Some Infectious and Non Infectious Eye Affection Syndrome in Fish

Noor El–Deen, A.I1, Shalaby, S. I.2 Mona, S. Zaki1 and Mostafa F. Abd Elzaher1

1Hydrobiology Department, Veterinary Division, NRC, Egypt.
2Reproduction Department, Veterinary Division, NRC, Egypt.

Abstract: Fish eye syndrome affection is a nonspecific clinical sign of either primary local or systemic diseases; thus not considered diagnostic for any specific disease. The syndrome should be associated with various etiological factors such as bacterial, viral and nutritional. Therefore, eye diseases are more prominent among cultured than wild fish. The most common syndromes affecting wild fish are exophthalmos (pop-eye) while those recorded in cultured one are exophthalmos and enophthalmos (sunken-eye). The syndrome is associated with various infectious causes including bacterial, fungal and viral or noninfectious including nutritional causes. The epidemiology of these syndromes depends on the cause of infection of the eye in both wild and cultured fishes of all species and ages. Also, the diagnosis of these syndromes depends on: case-history, behavioral abnormalities and clinical examination (clinical signs and laboratory diagnosis). Histopathological examinations of eye syndromes affecting wild and cultured fish are graded from inflammation in acute form (bacterial and traumatic causes) to cataracts and keratitis in chronic form (parasitic and nutritional causes), retinitis, uveitis and vacuoles (virus causes), retro-retinal gas bubbles (GBD) or neoplasma (unknown causes). Prevention and control of fish eyes syndrome depends on strict hygienic measures including the use of prophylactic treatment of parasitic, bacterial or fungal infections, specific vaccine and biological control. Treatment and removal of the causative agent are considered to be the most important factor in treating these diseases. Pathogenesis, prevention and treatment are described. The present review was planned to disseminate knowledge on fish eyes syndrome in wild and cultured fish to stimulate further explanatory research that contribute in establishing a new effective strategy for prevention and control.

http://www.lifesciencesite.com

Keywords: fish eye syndrome, exophthalmos, enophthalmos, fish cataracts, fish keratitis, fish retinitis

1. Introduction
Fish eye considers a very important organ, and adapted for vision in air as well as water and do display some differences to the mammalian eyes (Noor El–Deen et al., 2012). Ocular diseases of fish are common and represent a significant problem within the aquaculture industry and ophthalmic diseases may be off food and leading to retard of growth (Noor El–Deen, 2007). The most common septicaemic bacteriasuch as Aermonas hydrophila, Vibro, Pseudomonas fluorescens, Streptococcus sp, and Staphylococcus sp, fungal such as Saprolegnia sp, Ichthyophonousferiand Candida tropicalis and viral infections such as Lymphocystis virus, noda virus, viral haemorAGIC septicemia, Spring viremia of carp, and Sleeping disease are causing eyes exophthalmia and pop-eye. The common causes are high levels of calcium, sodium, phosphorus, deficiency of vitamins (A, B, C and E) and deficiency of riboflavin, sulfer containing amino acids, tryptophan and zinc. (El-Khatib, 1998, and Eissaar et al., 2010). Cataracts were appeared with nutritional deficiency (Deb et al, 1990 and Bjerkas and Bjornestad, 1999). The pathogenesis differs according to the route of infection (Eissa, 2004). The use of traditional medicinal plants which control some bacterial and fungal pathogens (Noor El–Deen and Razin, 2010 and Noor El–Deen et al., 2011). In Egypt, many studies reported the eye syndrome affections among wild and cultured Nile tilapia fish (Eissa et al., 2000 and Ibrahim, 2000).

2. Aetiology of eye syndrome affection
2-1-In wild fish:-
2-1-1-Infectious causes.
2-1-1-1- Bacteria infections.
Pseudomonas angulliseptica was isolated from Baltic herring Clupeaharengusspp causing hemorrhages in the eyes. This fish was caught from southwest coast of Finland (Loennstroem et al., 1994). Also, vibro hareyi isolated from milk fish (Chanoschanos) observing an eye disease in the Philippines (Ishemaru and Muroga, 1997). Moreover, El-Khatib(1998)isolated Aermonas hydrophila, Streptococcus sp, and Staphylococcus sp from Nile tilapia in River Nile showing exophthalmia. Also, Yersinia ruckeri isolated from eyes. Streptococcus affects Oreochromis sp. as well as greymullets (Mugilcepalus and Liza ramada), silvercarp and coldwater reared rainbow trout causing haemorrhagic lesions on the body, exophthalmus, corneal opacity, some
macroscopic changes in the liver and spleen, and ascites (dropsy) with mucoid inflammation of the gut (Abouei and Briyai, 2011).

