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Abstract:Bending has significant importance in the sheet metal product industry. Moreover, the springback of sheet 
metal should be taken into consideration in order to produce bent sheet metal parts within acceptable tolerance limits 
and solve geometrical variation for control of manufacturing process. The Air bending process offers the advantage 
that many less tool changes are required as compared with others bending processes, however the calculation of the 
required punch displacement presents some problems. In this paper, several numerical simulations using finite 
element method were performed to obtain the teaching data required for training the neural network by means of the 
back–propagation algorithm. In the predictive mode different process inputs from the ones used in the previous stage 
were considered, for each case the springback angle and the displacement required to achieve a certain angle after 
springback are predicted by the learned network. Fairly accurate results were achieved for the punch displacement 
and for the springback angle evens so the range considered for training the network is large. The neural network can 
be easily implemented in experiment or in real production to determine the punch displacement to achieve a certain 
bend angle within a narrow range around the desired angle.  
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1. Introduction 

Sheet metal bending is an important 
manufacturing operation in many industrial 
processes. The elastic recovery after unloads causes 
the springback phenomenon in which the radius of 
curvature of any fiber in bending increases after 
bending moment is removed. Precise prediction of 
springback, in the design stage of the tools and 
selection of the sheet materials is very valuable in 
reducing cost of very expensive trial and error 
methods are which still being used. A number of 
analytical models based on materials properties and 
tool geometry is available to predict springback [1-6]. 
Most of the analytical models based on a lot of 
simplifying assumption due to the complexity of the 
problem and they do not provide accurate 
predictions. The finite element method becomes 
reliable to simulate the process before experimental 
development and die tryout are conducted [8-14]. 
The use of the FEM significantly improves the 
planning and control of the manufacturing process at 
the design stage before dies are manufactured and 
expensive production machinery is tied up for costly 
experimentation, one draw back of the finite element 
method is the relatively long time so that it can not be 
used in real time control of the bending process. An 
emerging alternative approach involves the 
development of control system based on artificial 
neural networks (ANNs). ANNs are fault tolerant and 
robust, are amenable to parallel implementation and 
are faster than conventional computing. They can be 

trained using a set of data to predict to a reasonable 
accuracy the result for new set process parameters. In 
recent years, many research groups have investigated 
the use of artificial neural networks to control sheet-
forming processes. Sheet metal forming is an ideal 
candidate for neural network control due to the 
nonlinear effects caused by the interactions of the 
process parameters. Cho et al [15] used a neural 
network to predict the force in cold rolling, and DI 
and Thomson [16] predicted the wrinkling limit in 
squares metal sheets under diagonal tension Ruffini 
and Cao [17] proposed to use a neural network to 
control springback angle in a channel forming 
process with punch force trajectory as the sole source 
for identifying the process variations and adjusting 
the blank holding force.  
             The objective of this article is to develop a 
neural network with the help of the finite element 
method prediction of springback For this purpose a 
validated finite element model will be used to 
generate training sets for the artificial neural network 
for prediction of springback, and the displacement 
required to achieve a bend angle after springback 
taken into account the process parameters and 
material properties which influence the springback of 
metal sheet. 
2. Finite Element Modeling  
               Figure 1 illustrates a schematic view of the 
air bending process. The bending operations 
simulated in this study were performed in 2D since 
the width to thickness ratio of the sheet allows plane 
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strain conditions to be assumed. Therefore, the 
bending process, which includes contact of multiple 
rigid bodies and a deformable body, is analyzed using 
four-node quadratic plane strain elements. The 
implicit model is based on the updated Lagrange 
formulation, which takes into, account both material 
and geometrical non-linearites. In the update 
Lagrangian formulation the element stiffness is 
assembled in the current configuration of the 
element. The equilibrium in the Lagrangian schema, 
and by Hill’s variation principle can be expressed in 
the form [18]. 

 
Figure1: Schematic view of the air bending process 
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So that an incremental elastic-plastic constitutive 
relation is incorporated into it which is given by:  
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Where E is the modulus of elasticity,   the 

poisson’s ratio, H   the strain hardening rate,   a 
constant equal 1 for plastic state and equal 0 for the 

elastic state, ij   the deviatoric part of ij , and   

the effective stress. Eq. (2) is used to model the 
elastoplastic behaviour of the sheet metal. 
 The sheet material considered as an isotropic 
hardening, which means that the yield surface 
remains the same shape and has the same origin 
during hardening, with only the size changing, i.e. 
radius of the yield surface expands, due to work 
hardening. The equivalent stress-equivalent plastic 
strain relation of the sheet is assumed to follow the 
form: 

n
pc )( 0                                        (3)    

