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Abstract: A graph is an abstract representation of complex network. Many types of relations and process dynamics 
in physical, biological, social and information systems can be modeled with graphs. Graph analysis has been used in 
the study of models of neural networks, anatomical connectivity, and functional connectivity. These developments 
in the theory of complex networks have inspired new applications in the upcoming field of neuroscience. In our 
work, we propose a novel wavelet based neural network stochastic model that extends existing methods for 
processing the data represented in graph domain. Our approach is based on defining random walks on arbitrary 
infinite graphs representing neural networks, which itself is a stochastic process characterized by some probability 
distribution. More so, random walks exhibit fractal-like patterns that, in turn, attribute the use of wavelet methods. 
The robustness of the proposed model as against the existing ones has been justified by highlighting the potential 
applications in neuroscience. 
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1. INTRODUCTION 
Graph theory pertains to the study of graphs 

which are mathematical structures used to model 
pairwise relations between objects. A graph structure 
consists of vertices/nodes and edges. Graphs can be 
further extended by assigning  weights to each edge 
of the graph called weighted graphs. A directed graph 
or digraph with weighted edges is called a network. 
Network analysis have many practical applications, 
for example, to model and analyze traffic networks. 
These applications can be classified in to three 
categories: First, analysis to determine structural 
properties of a network, such as the distribution of 
vertex degrees and the diameter of the graph. Second, 
analysis to find a measurable quantity within the 
network, for example, for a transportation network, 
the level of vehicular flow within any portion of it, 
and the third is analysis of dynamical properties of 
networks. 

Many practical problems can be represented by 
graphs that can be used to model different types of 
relations and process dynamics in physical,  social 
and information systems. In mathematics, graphs are 
useful in geometry and certain parts of topology, e.g. 
Knot Theory. Algebraic graph theory has close links 
with group theory. In computer science, graphs are 
used to represent networks of communication, data 
organization, computational devices, the flow of 
computation, etc. Graph theory is also used to study 
molecules in chemistry and physics. In condensed 

matter physics, the three dimensional structure of 
complicated simulated atomic structures can be 
studied quantitatively by gathering statistics on 
graph-theoretic properties related to the topology of 
the atoms. For example, Franzblau's shortest-path 
(SP) rings. In chemistry, a graph makes a natural 
model for a molecule, where vertices represent atoms 
and edges bonds. This approach is especially used in 
computer processing of molecular structures, ranging 
from chemical editors to database searching. In 
statistical physics, graphs can represent local 
connections between interacting parts of a system, as 
well as the dynamics of a physical process on such 
systems. Likewise, graph theory is useful in biology 
and conservation efforts where a vertex can represent 
regions where certain species exist (or habitats) and 
the edges represent migration paths, or movement 
between the regions. This information is important 
when looking at breeding patterns or tracking the 
spread of disease, parasites or how changes to the 
movement can affect other species. In sum, many 
underlying relationships among data in several areas 
of science and engineering, e.g., computer vision, 
molecular chemistry, molecular biology, pattern 
recognition, and data mining, can be represented in 
terms of graphs and the graph theoretic approach can 
be employed to analyse such complex data. 

In recent years many important properties of 
complex networks have been delineated and studied 
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the relationship between the structural properties, 
nature of dynamics taking place on these networks. 
For instance, the 'synchronizability' of complex 
networks of coupled oscillators can be determined by 
graph spectral analysis. These developments in the 
theory of complex networks have inspired new 
applications in the field of neuroscience such as study 
of models of neural networks, anatomical 
connectivity, and functional connectivity based upon 
functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG) and 
magnetoencephalography (MEG). The recent 
applications of network theory to neuroscience such 
as modelling of neural dynamics on complex 
networks; graph theoretical analysis of 
neuroanatomical networks; and applications of graph 
analysis to studies of functional connectivity with 
fMRI, EEG and MEG are discussed at length [18]. 
The survey of the recent literature reports several 
models used for analyzing complex networks.  The 
structure of the yeast protein complex network in 
which weighted edges between complexes represent 
the number of shared proteins is studied by Masagh 
et al.[13]. It is reported that the network of protein 
complexes is a small world network with scale free 
behavior for many of its distributions, that the human 
brain can be modeled as a complex network, and may 
have a small-world structure both at the level of 
anatomical as well as functional connectivity. 