Eye lesions are usually observed in most of systemic bacterial diseases. Vibrio anguillarum was isolated from wild herring in Norway which appeared inflamed eyes (Hastein, 1977). Vibrio harveyi isolation of from an ocular lesion of a short sunfish (Mak inola) the lesion was due to biting by common seabream (Sparta auriga) and blue spotted seabream (Spuracaeareuleusticteus). (Hispano et al., 1997, Kraxberger-Beatty et al., 1990). Also, Aeromonas hydrophila and Pseudomonas fluorescens causing petecial hemorrhage of the skin and fin and oedema around eyes (Eissa et al., 2000 and Stojanov et al., 2010).

2-1-1-2-Fungal infections.
Fungal infection eyes cause cornal opacity or cotton wall tuft and pope eye.
Fungal infections of the eye give rise to severe ocular morbidity and blindness include keratitis, orbital cellulites, endophthalmits and corneal blindness (Nayak, 2008). Cottony growth on the eye of Nile tilapia was infested with Saprolegnia sp or pop-eye on Oreoichromis niloticus was infested with Ichthyophonushoferi (El-Khatib, 1998).
Saprolegnia sp., Ichthyophonushoferi and Candida tropicalis causing skin, fin and eye affections. Tilapia and Magil fingerlings infected with Saprolegniosis showed cotton tuft on fins and skin (Noor El-Deen et al., 2011).

2-1-1-3-Viral infections.
Lymphocystis virus, nodavirus, viral haemoragic septicemia, Springviremia of carp, and Sleeping disease are reported viruses which incriminated in eye affections in wild fish. Lymphocystis cell were found behind or in one or both eyes and cornea or adjacent shin surfaces. A retrobulbar mass produced extreme exophthalmos (Dukes and Lawler, 1975).
A nodavirus isolated from the brain and eye tissues of Juvenile cod Gadusmorhua in Nova Scotia. These fish showed the classic signs of viral encephalopathy and retinopathy and exophthalmia may be seen in one or both eyes in atlantic salmon infected with Viral haemoragic septicemia and can be haemorrhage around the eye orbit (Woo, 2006).

External signs of Spring viremia of carp in common carp, include swollen belly, exophthalmos and petechial haemorrhage in anterior eye chamber (Noga, 2010).

2-2- in cultured fishes:-
2-2-1- Infectious causes.
2-2-1-1- Bacteria infections.
One type or combination of bacterial species were responsible for eye affection syndrome in cultivated fishes. They included *vibrio harveyi* and unidentified *vibrio sp.*, Aeromonas hydrophila and *A. Salmonicida*, Staphylococcus aureus, Mycobacterium neaurum, Corynhabacterium aquaticum, Flexibacter psychrophilus, *Pseudomonas sp.*, unidentified Rhodococcus sp. and other unclassified bacteria. Streptococcusosis caused by different genera and species capable of inducing supplicative exophthalmia (“pop-eye”) (Evans et al. (2000).Staphylococcus aureus isolated from 13.5 and 38.8% of cultured Oreoichromis niloticus showing complete and incomplete eye cataract respectively. Meanwhile, Streptococcus sp. was recovered from 1.35, 5.55 and 8% of fish having complete and incomplete eye cataract and exophthalmia in that order. Moreover, Corynebacterium sp. was obtained from 1.35 and 36% of fish suffering from complete eye cataract and exophthalmia respectively (El-Khodary 1995 ). *Vibrio parahaemolyticus* isolated from fish having bilateral exophthalmia and intraocular hemorrhage (Ostlandet et al., 1997). *A. hydrophila*, *Staphylococcus sp.* and *Streptococcus sp.* isolated from cultured *O.niloticus* showing pop-eye (El-Khatib, 1998 and Austin and Austin, 2007).