               The boundary condition assures full 
symmetry and is applied in the line of symmetry 
preventing any movement from those in the x-
direction .The curves that define the shape of the die 
and the punch are interpret as rigid bodies. They are 
in contact with the sheet, which actually a deformable 
body, contact between a deformable body and a rigid 

body means that nodes do not penetrates the rigid 
body. The punch motion is controlled using a time 
versus displacement table. 
  The full Newton-Raphson method was chosen for 
the solution of the nonlinear finite element equations. 
The Newton-Raphson iteration method operates as 
follows [18], 
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The Newton-Raphson Method, based on an 
incremental step-by-step solution, assumes the 
equilibrium configuration of the body at a discrete 
time t and determines the solution for the discrete 
time t+t, where t is the time increment. The 
method has quadratic convergences properties and 
the stiffness matrix is reassembled at each iteration. 
This means that in subsequent iteration the relative 
error degreases quadratically. The correct choices of 
t is fundamental to obtain a quick iterative 
convergence. Moreover, such a choice strongly 
influence the validity of the contact algorithmic 
particular, to obtain effective solutions often requires 
very small values of the time increment. Since at 
each step the stiffness matrix must be assembled and 
inverted with the above iterative procedure, the CPU 
times required to complete the simulation of the 
process are typically very high.  
                In order to take into account the friction 
between the sheet and the tools, Coulomb friction 
model is implemented. The coulomb model is [19]: 
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Where n are the normal stress, fr the tangential 

friction stress, and   the friction coefficient. The 

tangential vector t in the direction of the relative 
velocity 
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When the implicit finite element analysis is 
used in combination with an elastic plastic material 
model, it allows simulation of springback upon the 
removal of all contact loads in the fully loaded state. 
The release option is used to enable releasing of the 
deformable body’s nodes, which have been in contact 
with the rigid bodies, i.e. removing the rigid surface, 
and evaluating mechanical springback.  
 
3. Artificial neural networks 
          Visual inspection of a given set of plotted data 
may suggest an obvious nonlinear relation ship, but 
the exact relation may not be apparent. A least-
squares model determines the coefficient within an 
algebraic expression, but one must have some idea of 
the desired form of this algebraic expression, before 
seeking the coefficients values. An automated 
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approach that addresses this need is the use of 
artificial neural networks since they are easy to use 
and widely applicable as approximates for problems 
with highly nonlinear and complex data. ANN 
models can identify and learn correlated patterns 
between sets of input data and corresponding target 
values. After training phase, such nets can be used to 
predict the outcomes from new input data. These 
features make neural nets well suited for solving 
problems in the area of preprimary design, where 
such approximates can be used to reduce the 
computational time. The structure of the neural 
network is defined by several neurons, arranged in 
different layers (input, hidden and output) as shown 
in figure 2, the interconnection between the neurons, 
the rules determining whether or not a neurons 
executes a transfer function, and the rules governing 
changes in the interconnecting weights known as 
training laws.  

 
Figure 2: A three-layered neural network 

Figure 3 shows the process of training the ANN. The 
output zi produced by the jth neuron in the hidden 
layer is given by the following relationship[20]: 
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Where is 
h
jf the activation function, n is 

the number of the elements in the hidden layer Wi,j is 
the weight associated with the connection between 
the neurons i in  the input layer and  the neuron j in 
the hidden layer whose output is zi. The output from 
the sth neuron of the output layer is given by: 
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The weights of the output are updated using 
the following relationship: 
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And the weights for the hidden layer neurons are 
updated using the following relation: 
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Figure 3: Flow chart for the learning algorithm of the 

neural network 
  
The above update equations are referred to 

in the literature as the back propagation algorithm.  In 
this algorithms the output errors are propagated back 
from the output layer to the hidden layer, and are 
used in the update equation for the hidden layer 
weights. Back-propagation iteration is completed 
when equations 12 and 13 are applied to all neurons 
of the network; then, the process restarts with a 
new/output pattern presentation. The system adjusts 
the weights of the internal connections to minimize 
errors between the network output and target output. 
The knowledge is represented and stored by weights 
of the connections between the neurons. The training 
of the neural network involves adjusting the weights 
of connections such that the output generated by the 
network for the given input is as close to output as 
possible. This is achieved by minimizing the learning 
error, defined by the mean square error (MSE): 

     
 


Q

m

N

n
nn mymd

QN
MSE

1 1

2

0

01          (14)  



 Life Science Journal 2013;10(2)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com                                          1657                                                lifesciencej@gmail.com 

After the neural network is satisfactorily 
trained and tested, it is able to generalize rules and 
will be able to respond to unseen input data to predict 
required output, within the domain covered by the 
training examples.  
 
