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Abstract: Cellular manufacturing consists of grouping similar machines in cells and dedicating each of them to 
process a family of similar part types. In this paper, a neural network-based multi-objective genetic algorithm for 
designing cells incrementally in a dynamic environment is presented. A new multi-objective nonlinear programming 
model is constructed. We use neural network to optimize two different objectives. In order to generate Pareto 
optimal fronts, Fast Non-Dominated Genetic Algorithm (NSGAII) is applied. Weighted similarity coefficients are 
computed and parts are clustered using a new self-organizing neural network .The neural network model was coded 
in Delphi to determine the efficient parameter combinations.  
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1. Introduction 

The cellular manufacturing problem has 
captured a great deal of attention of many 
manufacturers and researchers. The variety and the 
uncertainty of demand, variety of characteristics of 
the product and manufacturing process are the 
reasons that motivated the request for flexibility. 
Cellular manufacturing is a flexible manufacturing 
system (FMS) which can respond to the increasingly 
competitive environment facing manufacturers. 
Specially, manufacturers need to quickly improve 
their efficiency, response time and quality, but with a 
minimum of upfront investment of time and capital. 

Cell formation is one of the important issues of 
cellular manufacturing systems. Many models and 
solution approaches have been developed to deal with 
the problem of cell formation but virtually all of them 
look at CM in terms of the total number of products 
to be made and the total number of machines or 
machine types available (or needed), and then try to 
plan a conversion of the entire shop into cells, 
possibly keeping a remainder cell. In other words, 
planning the conversion of a job shop to CM is 
performed comprehensively rather than incrementally 
(Shafer et al. 1999), as shown in Fig. 1  

Wemmerlov (2000) in a survey done on 126 
cells in 46 plants mentioned that academic (and some 
practitioner) writers on cell formation often seem to 
perceive the problem as one where multiple cells 
emerge from a single analysis of the factory, the 
reality is that most cells in industry are created and 
implemented sequentially over time. Incremental cell 
formation follows a sequential process of forming the 

cells proposed in the master plan. In this case cells 
were implemented one-by one rather than all-at-once, 
a sample of this kind of cell formation is illustrated in 
Fig. 2; a similar observation is made in Johnson 
(1998), Mahesh and Srinivasan (2002). 

 
Figure 1: Non-incremental cellular manufacturing system 

 
Figure 2: Incremental cellular manufacturing system 
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A survey by Adil and Ghosh (2005) mention 
several reasons for a company gradually 
implementing GT cells as follows:   

1. To implement a pilot cell: A company may 
select a few strategically important 
parts/machines in a cell. This may provide 
fruitful learning experience for future cell 
implementation. 

2. Economic reasons: Budget constraints may 
not permit a conversion of the whole plant 
into cells. 

3. Master plan: Some companies follow a 
master plan where they gradually cellularize 
their plant. 

4. Data not amenable to perfect grouping: 
There may be some bottleneck parts and 
bottleneck machines inherent that are not 
amenable to cellularization. 

5. Service cell: Some machines serve multiple 
part families and hence may be dedicated to 
the shared service cell.  

As mentioned earlier, the cell formation 
problem (CFP) which groups machines into cells and 
parts into families has received considerable attention 
in literature. Mahesh and Srinivasan [16] clustered a 
number of techniques and provided an overview of 
various algorithms that forms cells comprehensively 
(i.e., non-incrementally) in total. However, empirical 
findings on cell formation ((Marsh et al. 1999, 
Wemmerlov and Johnson (2000), Johnson (1998), 
Mahesh and Srinivasan (2002)) suggest that cells are 
implemented incrementally. More recently, a few 
studies have developed methods for solving 
incremental cell formation problems. Shambu and 
Suresh (2000) simulated a shop floor under several 
degrees of cellularization for a wide variety of shop 
conditions. They measured the performance of hybrid 
cellular manufacturing, cellular manufacturing, and 
job shop in a dynamic environment. Balakrishnan 
and Cheng (2007) proposed a model which considers 
cell formation over a multi-period planning horizon 
with demand and resource uncertainties. In this study, 
cell formation has been done non-incrementally 
where at each period the cell configuration can be 
changed; however, planning, implementation or 
capital investment issues have not been addressed. 
Despite many previous researches, Nsakanda et al. 
(2000) stated that in some cases the implementation 
of a CMS is unhelpful. They showed that in this 
situations hybrid cellular configuration would be 
beneficial. Adil and Ghosh (2005) develop a 
mathematical model and a heuristic approach based 
on greedy random adaptive search procedures 
(GRASP) to address incremental cell formation 
problem. Rajakarunakaran (2006) solved the 
fractional cell formation problem (similar to 

incremental cell formation) using modified adaptive 
resonance theory1 network.  