*Vibrio parahaemolyticus*, *Vibrio anguillarum* and *Aeromonas salmonicida* were the etiological agents of cataract and exophthalmia in the ornamental marine aquarium fishes from Andoman (Shome et al., 1999 ). *Staphylococcus aureus* isolated from 20% and 11% of cultivated *O. niloticus* displaying complete and incomplete eye cataract respectively (Eissa et al., 2000). In addition, Streptococcus sp. was recovered from 4.05, 2.77 and 3.63 % of samples having complete and incomplete eye cataract and exophthalmia in that order. At the same time, Corynebacterium sp. was obtained from 4.05 and 18.2 % complete eye cataract and exophthalmia respectively. On the other hand, *Pseudomonas sp.* was recovered from red tilapia displayed exophthalmia disease (Jiet, 2000).
Some types of opportunistic and obligatory bacteria were incriminated in provoking eye disorders among other. *Pseudomonas anguilli septica* were isolated from Baltic herring ClupeaharengusmembrasL. Caught on the southwest coast of Finland and showing hemorrhages in the eyes. The major external sign of disease in affected herring was hemorrhages in the eyes. The cornea was punctured in some of the fish. Other clinical signs included hemorrhages in the fins and on the head. Accumulation of blood-stained ascites was seen in several of the fish examined (Loennstroem et al., 1994).
Moustafa et al. (2010) examined Tilapia zilli native to Qarun Lake at El-Fayoum governorate throughout the different year seasons. Gram positive and negative fish pathogenic bacteria were isolated from a total of 245 fish sample, among those samples S. aureus were determined and described the clinical signs in tilapia fish that include exophthalmia.

2-2-1-2- Fungal infections.

The causative fungi for the initial keratitis were Fusarium and Aspergillus species (Kanalet et al., 2005). Saprolegnia sp., Ichthyophonus hoferiand Candida tropicalis were recorded from cultured fishes exhibiting eye lesions. Saprolegnia sp, isolated from the eye of cultured fish at the Kainji Lake Research Institute in hatchery period (Okaeme et al., 1988). Ichthyophonus hoferi isolated from the eye of cultured O. niloticus showing pope eye (El-Khatib, 1998).

Candida tropicalis isolated from cultured O. niloticus showing pope eye (Eissa, 2000).

Systemic infection with Aspergillus flavus is associated with eye affections and others in captive fishes.

The Oreochromis niloticus which fed Aspergillus flavus contaminated diet became inactive, dark and oedematous Also, exophalma with corneal changes was common (Olufemi and Roberts, 1989).

2-2-1-3- Viral infections.

Lymphocystis is generally known as a benign, unique, giant cell disease fishes of silver perch (Bardiellachrysura) were captured from the estuarine waters of Mississippi Sound in Davis Bayou off Ocean Springs, Mississippi causing nodules on the skin and fins. It has been studied extensively because of the virus-host cell relationship that results in extreme size and lack of quick cellular destruction or stimulation to neoplasma caused by Lymphocystis virus. Lymphocystis cells were found behind or in one or both eyes and were also found on the cornea or adjacent skin surfaces. A retrobulbar mass produced extreme exophthalmas. Uveal (choroid and iris) masses were present in most cases. Optic nerve involvement was also seen. It is probable that the virus reached the eye by the blood with the resulting masses forming in situ rather than by direct extension from skin lesions (Dukes and Lawler, 1975).

Retinal lesions have also been described in juveniles European seabass where the eye has been examined (Munday et al., 2002). Also, (Grotmolet et al., 1997) described an ophthalmitis involving both the anterior and posterior chambers reared Atlantic salmon Salmosalar.

2-2-2- Non infectious causes.

2-2-2-1- Nutritional causes.

Many micro and macro dietary elements play an important role in the development of eye syndrome disorders. The common ones are high levels of calcium, sodium, phosphorus, deficiency of vitamins (A, B, C and E) and deficiency of riboflavin, sulfur containing amino acids, tryptophan and zinc. The severity of cataracts were increased in hatchery rain trout (Salmogairdneri) fed diet with amixture of minerals (phosphate, calcium carbonate, sodium and potassium). Cataracts were diasapeared with supplement vitamins and zinc (Deb et al., 1990).

