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Abstract: The main interest is the numerical treatment of boundary value problems of the second and fourth order
with their equivalent Fredholm integral equation forms. Comparison of the performance of the SOR and the KSOR
methods on the systems arise from the differential form and those arise from the equivalent Fredholm form by using
discretization techniques of the same accuracy are considered. It is found that the SOR and the KSOR use the same
number of iterations with the same system but with different relaxation factors. The number of iterations in case of
the integral representations is approximately less than quarter the number of iterations in case of the differential
representations in the same time the computational work per iteration in the differential form (sparse systems) is less
than that of the integral form. We discussed the advantages of using the integral representation over the use of the
differential representation especially when we have a good approximation of the relaxation parameters. All
calculations are done with the help of computer algebra system (MATHEMATICA 8.0).
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1. Introduction: summarized in the following three points, the integral
Many problems in science and engineering equation representation usually involve fewer dimen-
can be formulated as mathematical models in a form sions than the differential equation representation as
of differential equations (involve local interactions) illustrated in the fourth order case below, the integral
or integral equations (involve local and global inter- equation (Fredholm) representation include the
actions). Most ordinary differential equations can be boundary conditions which the problem must satisfy
expressed as integral equations, but the reverse is not in addition to the convenient theory of existence and
true in general, [1, 2]. Usually, the analytical solu- uniqueness available [5].
tions of real models are excluded for different reasons We consider the relation between the numeri-
concerning the structure of the model, the domain cal treatment of two well- known two point boundary
under consideration or the properties of the required value problems and the numerical treatment of the
solution. There are many interesting numerical treat- equivalent integral equations:
ments of such models each has its benefits and limita- The first:
tions, the final stage in the numerical treatment is the y'x)=f(x,y(x)), (O<x <)) )
solution of an algebraic system. We concerned in this y(O)=a, y()=2

work with linear models which can be formulated
equivalently in both differential and integral equa-
tions and consequently give rise to large linear alge-

And its equivalent second kind Fredholm integral
equation is

1
braic systems and the problem is reduced to that of y(x)=A[k(x,t)y(t)dt
the efficient use of iterative techniques for solving 0 )
large linear systems. Youssef, [3] introduced the i B
KSOR method as a new variant of the SOR method in !k(x’ Oft y(O)dt+B-a)x+a
which the domain of the relaxation parameter is ex- The second is [5]:

tended and the sensitivity around the optimum value 4

of the relaxation parameter is decreased. Because, y T (x)=Ay(x), (0<x<l)
differeptial .equations involve local in.teractions, t.hey y(0)=y"(0)=0,yl)=y"(1) =7
thus give rise to systems of large linear equations
with sparse coefficient matrices, these sparse systems
in many cases tend to be badly conditioned. Integral
equations by contrast in many cases give rise to dense
large well-conditioned coefficient matrices, [4]. The
most advantages of using integral equations can be

€)

And its equivalent second kind Fredholm integral
equation is:
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1(1
y(x):ﬂg {g k(x,s)k(s, t)ds}y(t)dt +

x2 5t -8c T—0 ) 3
+o|1+— |+ X+ X
2 6 6

Where 4,0 and 7 are real parameters.

(4)

1.1 The finite Difference approximations [6]:

The basic idea of the finite difference approxi-
mation is the replacement of derivatives or integrals by
difference approximations; accordingly we obtain
relations between functional values. The region [0,
lJor in general [a, b] of the differential or integral
equations is super imposed with a uniform mesh with
mesh size 4 > 0, and the grid points are defined by
b -a
- n
1.1.1 The central difference approximations:

x =a+jh;j=0,1,...n; h

Let y j denote the functional value at the
pointx;, the common central difference approxima-
tions for the second and fourth order derivatives are:

. 7 —2y. +y.
(i) = -1 h21 1+1

©)

@) o _ Yiea =i Y0¥~ g Vg

y (1) - 4
h

1.1.2.The trapezoidal rule:
It is well known that the value of a definite integral
can be approximated by a combination of functional
values of the integrand with different methods de-
pending on the required accuracy and the grid points
used. The trapezoidal rule uses only the end points of
the interval of integration and gives second order
accuracy and it takes the form:

(6)

3
b- b-a)y
127 () =Ta{f(a)+f (b)}—%f

The composite form of the trapezoidal rule takes the
form

b eydx = ool
[qf (x)dx =3 S () + jzzlf("j“f("")

_(b_a) 2, m
12 ws

b —_ "
Where thf (&) is the error term, and
n

¢ e(ab)
1.2. Iterative methods:
The general form of a linear algebraic system

AX =b can be written in component form as:

m
Ya,; x;=b;i=12,,m
j=1
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For the use of standard iterative methods, the equa-
tions are arranged such thata, #0 .

Usually, we write A4 =D—-L-U [3, 6], where
D is the diagonal part of A ,—L ,~U are the lower
and the upper parts of A.

1.2.1 Jacobi method:

The Jacobi method is one of the simplest iterative
methods it is a direct application of the fixed point
theorem. The eigenvalues of the iteration matrix of
the Jacobi method play a central part in the selection
of the appropriate relaxation parameters.

1 1 m
xf[nJr] - Z
ajj j=1

J#i

al]'xj[n],i =1,2,...,m

xH o p =t coyx M plp
Where the iteration matrix of Jacobi method is

T, -p N1 +u)

(®)

1.2.2 Successive over relaxation method (SOR):

Gauss Seidel method is known as a modification of
Jacobi method in the sense of using the most recent
calculated values. The successive over relaxation SOR
method generalizes the Gauss Seidel method in the
sense of using a relaxation parameter w € (0,2) . It is

well known that =1 gives the Gauss Seidel
method, moreover suitable choices of ® increases
the convergence.

@ i-1 m
xi[nH] :xi[n] +—1b; - X I-/-x/[nH] Zq /-x/[n]
a; j=1" J=i (9)
Ji=L2,...,m

Or, in matrix notations

X" =D -wLl)"'{(1-w)D +wU}X "
+(D-wL)'b

With iteration matrix

Tgop =(D-oL) {(1-0)D +aU};0€(0,2)

1.2.3 KSOR method:

The KSOR method introduced in [3], in which it is
assumed that it is possible to use the current compo-
nent in addition to the most recent calculated compo-
nents used in the SOR

s

(10)

1]

X" =((1+0")D -0 L)' (D + @ U)X "
+({(1+®")D —o*L)"b
With iteration matrix

. (1+0 Do) ' D+0" U)o e R-[-2,0]

(11)

Tkso
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The rate of convergence of the iterative method de-
pends on the spectral radius of the iteration matrix. It is
well known that the smaller spectral radius of the
iteration matrix the faster rate of convergence of the
corresponding iterative method.
2. BVP and Fredholm integral equations

It is well known that boundary value problems
(of the second and fourth orders) can be formulated
as Fredholm integral equations with some tricks of
integrations. The integral equation representation
involves fewer dimensions than the differential equa-
tion representation. Moreover, the integral equation
(Fredholm) representation includes the boundary
conditions which the problem must satisfy [7].
Problem (1):
We consider a linear second order boundary value
problem of the form

y'(x)+Ay(x)=f(x)(0<x <1

(12)
YO =a,y()=4
Integrating twice with respect to x and using the
replacement lemma, we obtain the following second
kind non-homogeneous Fredholm integral equation
1 1
y(x)=2Alok (x,0)y (@)dt ok (x,0)f (t)dt (13)
+(f-a)x +a
Problem (2):
We consider the fourth order differential equa-

tion:

YY) =ny0<xst; "
y(0)=y"(0)=c,y()=y"() =1

This equation is equivalent to

v(x) = -Ay(x), y'(x) = —y(x); (0 < x <1) 15)

v(0) = —o,y() =-1;y(0) = o, y() = 1

Employing the same philosophy as in the second
order case, integrating with respect to x and using the
replacement lemma, we obtain the following second
kind Fredholm non-homogenous integral equation

y(x) = Mo {Jo k(x,9)k(s, t)ds}y(t)dt

+G(1+i)+(51—80)x+(r—0) X (o
2 6

6
The integral equation are called homogenous if
the part
x2 5t-8c (t—-0) 3
o(l+—)+( )X + x =0
2 6 6

Where the kernel & (x,¢) is defined as
t(1- ;0 t <
K(x.r)= (I-x); x
x(1-t), x <t

Theoreml: there exits @ and @ that make the al-
gebraic system corresponding to integral equation

(13), converges faster than that obtained from the
equivalent system obtained from the differential
equation (12) provided we use methods of approxi-
mations of the same accuracy.
Proof:

Consider the equation y"(x)+ Ay (x)=f (x);
in this equation using finite difference scheme (5) and
puttingxl. =i h ,h isthestepsize, i =0,1,...n

2 2
yl‘_1+(h /1—2))/1. +yl‘+1:h f(xl') 17)
Notice that for i =land i =n the equation will
involve ) and y, , which are known quantities.

Thus from (17) we get a linear system of the form
AY =b
where 4 is the coefficient matrix:

2
Y ) 1 0 0 0 0 0 (18)
1 20 1 0 .. 0 0 0
0 1 2 1 e 0 0 0
y e,
0 0 0 1 B R |
0 0 0 0 0 1 42

Y is the vector of unknown variables and b is the
right hand side

The matrix A is tridiagonal, it is strongly di-
agonally dominant for values of A which makes the
term Ay (x) has opposite sign to that of y "(x)as in
example (1) below.

The above mentioned iterative methods con-
verge; the rate of convergence depends on the relaxa-
tion parameter chosen.

But according to the equation

y ()= Ak (x,0)y (¢)dt
—[ok (x,0)f ()dt +(f-a)x +a
Naming F(x)=(f—a)x +a— [0k v ,0)f (t)dr

So we have

(19)

1
y(x)=Afok (x.0)y ()dt +F(x) (20)
Using the trapezoid rule (7) to approximate the
integral in (13), we obtain a functional relation [8]

which is satisfied at each point X ; of the interval of
integration. Accordingly we find the linear system of

algebraic equations, AY, =B where the matrix of

the coefficients A, has the form

2 2 2
L= 2k~ (1= h) —ahT(1-2h) —ah”(1-3h) —ant - -m (21)

228> (1= (0 = D)
2
=34hT (1= (n = )h)

2 2

2k (1-2h) 1=22h7(1-2h) -24h" (1 -3h)
2 2

—ah"(1=3h) 227 (1-3h) 1=3207 (1-3h)

A=
1

2 2 2 2
AT (= (n =1)h) =24k~ (1= (n = Dh) =32k~ (1= (n =1)h) L= (n = 1DAh~ (1= (n = 1))
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It is clear that for small values of h and A we can
prove with the help of Gerschgorin theorem that the

matrix 4 is strictly diagonally dominant, positive

definite and symmetric.

The quantities

A2 (A= )2AR2 (1= 2R, ,(n = 1)ARZ (1= (n ~1)h)
are very small comparing with unity.

Theorem?2: the algebraic system corresponding to

equation (14) is divergent for everyw and (o*while
that corresponding to equivalent system (15) and (16)
are converges.

Proof:

1o00s |
1.0005 [ |
10004 F
1.0003 F
Loooz [ ,

L0001 (-

10000 =

1 FL 1
0.5 1.0 L5 20

Figure 1: The béhavior of the spectral radius of the
iteration matrix ~ Tsog as a function in o for a general
fourth order differential equation (14) and (30).

From the previous figure we see that there is no

k.
value of ® and o gives a value of the spectral ra-
dius of the iteration matrix of Jacobi less than one,

consequently there is no value of ® and o make
the resultant linear system of the differential equation
convergent.