The complex networks like neural networks 
[20] are also represented with the help of graphs by 
showing the computational elements, neurons of the 
network. Each node corresponds to one neuron and 
the arrows usually denote weighted sums of the 
values from other neurons. 

Recently various approaches have been unified 
in neural network model called graph neural 
networks (GNNs) [16], which is used for processing 
the data represented in graph domains. It is 
demonstrated that the GNN can be used to process 
structured data inputs, e.g. acyclic graph, cyclic 
graph, directed or un-directed graphs. The GNN 
model is particularly suited for problems whose 
domain can be represented by a set of patterns and 
relationships between them. In those problems, a 
prediction about a given pattern can be carried out 
exploiting all the related information, which includes 
the pattern features, the pattern relationships and, in 
general, the whole graph that represents the domain. 
GNN peculiarity consists in its capability of making 
the prediction taking directly in input the domain 
graph, without any preprocessing. GNNs have been 
proved to be sort of universal approximator for 
functions on graphs and have been applied to several 
problems, including spam detection, object 
localization in images, molecule classification. 

Moreover, the GNN are of two kinds viz. 
Biological neural networks (BNN) and Artificial 
neural networks (ANN) [15]. BNN are objective 
existence, in which the neurons are linked as a 
network in a certain order, e.g. human neural network 
is the most intelligent network system. The ANN are 
aimed at modeling the organization principles of  
central neural system, with the hope that the 
biologically inspired computing capabilities of ANN 
will allow the cognitive and sensory tasks to be 
performed more easily and satisfactorily. ANN 
models some structure, characters and functions of 
BNN by electronical and optical  technologies [9].  

Wavelets have been used in analyzing graphs 
and the complex networks represented by graphs. 
Hammond [7] proposed a method for constructing 
wavelet transforms of functions defined on the 
vertices of an arbitrary finite weighted graph. The 
approach is based on defining scaling using the graph 
analogue of the Fourier domain, namely the spectral 
decomposition of the discrete graph Laplacian and 
forming the spectral graph wavelets. Wavelet 
transform has been employed to analyze neural 
networks [19]. Useful wavelet applications in 
turbulence onset, spectrum analyses, fractal 
aggregates, and bubble-chamber particle-track 
pattern-recognition problems are indicated. 

Since the introduction of wavelet theory for 
square integrable functions defined on the real line, 
numerous authors have introduced extensions and 
related transforms for signals on the plane and higher 
dimensional spaces. By taking separable products of 
one dimensional wavelets, one can construct 
orthogonal families of wavelets in any dimension [8], 
[12], [17]. A comprehensive review of the potential 
of state of the art wavelets, and in particular wavelet 
statistical methodology, in different areas of 
molecular biology such as genome sequence, protein 
structure and microarray data analysis is given in 
[10]. In our earlier works also, we studied the wavelet 
interaction with solitons arising as the solutions of 
non-linear partial differential equations viz. Non-
linear Schrodinger Equation, Sine-Gordon equation, 
Korteweg-de Vries equation [1], [3], [4], [6]. Also, 
we studied extensively the strong relationships 
existing between wavelets, solitons and probability 
distributions [2]. Moreover, we studied the wavelet 
interaction to random processes, wavelet based 
analysis of genomic sequences [5]. 

We confine our discussion to neural networks, 
its representation in terms of graphs, and its  
mathematical modeling.  We can define random 
walks on the digraphs representing neural networks. 
Random walks themselves are the stochastic 
processes that can be analysed by employing wavelet 
methods. This approach has not seen exploited so far 
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in the reported investigations on the various studies 
on graph neural networks. This has motivated us to 
undertake the present study.    