The detailed anatomy and histopathology of an asymmetrical degenerative condition of the eye of young rainbow trout (Salmogairdneri) held in stew ponds on the Zomba plateau, Malawi, Central Africa, is described. The condition begins as a grayish haze on the cornea progressing to cataract and ultimately the entire ocular tissue becomes phthisical, leaving an empty socket. No evidence for an infectious etiology was adduced, but in view of the irregular feeding regime with a high level of raw animal viscera in the diet, it was considered that the condition could well be similar to the nutritional cataracts described for other species on such diets, although in such an isolated population a genetic predisposition could not be ruled out (Lee et al., 1976). Hypervitaminosis (A) in fish causes slow growth, blindness, exophthalmia and haemorrhages (Hermann, 1995). Trace elements are important components of hormones, enzymes and enzyme activators. Unlike most aquatic organisms absorb inorganic elements from their external aquatic environment. An excessive intake of minerals through either the diet or gill uptake can cause toxicity, and therefore a fine balance between mineral deficiency and surplus is vital for aquatic organisms to maintain their homeostasis through either increased absorption or increased excretion (Lall, 2007; Lall and Milley, 2007).

3- Pathogenesis of eye affection syndrome

Histologically, corneal epithelial ulceration and heterophilic keratitis, disruption, mineralization, and detachment of Bowman's membrane, thinning, disorganization, mineralization and fibrosis of the corneal substantia propria, and focal thinning and mineralization of mild heterophilic and mononuclear anterior uveitis was also present. Based on the present observations (Boruinska et al., 1998). A large mass of typical lymphocystis cells extended into the ocular muscles. Some muscle degeneration was evident. The mass was about the size of the globe and was entirely outside the scleral cartilage. Some of the lymphocystis cells were collapsed and extremely basophile and mononuclear inflammatory cells were present at the periphery of the mass (Dukes and Lawler 1975). The histopathology of the naturally developing granulomas characteristic for fish mycobacterial infections has been the subject of
extensive research. Additional signs may include exophthalmoses (bulging eyes (Astrofsky et al., 2000). Ocular enucleation, persistent corneal cataracts and supportive panophthalmitis are the dramatic sequel of GBD (Woo, 2006). On the other hand, the ocular cataracts after seawater exposure of yearling salmonids seem to arise from structural damage of cortical fibers (Iwata et al., 1987) as a result of exposure to hypertonic solution and defective osmoregulation is suspected (Bjerkaset et al., 2003). Finally, in pathogenesis of eye affection syndrome, whatever the scenario, eye disorders are still the most striking result.

4. Diagnosis of eye affection syndrome

1- Case History:
Such as recent stress exposure, uneaten food, single food item.

2- Clinical examination:
Fish should examined firstly in situ for detection of any behaviour changes, then representative fish sample was taken and fish were inspected individually for detecting gross lesions. The exophthalmia as a result of an edema (Austin and Austin, 2007 and Sevki et al., 2009). Russo et al. (2006) recorded that affected fish with streptococcosis may exhibit one or more of the following clinical signs: unilateral or bilateral exophthalmia and corneal opacity. Haemorrhages were distributed in or around the eyes.

A- Behaviour abnormalities:
Fish floating to water surface (Karvonen et al., 2001), reduced feeding rates and amounts (Midtlyng et al., 1999), increase in time devoted to feeding (Crowden and Broom, 1980), random swimming into objects (Karlsbakken et al., 2002) and sluggish movement (Ness and Foster, 1999).

B- Clinical signs:
Stunted growth (Ersdal et al., 2001), acute or chronic mortality (Sogma et al., 1999), sunken eye, endophthalmos, (Noor El -Deen, 2007), unilateral or bilateral eye protrusion, exophthalmos, (Vasquez-Gomboa et al., 2001) Fig (1), hemorrhages in the eyes (El-Khatib 1998), inflammation of the eyes (Panophthalmitis ) (Backman et al., 1990), haemorrhages around the eye (Kocan et al., 1997).

A

B

Figure (1): A- Lactococcus garvieae unilateral exophthalmos B- Aeromonas hydrophila- Bilateral exophthalmos- In A yellowtail

3- Laboratory diagnosis.
Depend on bacterial, fungal and viral examination (Noga., 2010).

A

B

Figure (2): The cornea (cross-section) of a Greenland shark within the focus of opacity. Note the epithelial disorganization, and the reepithelialization, disruption and hyalinization of the stromal fibres (d), the accentuation of the sutural fibre complex (a), and the necrosis (n) and mineralization (m) of the keratinocytes (Borucinska et al., 1998).