But according to the system of differential equations

V(X)) =-Ay(x), Y'(x)=-y(x);(0<x<1)

v(0)=-o, y(H)=-7 y0)=0o, y)=t
Using finite difference method for this system with the
notation introduced in section (1.1) we get

2
Vi T 2W F Wi H ATy, =0
) (22)
Vit T2 F Yt =0
v(0)=-o,y() =-1y(0) =c,y() =1
So equation (22) gives a linear system of algebraic
equations of dimension 2n — 2, of the form

A5Y =b (23)
WhereA2 , is the coefficients matrix Y is the

corresponding vector of unknown variables and b is
the right hand side matrix.

The matrix A, is sparse and banded; compu-

ting the spectral radius of the iteration matrix of Jacobi
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method of the system (23) we find it is less than unity
which means that the system is convergent.
But according to the equation (16)

y(x) = &y o k(x,5)k(s, t)dsyy(t)dt +

x° 51-8c (t—0) ;3
o(l+—)+( )X + X
2 6 6
On using the composed trapezoidal rule (7), the above
equation can be written as a linear system of algebraic
equations.
For explanation take

n =10,4 =1 since y(0) and
v (1) are given then we get a system of dimension 9 of
the form
A3y =b

Where

09925 -00012% -0.001134 -0.000972 -000081 0000648 -00004%6 -0.00B4 -00001R
~000013867 0:998667 ~0.00209067 -0.001752 -0.0014933-0.00119467 ~0.00089%6 —0.00059733-0.00029867
-00022 -0000604 Q9RS  -0002352 -00019% -0001568 -0001176 -0.000784 000082
-000B32 -000074 -0001056 098 -00R216 -0001728 -0.0019% -0.000864 -0.000432
~000041667-000083333 -000125 -00016667 09917 -00016667 -0.00125 -0.00083333-0.00041667
-000432 -0000864 -0001% -QOOI7Z28 -00R16 098 -0001056 -0.000704 -000BS2
-0003%2 -000074 -0001176 000158 -0001% -000B2 099825  -0.000504 0000252
~000029867-0.00089733 -0.000896 —~0.00119467-0.0014933 ~0.00172 -0.00209067 0998667 -0.00013367
-0000162 -000084 -0.00048 -0.000648 -000081 -0000972 -0001134 -0001296 0999025

(24)

The matrix A3 is always strictly diagonally dominant,
computing the spectral radius of the iteration matrix of
Jacobi method for Ay we find that it is less than unity,

which mean that the system (24) is convergent.
Theorem 3: the SOR and the KSOR are completely
consistent in the sense of Young [8] for both algebraic
systems obtained from differential and integral equa-
tions.

2. Numerical Examples:
Example 1:

Consider the second order B.V.P. [9]

M) 47y (x) = 277 sin(rx ;0 < x <15y (0) = y (1) = 0 (25)
Whose exact solution is:
y(x)=sin(zx) (26)

On using the theoretical methodology described
for the general second order boundary value problem
(12), we obtain the following Fredholm integral
equation

y(x)=2sin(nx) - o2 [Ft(l-x)y(t)dt @7

22l xa - 0y(nde

It is an easy task to see that the Fredholm inte-
gral equation (27) satisfies the boundary conditions in
(25). Moreover the closed form solution (26) satisfies
both the differential equation (25) and the integral
equation (27)

Using the finite difference described in equation
(17) we obtain a linear system of algebraic equations,
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corresponding to differential equation (25) with coef-
ficient matrix (2 =0.1).

2.098696 -1 0 0 0 0 0 0 0
-1 2.098696 -1 0 0 0 0 0 0
0 -1 2.098696 -1 0 0 0 0 0
0 0 -1 2.098696 -1 0 0 0 0

A= 0 0 0 -1 2.098696 -1 0 0 0 (2 8)

0 0 0 0 -1 2.098696 -1 0 0
0 0 0 0 0 -1 2.098696 -1 0
0 0 0 0 0 0 -1 2.098696 -1
0 0 0 0 0 0 0 -1 2.098696

Using the trapezoidal rule (7) we obtain a functional
relation, which is valid at each point of the grid points

X =jh;j =11)9;h = 0.1

We obtain a linear system of algebraic equations,
corresponding to the integral equation (27) with coef-
ficient matrix (2 =0.1).