In this work, we combine wavelet transform and 
graph theory for feature extraction and visualization 
of structures of neural networks especially in 
stochastic framework. This is an extension of wavelet 
methods proposed by us for genomic sequence 
analysis [5]. 

 
2. Notations and Terminologies 
Graphs: In the most common sense of the term, a 
graph is an ordered pair � = (�,�) comprising a set 
V of vertices or nodes together with a set E of edges 
or lines, which are 2-element subsets of V (i.e., an 
edge is related with two vertices, and the relation is 
represented as unordered pair of the vertices with 
respect to the particular edge). A vertex may exist in 
a graph and not belong to an edge. The presence of 
an edge between two vertices indicates the presence 
of some kind of interaction or connection between 
the vertices (the interpretation depends upon what is 
being modeled with the graph). The order of a graph 
|�|, is the number of vertices. A graph's size is |�| 
the number of edges. The degree of a vertex is the 
number of edges that connect to it, where an edge 
that connects to the vertex at both ends (a loop) is 
counted twice. 

As an extension of the simple graph is a 
weighted graph � = (�,�,�) that consists of a set 
of vertices, a set of edges � , and a weight 
function  � ∶  � →  � +  which assigns a positive 
weight to each edge.  The adjacency matrix � for a 
weighted graph � is the � ×  � matrix that contains 
the information about the connectivity structure of 
the graph. When an edge exists between two vertices 
�  and � , the corresponding entry of the adjacency 
matrix is  ���  =  1;  otherwise ���  =  0 . The 

likelihood �(�) that a randomly chosen vertex will 
have degree � is given by the degree distribution: it is 
a plot of �(�)  as a function of � . The degree 
distribution can have different forms: Gaussian, 
binomial, Poisson, exponential or power law. 

For a weighted graph, the degree of each vertex 
� , written as �(�) , is defined as the sum of the 
weights of all the edges incident to it. This implies 
�(�)  =  ∑ ��,�.�   

Every real valued function � ∶  � →  �  on the 
vertices of the graph � can be viewed as a vector in 
��, where the value of � on each vertex defines each 
coordinate. This implies an implicit numbering of the 
vertices. 
 
Random Walk: A random walk is a mathematical 
formalization of a path that consists of a succession 

of random steps. Various different types of random 
walks are of interest. Often, random walks are 
assumed to be Markov chains or Markov processes, 
but other, more complicated walks are also of 
interest. Some random walks are on graphs, others on 
the line, in the plane, or in higher dimensions, while 
some random walks are on groups. Random walks 
also vary with regard to the time parameter.  A 
random walk of length k on a possibly infinite graph 
G with a root 0 is a stochastic process with random 
variables ��,��,��,… ,��  such that �� = 0 and ���� 
is a vertex chosen uniformly at random from the 
neighbors of �� . Then the number ��,�,�(�)  is the 
probability  that a random walk of length � starting at 
� ends at �.  Lovasz [11] surveyed various aspects of 
the theory of random walks on graphs. In particular, 
estimates on the important parameters of access time, 
commute time, cover time and mixing time are 
discussed. Connections with the eigenvalues of 
graphs and with electrical networks, and the use of 
these connections in the study of random walks are 
elaborated.  
 
