hence the sate  𝑠𝑚+1, 𝑚+1 , 𝐿𝑚+1

𝑠   is defined and 

satisfies   𝑠𝑚+1, 𝑚+1, 𝐿𝑚+1
𝑠  ∼   𝛤 ′ , 𝐿𝑡 . Now by 

Lemma 1,  𝑒𝑚   𝑠𝑚+1, 𝑚+1 ≠⊥  and hence 
 𝑠𝑚+1 𝑜1 ↦  𝑒𝑚   𝑠𝑚+1 , 𝑚+1  , 𝑚+1, 𝐿𝑚+1

𝑠  is 

defined and satisfies       

 𝑠𝑚+1 𝑜1 ↦  𝑒𝑚   𝑠𝑚+1 , 𝑚+1  , 𝑚+1, 𝐿𝑚+1
𝑠  ∼

 𝛤 ′ , 𝐿𝑡   which completes the proof of this case. 

 

Case (𝑠𝑢𝑝𝑡): 

              This case is similar to the case of (≔𝑜 .𝑓
𝑡 ). 

 

Case (𝑝𝑟𝑜𝑡): 

              This case is similar to the case of (≔𝑙 .𝑜 .𝑓
𝑡 ). 

 

4. Discussions  

              Related work: an operational semantics and a 

type system for modeling and checking context-

oriented constructs are presented in (Hirschfeld, 

Igarashi & Masuhara, 2011). While the language 

model studied in (Hirschfeld et al., 2011) is functional, 

our model is structural. The type system presented in 

the current paper and that in (Hirschfeld et al., 2011) 

stop the command proceed from executing faulty 

procedures.  

              An operational semantics, that is based on 

delegation based calculus, is presented in (Schippers, 

Janssens, Haupt & Hirschfeld, 2008) for the language 

𝑐𝑗 , a context-oriented programming language. The 

research in (Clarke & Sergey, 2009) presents a syntax-

based semantics for COP concepts as implemented by 

ContextL, ContextJ*, and other examples. This paper 

also introduces a type system that prevents program 

from getting stuck. The semantics presented of most 

related work uses general calculi to represent context-

dependent behavior of COP programs. Our semantics, 

on the other hand, is built directly on an accurate 

memory model which adds to the clarity and soundness 

of our semantics and type system. 

              Aiming at describing behavioral variations, 

delta modules and layers are used by delta-oriented 

programming (DOP) (Schaefer, Bettini, Bono, 
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Damiani & Tanzarella, 2010) and feature-oriented 

programming (FOP) (Batory, Sarvela & Rauschmayer, 

2004), respectively. In these manners, the static 

composition of classes with layers creates many similar 

software artifacts. Transitional semantics was 

presented for DOP in (Schaefer, Bettini & Damiani, 

2011) and for FOP in (Delaware, Cook & Batory, 

2009). Noticeably, in these approaches new procedures 

can be added by layers. This fact sophisticates any 

accurate semantics and type system for DOP and FOP. 

              Future work: it is intersecting to extend the 

language of the current paper to allow layer inheritance 

and layer dependency. This enables one layer to 

require the presence of another layer. It also enables 

expressing the condition that two layers cannot be 

active simultaneously. Another direction for a future 

work is to extend the language to associate candidate 

procedures of the command proceed() with priorities 

for execution. 
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