00789568
115014

1.0888264
00789568

0.000872
0138174

00392176
0.118435

0049348
0.09869

0.03%4784  0.0206088 0.0197392
00789568 0.0592176 0.03M734

0.009869%
00197392

0.0690872

00592176
0049348
0034734
0.0296088

00197392

0138174
0.118435
0098696
00789568
00592176
0.03%4784

1207262

0.177653

0.148044

0118435
0.0888264
0.0592176

0177653
1.236887
0197392
015m14
0.118435

0.1488044
0197392
1.24674
0197392
0.1488044

0.0789568  0.0986%

0118435
015014
0197392
1.23687
0177633
0118435

00883264 0.0592176

0.0296088

(29)

0118435
0148044
0177633
1207262
0138174

00789568
0.098696
011885
0.138174
115014

00304784
0.049348
00592176
0.0690872
00789568

0.00986%

In the following, we summarize the results of using
the SOR and the KSOR in the strongly diagonally
dominant systems arising from the differential form
and the system arising from the integral form. Also
we illustrate the behavior of the spectral radius of the
iteration matrices of the above systems varses the
relaxation parameters as in figures [2,3,4,5]. We note
that, we shifted the origin slightly to make the graphs
readable.

00197392 0296088 00394784 0.049348  0.052176 0.0690872 0.0789568 1.0888264

Table 1: The solution of the algebraic system ob-
tained from both the differential equation (25) and the
corresponding Fredholm integral equation (27),
withh = 0.1, the number of iterations for nearly opti-
mal values of the relaxation parameters was given.

Differential equation Integral equation
X Yot SOR KSOR SOR KSOR
®=1402 | w'=-365 | ®=096| ,"=_19
(25 iter) (25 iter.) (8 iter.) @ iter.)
0.1 0309017 031031 031031 0307745 0307745
02 0.587785 0.59022 0.59022 0.585366 0.585366
03 0.809017 0.812357 0.812357 0.805688 0.805688
0.4 0951057 0954978 0954978 0.947142 0.947142
0.5 1 1.00412 1.00412 0995884 | 0995884
0.6 0951057 0.954974 0954974 0.947142 0.947142
0.7 0.809017 0.812348 0.812348 0.805688 0.805688
0.8 0.587785 0.590205 0590205 0.585366 0.585366
0.9 0309017 0310289 0310289 0307745 0307745
10F
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Figure 2:The behavior of the spectral radius of the
iteration matrix Tsor as a function in ® for equation
(25),h=0.1.

| o6}

2 -10 0
Figure 3:The behavior of the spectral radius of the

n

iteration matrix Tggor as a function in @ for
equation (25),h=0.1.
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Figure 4:The behavior of the spectral radius of the
iteration matrix Tsor as a function in ® for equation
(27),h=0.1.

=0 -13 =10

Figure 5: The behavior of the spectral radius of the

iteration matrix Tksor as a function in @  for equa-
tion (27), h=0.1.

Example (2) [5]:

The normal modes of free flexural vibration of a thin,
uniform rod of unit length are governed approximately
by the differential equation

v (@) =y 0 < x <1;

(30)
yO) =y (0) =Ly =y"(H=e
Whose exact solution when A =11is
y(x)=¢" 31)
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Where y(x)represents the transverse displacement of

the centroid of the cross-section of the rod, at position
x, from its equilibrium position, and A is propor-

tional to 02 ,where o the frequency of vibration, is
not known in advance [5].

On using the theoretical methodology described for
the general fourth order boundary value problem (14)
and its equivalent system of second order differential
equations (15)

y'(x) = -y(x),y"(x) = —y(x); (0 < x <1)

(32)
v(0) =-Ly)=-e;y(0) =Ly =e
We obtain the following Fredholm nonhomogeneous
integral equation of the second kind
2 3 4

X7 5T x
y(x) =[o t(————+-)y(ndt
2 6 3

3 4 (33)
I X X X
+H A=) ——+ —)y(t)dt +f(x)
6 2 3
2
Where f(x)=1+ (5 -8) X+X7+ (6;1) x3

It is an easy task to see that the Fredholm integral
equation (33) satisfies the boundary conditions in (30).
Moreover the closed form solution (31) satisfies both
the differential equation (30) and the Fredholm integral
equation (33).