Wavelet Transform: The wavelet transform (WT) is 
a decomposition of a function, �(�), with respect to a 
basic wavelet �(�), given by the convolution of a 
function with a scaled and translated version of �(�)  

��[�(�)](�,�) = |�|�� �⁄  ∫ �(�)�∗ �
���

�
� �� 

= 〈�,
�

�|�|
� �

���

�
�〉                                                   (1)                      

 = 〈�,��,�〉  = 〈�,�(�,�)�〉 = ���(�,�), 〈. ,. 〉  
is the inner product.        
where, �,� ∈ �� , the square integrable functions. 
and � , the mother wavelet or analyzing wavelet, 
satisfies the admissibility condition �� =

∫
��� (�)� � 

|�| 
�� < ∞

 

 
. Subscript ‘*’ denotes complex 

conjugation, ‘�’ is the scale parameter, � > 0, ‘�’ is 

the translation parameter. The term 1 �|�|⁄  is the 
energy conservative term that keeps energy of the 
scaled mother wavelet equal to the energy of the 
original wavelet.  

3. Modeling Neural Networks 
The neural networks can be represented by 

graphs showing the computational elements, neurons 
of the network; each node corresponds to one neuron 
and the arrows usually denote weighted sums of the 
values from other neurons. This representation is 
called as Graph neural network (GNN), which can be 
used to process structured data inputs, e.g. acyclic 
graph, cyclic graph, directed or un-directed graphs. 
This class of neural networks implements a function 
�(�,�) ∈ ��   that maps a graph �  and one of its 
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nodes �  onto an � -dimensional Euclidean space 
[16]. 

Let us consider the triplet, G = (V;E;w)  to be 
the  connected weighted graph (or a tree) with n 
nodes and m edges; wherein analogously, nodes 
being the neurons, arrows as the weighted sums of 
the values from other neurons, and  � = ��� , the 

weights showing a links between the nodes in the 
given neural network.  
A linear factor analysis model that represents the 
neural network expressed in the form [20], 
��(�) = ∑ �����(�)� + �� + ��(�)                            (2)                                                                                  

where �  indexes different components of the 
observation vector xi, representing weighted sums of 
underlying latent variables, � indexes different factors 
and ��� are the weightings of the factors  � , also 
known as factor loadings. The factors s and noise n 
are assumed to have zero mean. The bias in �  is 
assumed to be caused by �.  In this model, the effect 
of the inaccuracies and other causes is summarised 
by Gaussian noise n. In anticipation of the dynamic 
model, the observations are indexed by � referring to 
time.  

The probability density function for the 
observations ��(�)  is a normal probability density 
function given by 
�( ��(�) ∣∣ �(�),�,��,��

� ) =

�

�����
�

��� �−
���(�)�∑ �����(�)���� �

�

���
� �                          (3)                                                 

The expression (3) can be simply written as 
�(�)~�(�� + �,��) , where the vector �� contains 
the variances ��

�, the variances of the Gaussian noise 
terms ��(�) as ��

�,  

The normal probability distribution itself is 
Gaussian distribution. The Gaussian distribution 
emerges if a large number of independent variables 
are summed linearly.  

With this ground work, we can define the 
random walk on the graph, G = (V;E;w) representing 
the neural network as follows.  

Our approach is that nodes in a graph represent 
objects or concepts, and edges represent their 
relationships. Each object/concept is naturally 
defined by its features and the related concepts. Thus, 
we can attach a state �� ∈ �  to each node �, that is 
based on the information contained in the 
neighborhood of � . The variable ��  contains a 
representation of the concept denoted by n and can be 
used toproduce an output , i.e. a decision about the 
concept/object. The GNN model captures also the 
random walks on graphs when choosing ��  as a 
linear function, where  ��  is a parametric function, 

called local transition function, that expresses the 
dependence of a node n on its neighborhood [16]. 
Then, �� is defined as follows 
 
��  =  ��(��,���[�],���[�],���[�])                         (4) 
                                                                                                   
where ��,���[�],���[�],���[�] are respectively the 
label of n, the labels of its edges, the states and the 
labels of the nodes in the neighborhood of n. 
In random walks on graphs, the state ��  associated 
with a node is a real value and is described by 

 
��  =  ∑ ��,����∈��[�]                                               (5) 

                                                                                                                 
where ��[�] is the set of parents of n, and ��,� ∈ �, 
��,� ≥ 0 holds for each n, i. The ��,� are normalized 
so that 
 ∑ ��,� =  1�∈��[�] .  