It is known that the CFP is one of the NP-hard 
combinational problems (Yasuda et al. 2005). On the 
other hand, most researches consider a single 
criterion while designers in the real world consider 
optimizing more than one criterion such as 
minimizing inter-cell movements and balance 
machine utilization. Hence, mathematically the 
problem is very hard. Approximation algorithms, or 
the heuristic method, have been developed to obtain 
an optimum or close to optimum non-dominated 
solutions. Multi-objective evolutionary algorithms 
(EA) are efficient methods to evaluate the pareto-
optimal set in difficult multi-objective optimization 
problems, such as Vector Evaluated Genetic 
Algorithm (VEGA) (Schaffer, 1984).This paper 
presents new mathematical model and a hybrid 
approach based on neural network and GA in order to 
obtain the non-dominated solutions of a cellular 
manufacturing system where cells are formed 
incrementally. The solutions are produced and 
arranged based on NSGA-II and ANN is 
implemented to approximate the acceptable solutions 
because of complexity of these problems.   
 
2. Material and Methods  
2.1. Problem description  

We focus on cell formation decisions 
incrementally. In the traditional cell formation 
approaches, designers tried to convert a job shop 
system to a cellular manufacturing system 
comprehensively while in reality it will be done 
incrementally. Hence, here a functional layout is 
considered in the beginning of the planning horizon 
with the planning horizon being composed of multi 
periods. N parts are considered with each part visiting 
shops based on its requirements. Generally M 
machines are available in shops. Our objective is to 
decide the number of cells formed in a period, and 
the assignment of machines to cells such that the total 
cost and the total number of exceptional elements are 
minimized. The total cost consists of intra-cell and 
inter-cell material handling, intra-shop material 
handling, inter-shop material handling and material 
handling between cell and shop costs and an element 
is exceptional element if the element visits more than 
one cell in a period.   
Assumptions 

1. The demand for each part type in each 
period is known.  

2. The number of cells formed in each period is 
limited. 

3. Each cell consists of a minimum and 
maximum number of machines. 
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4. The unit cost of inter-cell movements, intra-
cell movements, intra-shop movements and 
movements between cell and shop are 
known and constant over time. 

5. The number of machines available is known 
and constant over time.     

2.2. Notations 
 
The following notations are used throughout the 
paper:  
c index for cells 
u , t  indices for periods 
m index for machines 
p index for parts 
s index for shops  
  intra-cell material handling cost 


 inter-cell material handling cost 

  intra-shop material handling cost 


 cost of material handling between cell and 
shop 
  inter-shop material handling cost 

ptD
 demand for product p in period t 

LB       minimum number of machines to be assigned 
to a cell 
UB      maximum number of machines to be assigned 
to a cell 
Cmax     maximum number of cells can be formed in 
a period 
M  Number of machines 
S Number of shops in the beginning of 
planning horizon 
P  Number of parts 
T  Number of periods 

jk
 Number of members of set kj  
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2.2. The problem formulation  
 
The objective functions and constraints can be 
formulated as follows:  
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If cell c is formed in period u 

Otherwise 

If machine m is assigned to cell c in period u 

Otherwise 

If part p needs machine m 

Otherwise 

If part p visits cell c in period u 

Otherwise 

If part p visits a cell in period t 

Otherwise 

   If machine m belongs to shop s in period t 

  Otherwise 

If part p visits a shop in period t 

Otherwise 

If part p visits shop s in period t 

Otherwise 
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The objective functions (1) and (2) represent the 
total cost and the total number of exceptional 
elements respectively. The total cost consists the 
costs of intra-cell material handling (first term in 
objective function 1), inter-cell material handling 
(second term), intra-shop material handling (third 
term), material handling between cell and shop 
(fourth term) and inter-shop material handling (fifth 
term). The total number of exceptional elements 
includes between cells movements only. Eq. (3) 
ensures the order of cell formation in a period. Eqs. 
(4) and (5) show that part p visits cell c, when at least 
one of the required machines to process the part is 
allocated to the cell. Eq. (6) is to ensure that a 
machine could belong to a shop if it was in that shop 
in preceding period. Eq. (7) represents that a machine 
can be allocated only to a cell or a shop in each 
period. Eqs. (8) and (9) show that part p visits shop s 
when at least one of the required machines to process 
the part is allocated to this shop. Eqs. (10) and (11) 
ensure that a part moves inter-cell if the part visits 
more than one cell in a period. Eq. (12) ensures that 
each machine can be allocated to at most one cell in 
each period. Eqs. (13) and (14) ensure that a cell is 
formed in a period if at least one machine is allocated 

to the cell. Eqs. (15) and (16) show that part p visits 
shop s, when at least one of the required machines to 
process the part is allocated to the shop. 
 