In this example we solve in three steps:

Firstly: we solve the fourth order boundary value
problem (30) Using the finite difference described in
equation (6), taking 2 =0.Ly(0) =1y (1) =e

Viip —4y; 1 +5.9999y. -4y, + V¥, =0 (34)
Taking i =1(1)9 we obtain a linear system of alge-

braic equations,
AY =b
With coefficient matrix A in the form

29999 -3 1 0 0 0 0 0 0
-4 59999 4 0 0 0 0 0 0
1 -4 59999 4 0 0 0 0 0
0 1 -4 59999 4 1 0 0 0
A4 = 0 0 1 -4 59999 4 1 0 0

0 0 0 1 -4 59999 4 1 0

0 0 0 0 1 -4 59999 4 1

0 0 0 0 0 1 -4 59999 4

0 0 0 0 0 0 1 -3 2.9999

Table (2) illustrates the solution of this system by the
SOR and the KSOR methods.
Also we used different vales for & , taking
h =0.05 in equation (32) we obtain on a linear
system of algebraic equations its solution by the SOR
and KSOR methods will be shown in table (3).
Secondly: we solve the equivalent system of second
order differential equation (32) to the basic problem

309

=] 0000416670.0008333 0.00125 00016667 -09979170.0016667 0.00125 0.0008333 0.00041667

(30), using finite difference method (5) in equation
(32) with 2 =0.2 we obtain

Vi1 =2y 4y +004y; =0,y (0) =Ly =e (35)

Vo -y 004y = 03y (0) = —Ly (1) = —¢;

+1
Taking i =1(1)9 we obtain a linear system of alge-
braic equations,

Ay =b;

With coefficient matrix A1

-2 004 1 0 0 0 0 0
0.04 -2 0 1 0 0 0 0
1 0 -2 004 1 0 0 0
A = 0 1 004 -2 0 1 0 0
1 0 0 1 0 -2 004 1 0
0 0 0 1 004 -2 0 1
0 0 0 0 1 0 -2 0.04
0 0 0 0 0 1 004 -2

Table (4) illustrates the solution of this system by the
SOR and the KSOR methods.

Also we take 4 =0.1 in equation (35) we get on a
linear system of algebraic equations with coefficient
matrix of dimension (18x18), the solution of this
system by the SOR and the KSOR methods will be
shown in table (5).
Thirdly: Using the trapezoidal rule (7) for the equa-
tion

X x> 5x0 x*
y(x) =g t{————+—)y(t)dt

2 6 3

1 x x x'
+ 1= = —+ —)y()dt +£(x)
6 2 3

we obtain a functional relation, which is valid at each
point of the grid points

x; =jh;j =11)9;h =0.1

We obtain a linear system of algebraic equations,
corresponding to the Fredholm integral equation (33)

with coefficient matrix A2; h =0.1 in the form

099925 0.00129 0.001134 0.000972 0.00081 0000648 0.000486 0.000324 0.000162
000013867 —0.99867 0.0020907 0.001792 00014933 0.0011947 0.00089% 0.0005973 0.00029867
0000252 0.000504 -099825 0.002352 0.0019 0001568 0.001176 0.0007%4 0.000392
0000352 0.000704 0.001056 -0.99%8 000216 0001728 0.00129% 0000864 0000432

0000432 0.000864 0.001296 0001728 000216 -0.998 0001056 0000704 0.000352
0000392 0.000784 0.001176 0.001568 0.0019 0002352 —-0.99825 0000504 0.000252
000029867 0.0005973 0.00089%6 0.0011947 0.0014933 0.001752 0.0020907 —0.99867 0.00013867
0000162 0.000324 0.000486 0.000648 0.00081 0000972 0.001134 0001296 -0.99925

Table (2) illustrates the solution of this system by
the SOR and the KSOR methods.