 
The Eq. (5) represents a random walker who is 

traveling on the graph. The value ��,� represents the 
probability that the walker, when visiting node n, 
decides to go to node i. The state ��  stands for the 
probability that the walker is on node n in the steady 
state. When all �� are stacked into a vector x, Eq. (5) 
becomes � =  ��  where � =  {��,�}  and ��,�  is 
defined as in Eq. (5) if 
 � ∈ ��[�] and  ��,�  =  0  otherwise. The 
corresponding random walk of length �  can be 
defined appropriately as 
� = {�[�]; � = 1,2,… ,�}, where for any position �, 
we have a cumulative sum of �� for 1 ≤ � ≤ � 
described by  �[�] = ∑ ��

�
��� .  

This random walk of length k on  graph G with 
a root 0 forms a stochastic process with random 
variables � = {��} . For a completely random 
sequence {��}, the path mapping gives a Brownian 
motion type signal [5], say, �(�) = ∑ ��

�
��� , where 

�� is as defined at (5).  
For carrying out the analysis of the neural 

network characterized by random walk/process, 
possibly we can resort to random walk with 
generalized step sizes. But, it is more convenient, 
especially to employ wavelet analysis, to map 
elements of random walk consisting of say � 
characters into points of either a real N-dimensional 
space with 2� ≥ �  or to a complex space of 
dimension � 2⁄ . This now becomes a complex valued 
random walk defined on the graph G = (V;E;w) 
representing the neural network (GNN). 
 
4. Wavelet Based Analysis 

The wavelet transform is well suited for 
characterizing the scaling properties of fractal 
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objects. The random processes exhibit self similar 
fractal like properties. The random walk on graph 
neural networks itself is a random/stochastic process. 
Hence, wavelet decomposition, which is also based 
on self-similarity, turns to be effective to tool to 
extract fractal information from the structure of graph 
neural network. In our earlier work [5], we have 
carried out the wavelet analysis of the random 
processes. For a random process, � = �(�,�) 
defined on the probability space (Ω,�,�), for any 
function �:� → �  satisfying the admissibility 
condition, the wavelet transform is given as 
��[�(�,�)](�,�) = ∫ ��,�

∗(�)
 

�
�(�,�)��,� ∈

�,� > 0,� ∈ Ω.                                                      (6)                                 

where ��,�(�) =
�

√�
� �

���

�
� , the scaled and 

translated version of analyzing wavelet �, subject to 
the stipulation  

� ∣ �(�) ∣�= � ∣ �(�,�) ∣�
 

Ω

��(�) < ∞,  

         ∀� ∈ �,� ∈ Ω ,                                                 
(7)                                                          
where � denotes the mathematical expectation.                        
Applying this formulation to the complex valued 
random walk defined on GNN, �(�) = ∑ ��

�
��� , 

where �� is as given in Eq (5), we obtain the wavelet 
transform of  �(�)  with respect to the 
analyzing/generic wavelet � as 

��[�(�)](�,�) = �
1

√�
�∗ �

� − �

�
�

 

�

�(�)��, 

 � ∈ �,� > 0 ,         (8)                                           
subject to the stipulation  
� ∣ �(�) ∣�= ∫ ∣ �(�) ∣� 

 
��(�) < ∞,∀� ∈ �,        (9)                                    

where �  denotes the mathematical expectation. To 
have the WT well defined, the signal �(�)  should 
belong to the ��(�) , the class of square integrable 
functions. 

Indeed,   �(�)  belongs to the class of square 
integrable functions since ��′�  have Gaussian 
distribution and the Gaussian functions belong to this 
class of square integrable functions. 