3.2 Development of the Neural Network algorithm 

A fundamental step in utilization of ANNs 
is the achievement of input /output data necessary for 
the training stage. They can be obtained from actual 
bending experimentation or from FEM simulations. 
In the later case, elastic springback can be 
successfully predicted, whilst eliminating the need 
for expensive experimentation. In air bending, it is 
known that springback varies with material properties 
and process parameters. The following factors were 
identified to have significant effects on springback; 
ratio of yield strength to young’s modulus, the 
ultimate tensile stress, the sheet thickness, the punch 
radius, the die radius, the die width, the friction 
coefficient, and the bend angle after springback. The 
punch displacement required to achieve a desired 
bend angle, and the mount of springback are the two 
outputs of the ANN.  Using the finite element model 
described in previous section. A series of numerical 
simulation have been carried out to generate training 
set for the neural network using different sheet 
thickness in the range of (1-6 mm), punch and die 
radii between (4-20 mm), die width (40-100 mm) 
friction coefficient in the range (0-0.5) and more than 
40 different materials.   

A three layer neural network was 
developed with a sigmoid activation function 
between the layers which is given by: 
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The determination of the optimal number 
of hidden neurons is crucial for the predictive 
capabilities of the network with too few hidden layer 
neurons, the input–output relationship would not be 
learned adequately leading to a higher mean square 
error. With too many hidden layer neurons, the neural 
network would be oversensitive and not adapt well to 
new inputs not seen during training, leading to high 
mean square error. Using a trial and error process the 
training error is minimized when seven neurons in 
the hidden layer are used. With this number of the 
hidden layer neurons the structure of the neural 
network is determined to be eight inputs, seven 
hidden layer neurons, and two outputs with a learning 
rate of 0.9. 
4. Results and discussion 
            Ones the neural network structure was well 
established and trained the predictive performance of 
the neural network is tested. The performance of the 
developed ANN measured by MSE error vs. the 

training number (epochs) is presented in Figure 4. It 
can be shown that after 2x105 training cycles, the 
curve stabilizes which means that the ANN has been 
sufficiently trained. Results of the network training 
are presented in Figure 5 and Figure 6, which shows 
a perfect match between the target output, and the 
ANN output for both the springback angle and the 
displacement required to achieve a certain bend 
angle.  
           Beside the evaluation of the performance of 
the model, it is also interesting to consider the 
relative importance of each input variable in 
estimating the outputs of the network. Table 1 
displays the contribution factors associated with each 
of the input variables. The contribution factor of the 
neural network is the sum of the absolute values of 
the connection weights leading from each neuron, 
which represent the explanatory variable. By 
examining these factors, some useful information 
with respect to the relations between different factors 
and the springback angle and the displacement to 
achieve a required bend angle after springback can be 
obtained. From table 1 it is clear that the die width, 
the sheet thickness, the yield strength to young’s 
modulus ratio and the bend angle after springback are 
the most significant factors, which affect springback 
and the displacement required to achieve a certain 
bend angle where the other inputs have 
comparatively little effect on the two outputs of the 
neural network. 
               An easy and fast parametric study can be 
performed using the developed neural network as 
illustrated in the figures 7, 8,9 where the effect of 
three process parameters, which have comparatively 
large effect on springback, are studied. In figure 7 the 
displacement required to achieve a certain bend angle 
increases with increasing die width. Figure 8 shows 
that with increasing punch radius the displacement to 
achieve a desired bend angle decreases.  Figure 9 
shows that with increasing die radius the 
displacement required to achieve a required bend 
angle increases.  
Table 1: Contribution factors of the variables in the 

neural network model 
Input  Contribution factors 
Yield strength to young’s 
modulus ratio 

0.1658 

Ultimate tensile strength 0.0813 

Sheet thickness 0.184 
Punch radius 0.0611 
Die radius 0.1007 
Die width 0.1934 
Friction coefficient 0.0932 

Desired bend angle 0.1203 
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Figure 4: MSE error vs. number of epochs 

 

 
Figure 5: Comparison between the FEM 
displacement and the ANN displacement  

 

 
Figure 6: Comparison between the FEM springback 

angle and the ANN springback angle 
 

 
Figure 7: Bending angle and the required punch 

displacement for different die widths 

 
Figure 8: Bending angle and the required punch 

displacement for different punch radii 
 

 
Figure 9:Bending angle and the required punch 

displacement for different die radii 
 
4. CONCLUSIONS 

  In this study a finite element model and a 
developed neural network algorithm were used to 
predict springback and the displacement required to 
achieve a desired bend angle. Effect of material 
properties and tool geometry on springback has been 
investigated. It has been found that the displacement 
required to achieve a certain bend angle increases 
with: increasing die radius, die opening width, and 
decreasing punch radius. From the study it is clear 
that springback in air bending can be well controlled 
by over bending the sheet metal to correct amount. 
By this model, deviation between the predicted bend 
angles on unload and the desired bend angles 
measured is within a narrow range around the desired 
bend angle. A neural network was chosen due to its 
ability to handle the highly non-linear coupled effects 
that are found in sheet metal bending process when 
variations in the material and process parameters 
occur. While the work was conducted using 
simulations, the methodology developed could be 
easily extended to an actual forming processes or 
experiments. Though a neural network system 
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requires more front work producing a sufficient 
number of examples to train the network, the benefits 
for controlling and studying springback are 
undeniable.  
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