We also use different values for the step size/ ,
we take 4 =0.05 and the solution of the reduced
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system by the SOR and the KSOR methods will be
shown in table (3).

Table 2: The solution of the algebraic system obtained
from both the differential equation (30) and the cor-
responding Fredholm integral equation (33),
with 2 = 0.1, the number of iterations for nearly op-
timal values of the relaxation parameters are given

Differential equation Integral equation

ext SOR KSOR SOR KSOR
X ’ ®=1.0006 | o" =g
(3 iter.) (3 iter.)
o1 1.10517 1.10848 1.10848
02 122140 1.22445 1.22445
03 134986 ~ _ 135022 1.35022
0.4 149182 g 5 1.48904 1.48904
05 1.64872 g 5 1.64426 1.64426
06 1.82212 2 Z 1.81861 1.81861
0.7 201375 201365 201365
038 222554 222944 222944
09 245960 2.46480 2.46480

| 1.00008

|
Jl 1.00006
/
b
.//.'
= 1.00004
g
100002 /’
.'llr}
L L L L
-20 -10 10 20

Figure 6: The behavior of the spectral radius of the
iteration matrix Tkgsor as a function in @ for equation
(30),h=0.1.

Table 3:lists the results to the solution of algebraic
system reduced from both differential equation
(30)and its integral form with comparison between
them in the sense of number of iterations and the
value of the relaxation parameter when 4 = 0.05.

Differential equation Integral equation
on soR SOR KSOR
x ext o=1.001 | » =234
@G iter.) @G iter.)
00s | 19127 105341 1.05341
o1 P 110851 110851
o1s | jaorss 116545 1.16545
05 (e 122448 122448
055 | 1o 1.28455 1.28455
03 e 135027 1.35027
035 | Voo 141783 1.41783
04 e B B 1.48908 1.48908
045 : H H 156443 1.56443
1.64872 & & 1.64427 1.64427
05 1.73325 z z 172940 172940
%_565 igﬁéi = = 1.81860 1.81860
065 | yorie 1.91348 1.91348
Py s 201361 2.01361
075 | Smrsa 211723 211723
08 Fenb 222938 222938
085 | Sases 235626 2.35626
09 e 246477 246477
095 : 2.58931 2.58931

Note: we do not include the solution in the differen-
tial form because it is divergent.

310
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e

0.5 1.0 1.5 20
Figure 7: The behavior of the spectral radius of the
iteration matrix Tgor as a function in o for equation
(33),h=0.1.

Table 4:lists the results to the solution of algebraic
system reduced from the system of second order dif-
ferential equations(32), the number of iterations and

the value of the relaxation parameter when /4 =0.2
are given.
SOR KSOR
X Y oxt o=1.28 (28iter.) o =—4.55 (28iter.)
02 122140 122177 122177
04 149182 149241 149241
06 182212 182275 182275
08 222554 222599 2.22599
T
oslb "“-»,_____x.- !_/,.
0sf . /,
N .
0.6f \\\
LR l..'\.v
04k \
03
05 10 0

Figure 8: The behavior of the sp

ectral radius of the

iteration matrix Tgor as a function in o for equation
(32), h=0.2.
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Figure 9: The behavior of the spectral radius of the

%
iteration matrix Txgor as a function in o for equa-
tion (32),h=0.2.
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Figure 10: The behavior of the spectral radius of the
iteration matrix Tgor as a function in ® for equation

(3.3), h=0.1.

Table 5:lists the results to the solution of algebraic
system reduced from the system of second order dif-
ferential equations(37), the number of iterations and
the value of the relaxation parameter when 4 =0.1
are given.

SOR KSOR
X ext w=1.55 (28iter.) o =_28 (28iter.)

o1 110517 110522 110522
02 | 122140 122149 122149
03 | 134986 1.34998 1.34998
on | 149182 1.49197 149197
0s | 164872 1.64888 1.64888
06 | 18212 182228 1.82228
07 | 201375 20139 20139
08 | 222554 222565 222565
00 | 245960 245967 245067

-28 =2

Figure 11: The behavior of_ fhe specfral radius of the

3
iteration matrix Tkgor as a function in o for equa-
tion (32), h=0.1.