The wavelet transform (8), is a convolution of 
function �(�) ∈ ��(�) with certain locally supported 
function �(�)  shifted and dilated, called analyzing 
wavelet. It should be noted that the choice of the 
analyzing wavelet is of vital importance as it dictates 
the representation and properties of the wavelet 
transform. In particular, the choice depends on the 
factors like the kind of signal to be analyzed. 

As regards to the analyzing wavelet, �(�),  it is 
chosen from the battery of wavelets for which its first 
� momenta vanish. Usually, the analyzing wavelet � 
is chosen from the family of wavelets based on the 
Gaussian functions, which can be successively 
differentiated to any arbitrary order �, 

 ��(�) = (−1)��� ��

��� ��� (− �� 2⁄ ) and whose first 

moments vanish, that is, ∫ ���(�)�� = 0,  for 
0 ≤ � ≤ �.  

For appropriate choice of analyzing wavelet, we 
can make use of the fact that the random walk formed 
by the �� given in Eq. (5); of which each ��,� as the 
weighted sums of the latent variables given by Eq. 
(3) in the neural network having induced normal 
probability density function, 

�(��; ��,��) =
�

�����
�

�
�

�������
�

���
�

                              (10)                                                                 

with �� = ∑ �����(�)� , −∞ < � < ∞ ,  −∞ ≤ �� ≤ ∞ 

and �� > 0. 

By the transformation, � =
���

�
, we can have the 

standard normal probability density function, 

�(�) =
�

√��
�

���

�  , which is a Gaussian function that 

can be differentiated successively to any arbitrary 
order, say, � , as 

�(�)(�) = (−1)��� ��

��� ��� (− �� 2⁄ ) , and whose 

first momenta vanish.  
In particular, we can obtain second order moment 
(� = 2), 

��(�) = � ′′(�) =
(����)

√��
��

��

� ,                             (11)                                                                    

which is a “Mexican hat wavelet”. Mexican hat 
wavelet has been analytically proved wavelet that 
satisfies the admissibility condition, ���

=

2 ∫
��� �(�)� � 

|�| 
�� = 2

∞ 

 �
�Г(�) < ∞ . Hence, we can 

safely employ ��(�), as the analyzing wavelet in the 
transform equation. 
Thus, the wavelet transform of the random walk 
�(�), with the analyzing wavelet, ��will be 

 ���
[�(�)](�,�) = ∫

�

√�
�� �

���

�
�

 

�
�(�)��           (12)                                               

For numerical implementation, to compute the 
wavelet transform, we need to discretize the 
expression (12) as  

��,� = ���
�(�,�) = ∫ �(�)���,�

(�)��
 

�
               (13)                                                                          

In this discretized form, the signal �(�) is represented 
as a linear decomposition 

�(�) = ∑  � ∑ ��,����,�
(�)�  ,  �,� ∈ �,                (14)                                                           
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where ��,�  are the wavelet coefficients of the 

expansion that constitute the discrete set, and ���,�
 is 

a set of wavelet functions of � given by  

 ���,�
(�) = 2� �⁄ ��(2�� − �):�,� ∈ �. 

Note that the scaling and translations are 
discrete, and the indexes �  and �  are respectively 
related to these processes. The basis functions 
���,�

are dilated in a dydatic form (in powers of two), 

when varying the value of index �, and in analogous 
way translated when varying the index � . In this 
process, translation is associated with time resolution, 
and dilation provides scaling.  

Now,  let us turn to inverting the transform so as 
to reconstruct the signal corresponding to the given 
set of transform coefficients so obtained. 
 
Intuitively, the wavelet coefficient ��,� = ���

�(�,�) 
provides a measure of “how much of” the 
wavelet ���,�

(�)  is present in the signal � . This 

suggests that the original signal may be 
recovered by summing the wavelets ���,�

(�) 

multiplied by each wavelet coefficient ��,�. 