Figure (3): The cornea (cross-section) of a Greenland shark within the focus of opacity. Note the thickening of Bowman's membrane (b) over an area of severe stromal fibroplasia (f). Stromal necrosis and mineralization (nm) extend into Descelement's membrane (Borucinska et al., 1998).
5. Prevention and control of eye syndrome affection

Quarantine of new fish and good sanitation practices should be used at all times. Tanks and culture facilities should be kept clean and free of any unnecessary wastes. On suspension of nutritional deficiency as a cause of eye lesion, it is advisable to change the diet (Noga, 2010). Stress factors must be avoided with added to the feed anti stress substances such as ascorbic acid (Taoka et al., 2006) or injection in cultured trout (Scophthalmusmaximus L.) suffering from granulomatous tyrosinemia rapidly lead to reduced eye lesions (Messager, 1986). Aerating the water sources in a reservoir to allow it to equilibrate with air or stripping of excess gas by using vacuum degassers were also recommended (Colt et al., 1986). Dealing with eye affection associated with bacterial infections, numerous antibiotics were recommended for controlling of this condition. An oral antibiotic OxytetracyclineHCl (150 mg/kg body weight) for one week were effective for Vibriosis curing in the flounder Paralichthysadspersus in capacity (Miranda and Rojas, 1996). Terramycin contains the antibiotic oxytetracycline which used for fish in a sinking feed and should be fed for 10 days. Also sulfonamide which contains two drugs, sulfadimethoxine and ormetoprim which used for fish in a floating feed and should be fed for 5 days. The isolates were also sensitive for flumequine and oxolinic acid (Peggy and Ruth, 2009). The short sunfish showed a complete recuperation of the infected lesion when the oral antibiotic treatment was changed to trimethoprim+sulfa (6 mg/kg/day of trimethoprim plus 30 mg/kg/day of sulfadimethoxine) for 10 days, followed by 5 days of rest and then 7 more days of treatment. Additionally, a topical administration of gentamycin (3 mg/g) plus sodium phosphate dexamethasone (0,5 mg/g). The control of ornamental marine aquarium fishes suffering from eye diseases by intermuscular injection of chloramphenicol (50 mg/kg body weight ) for 5 days (Shome et al., 1999). The eye lesions associated with Mycobacterium sp. and Nocardia sp. are very difficult to resolve (Berzins and Greenwell, 2001). Vaccination studies are already being undertaken by a number of researchers and need to be fostered. In particular, the use of passive immunization of brood fish with homologous and heterogenous, high-titre antisera is worthy of investigation. The drug is approved for use with pond fishes, channel catfish, and salmonoids. It is administered in feed at a daily rate of 50 to 75 mg/kg of fish for 10 days. (Stojanove et al., 2010).

Conclusion

1- Prevention of microbial diseases can be best done through good farm management, environmental stresses and associated disease problems are minimized by excellent nutrition.
2- Quarantine and health certificate form for the control microbial diseases.
3- Pay attention for eradication of any bacterial disease in fish farm, it may be more appropriate for further developed necessary laboratory tools such as screening tests for practical protective measures.
4- Antibiotics, Sulpham crazine sodium and medicinal plant as medicated food.
5- In cultured fish, prevention and control of eye affection problem could be achieved by poor nutrition.
6- Application of vaccination programs for fish, or using medicinal plant extracts which are the alternatives to the antibiotics for preventing and controlling the infectious diseases in fish farms.
References


Borucinska, J. D.; Benz, G. W. and Whiteley, H. E. (1989): Ocular lesions associated with attachment of the parasitic copepod Ommatokoitaelongata (Grant) to the corneas of Greenland sharks, Somniosus microcephalus (Bloch & Schneider). Journal of Fish Diseases. 21, 415-422.


Noor El-Deen, A.I. E.; Mona, S. Zakí; Razin, A.M. and Shalaby S. I. (2010): Field Study on the use of Artemiscina (SheilBaladi) and humates (Humpol-Fis) in control of saprolegniosis in fingerlings of Nile tilapia and Mugilcepalus in freshwater fish farms. Life Science Journal, 7(3)125-128.