4. Numerical Results:

We performed two groups of numerical experi-

ments:
In the first group we considered the performance of
the SOR and the KSOR methods for a second order
two point boundary value problem with its Fredholm
form:

The algebraic system arising from the discreti-
zation of the second order differential equation (25) is
solved by SOR and KSOR techniques and we find
that the suitable choice of the relaxation parameters is

@ =1.402 and with this value we need 25 iterations

%
to obtain the required solution and ® =-3.65 and

311

with this value we need 25 iterations when
h =0.1 (Table (1) and Figures(2,3) )i.e. both the
SOR and the KSOR gives the same solution after the
same number of iterations while when we solve the
algebraic system arise from the integral representation
(27) of the differential equation by the SOR and the
KSOR we find that the suitable choice of the relaxa-
tion parameters is ®=0.96 when h=0.1 and

with this value we need only 8 iterations to obtain the

required solution and (o* =19 we need 8 iterations
to obtain the same solution obtained with the SOR
(Figures 4,5) i.e. both the SOR and the KSOR gives
the same solution after the same number of iterations.
In the second group we considered the performance
of the SOR and the KSOR methods for a fourth order
two point boundary value problem [5] with its
Fredholm form:

The algebraic system arising from the discreti-
zation of the second order differential equation (30) is
solved by SOR and KSOR techniques and we find
that there are no suitable values for the relaxation
parameters make the arising system convergent (Fig-
ures 1, 6) i.e. the system is divergent (Tables 2,3)
While when we solve the algebraic system arising
from the discretization of the fourth order differential
equation as system of two second order differential
equations(32) by SOR and KSOR techniques and we
find that when % = 0.2 the suitable choice of the re-

laxation parameters is @ =1.28 with this value we
need 28 iterations to obtain the required solution

*
and® = —4.55 with this value we need 28 iterations
(Table 4 and Figures 8,9), and when /& = 0.1 (Fig-

ures10,11) @ =1.55and with this value we need 28
iterations to obtain the required solution

and o)* =—2.8 with this value we need 28 iterations
(Table 5) i.e. both the SOR and the KSOR gives the
same solution after the same number of iterations,
moreover while when we solve the algebraic system
arise from the integral representation (33) of the dif-
ferential equation by the SOR and the KSOR we find
that the suitable choice of the relaxation parameters is
® =1.0006 and with this value we need only 3 itera-

tions to obtain the required solution and (o* =-87
we need 3 iterations to obtain the same solution ob-
tained with the SOR when h =0.1(Table 2 and Fig-
ures 7) , also when h =0.05,® =1.001 and with this
value we need only 3 iterations to obtain the required

solution and (o* =—87we need only 3 iterations to
obtain the same solution obtained with the SOR (Ta-
ble3) i.e. both the SOR and the KSOR gives the same
solution after the same number of iterations.
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5. Conclusions:

We have considered the numerical treatment of
boundary value problems of the second and fourth
orders with integral representation forms. We found
that although the algebraic system arising from the
differential equation is banded and the optimal value
of the relaxation parameters can be accurately ap-
proximated the number of iterations used by the SOR
with optimal value of the relaxation parameter is the
same as that used in the KSOR but the sensitivity of
the relaxation parameter in the KSOR is small in
comparison with that of the SOR. Also, the number
of iteration required to obtain the same accuracy is
very small in case of the system obtained from the
integral form in both the SOR and the KSOR as
shown in table (1) compared with the number of iter-
ations required to obtain the same solution from the
algebraic system arising from the differential equa-
tions. Moreover, in the fourth order case we found
that the algebraic system obtained directly from the
differential equation is divergent while that obtained
from the integral equation is convergent. Further, we
found that the system of algebraic equations obtained
from the equivalent system of differential equations is
convergent but the number of algebraic equations is
doubled but still the algebraic system arising from the
integral form is more suitable as shown in tables [2,
3,4,5].
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