That is, 

 
�

���

∑  �
��� ∫ ��,����,�

(�)
��

�

 

�
= �#                      (15)                                                                               

Finally, we calculate correlations between wavelet 
coefficients ���

[�(�)](�,�) at different scales.  For 
this, we define wavelet covariance of the covariance 
function for all �, 

��(�,�) = ���
∗(�)�(�),�,� ∈ �, as 

��(�,�,�,�) = ���(�)��(�) =

∫
�

√��
�� �

���

�
�

 

�
��

∗ �
���

�
� ��(�,�)���� ,   (16)                          

provided that  the condition, 

� �∫ �
�

√�
��

∗ �
���

�
� �(�)���

 

�
�

�

< ∞, holds good.     

That is, ��(�,�,� − �) = 〈���
(�,�),���

(�,�〉 , 

where the curly brackets 〈. ,. 〉. mean the covariance 

���(��,��) = �
(����(��)(����(�� )

����.���
  where � is the 

dispersion and � is the mathematical expectation. We 
should infer that for a random walk, wavelet 
coefficients correlation function will coincide with 
that of random signal; if no, the structure of wavelet 
coefficients correlation function will be different. 
 
5. Discussion  

Wavelet analysis is well suited for scale-
invariant systems, that is, the systems that exhibit self 

similar properties at different scales. The Brownian 
motion is a classical example of scale-invariant 
physical systems. Random walks are the random 
processes or the stochastic processes, which in turn, 
constitute a Brownian motion signal. In our work, we 
adopted a novel approach to model the neural 
network in graph theoretic framework, defined a 
random walk on the graph and suitably employed 
wavelet transform to analyse the complex network in 
this representation, characterized by Brownian 
motion signal. One of the goals of random walk is to 
determine long-range power law correlation based on 
measurements of fluctuations [14]. The benefit of 
using this random walk is that the sequence always 
evolves along the positive direction on �-axis as a 
function of sequence index �  and this facilitates 
transform analysis. The wavelet transform technique 
locates the periodicities in the random sequence 
defined on GNN and also gives fine time index 
resolution so that these patterns can be located 
accurately in the walk representing the sequence. 
Transforming the signal actually yields the discrete 
set of wavelet coefficients, at a particular scale and 
translation which tells us how well the signal and the 
scaled and translated analyzing wavelet match. If the 
signal is similar to the scaled and translated analyzing 
wavelet, then the wavelet coefficient will have big 
magnitude. The wavelet coefficient also represents 
the degree of correlation between two functions at a 
particular scale and translation.  

The prime objective of wavelet analysis is to 
extract structural information from the complex 
network structure in the transform domain. We, in the 
mathematical analysis, obtain the wavelet transform 
of the random walk �; which in turn can be plotted in 
space-time plane. This will demonstrate the structural 
pattern visually and help locating periodicities of 
these patterns in the sequence that represents the 
network. The actual values can then obtained by 

plotting ����
�(�,�)�   over the space-time plane.  

The peculiar feature of this wavelet model is that the 
choice of Gaussian function obtained from the 
normal probability density function of latent 
variables of the network as analyzing wavelet is 
robustly made owing to the fact the random walk is 
formed by the sequence comprised of  weighted sums 
of the latent variables in the neural network that have  
probabilities distributed normally. 

 
6. Conclusion 

Complex neural networks arising in small world 
of neuroscience can be modeled with graphs using 
analogy as a natural extension. We can define 
random process on graph representing neural 
networks making it possible to apply wavelet 
techniques for visualization of patterns and feature 
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extraction from the complex networks. The present 
work robustly models the complex neural network in 
graph theoretic settings and conducts wavelet 
analysis in stochastic framework. The technique is 
novel and relatively easy to implement. This 
technique will provide a new insight in handling the 
applications of network theory to neuroscience such 
as modelling of neural dynamics on complex 
networks; graph theoretical analysis of 
neuroanatomical networks; and applications of graph 
analysis to studies of functional connectivity with 
fMRI, EEG and MEG and others from the small 
world of neuroscience. 
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