3. Results  
 Hybrid approach for incremental cell 
 formation problem    

As mentioned earlier, the evaluation of fitness 
functions for complex functions is time consuming 
and expensive. Hence, the combination of GA and 
ANN was performed in order to build a hybrid 
method capable of seeking near-optimal or even 
optimal neural networks for a given problem. The 
overall schema of the hybridized approach, reported 
in Fig. 3, consists of the following steps: 

Initially, a number of random solutions are 
produced. 

By using the proposed ANN, solutions are 
clustered into feasible and infeasible solutions.  

New individuals are generated by implementing 
the GA operators (crossover, mutation). 

NSGA II is performed to determine the 
Pareto fronts.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Diagram of the proposed method 
 

Generate initial 
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Approximate the 
fitness functions 

by ANN 

If the fitness 
functions > 
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Perform the GA 
operators 

Implement the 
NSGA II  
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3.1. The neural network for fitness function 
approximation 

Artificial Neural Network (ANN) 
implemented by a Multilayer preceptron is a flexible 
scheme capable of approximating an arbitrary 
complex function. It consists of an input layer one or 
more hidden layers and an output layer. 
Backpropagation, which have been successfully used 
in modeling, classification, forecasting, design, 
control, and pattern recognition, is one of the most 
popular algorithms for training multilayer 
perceptrons. 

We design an ANN which consists of an 
input layer, two hidden layers and output layer shown 
in Fig. 4.  
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Figure 4: A multilayer perceptron 
 

The input layer represents the available 
machines in shops and the output layer the 
approximation of objective functions that include M 
units and 1 unit respectively. All the nodes in the 
input layer are connected to every node in the first 
hidden layer. The first hidden layer is clustered into T 
sections where every section includes Cmax units. 
The jth node of ith section of first hidden layer 
represents the cell number j at period i. The weight 
Wijk associated with unit i of input layer and unit k 
of section j of hidden layer represents the dependency 
of machine i to cell k in period j.(Fig. 5). 

Let the vector Wjk = [wijk , …, wmjk]denotes 
the input  and W 'jkl represents the output of the unit 
k of section j of hidden layer. The output of hidden 
layer units is a function of activation function (φjk) 
where is defined by following relation: 
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Figure 5: Inputs to a unit of hidden layer  

 
The second hidden layer parallel to first hidden 

layer sections includes T units. All nodes of same 
section of first hidden layer are connected to a related 
node of second hidden layer. For example, the kth 
unit of section j of first hidden layer will be 
connected to jth unit of second hidden layer. The 
input vectors to second hidden layer W 'jkl form a 
new weight between first and second layer units 
connection is called W''j where W''j is a Cmax-by-M 
matrix.    
 
4. Discussions  

Here we use a Hopfield neural network to 
produce optimal Pareto points. The input and output 
layers consist of M×H and (Cmax+S) ×H neurons 
respectively, where M is the total number of 
machines, H is the number of periods, Cmax is the 
maximum number of cells can be constructed per 
period and S is the number of shops. Neuron i of 
input layer is connected to neuron j of output layer 
with weight Wij. Wij mention that machine i in 
period h belongs to cell c or shop s. Dph and Zpm are 
the inputs to input layer and Ymcu is the output and 
its value is binary.  
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Where α is a threshold value.  
  
5. Conclusions 

In this paper, we have proposed a new neural 
network-based multi-objective genetic algorithm for 
designing cells incrementally in a dynamic 
environment which can be used to solve 
combinatorial Optimization problems, in particular 
the part family formation problem which arises 



Life Science Journal 2013;10(2)                                                          http://www.lifesciencesite.com 

 

2089 
 

within cellular manufacturing environments. The 
proposed approach differs from previous work since 
we have not relied upon additional tuning. An 
attractive characteristic of the proposed approach is 
that it is open to extension to other neural features, 
which would further increase its efficiency. Another 
avenue for increasing its efficiency is the inherent 
parallelization capability of neural networks. 
.  
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