
Life Science Journal 2013;10(2)          http://www.lifesciencesite.com 

 

304 
 

Boundary Value Problems, Fredholm Integral equations, SOR and KSOR Methods 
 

I.K.Youssef1 & R.A.Ibrahim2 

 

1Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt 
2Department of Engineering Mathematics and Physics, Faculty of Engineering,_Shoubra, Benha University, Cairo, 

Egypt 
reda_math50@yahoo.com 

 
Abstract: The main interest is the numerical treatment of boundary value problems of the second and fourth order 
with their equivalent Fredholm integral equation forms. Comparison of the performance of the SOR and the KSOR 
methods on the systems arise from the differential form and those arise from the equivalent Fredholm form by using 
discretization techniques of the same accuracy are considered. It is found that the SOR and the KSOR use the same 
number of iterations with the same system but with different relaxation factors. The number of iterations in case of 
the integral representations is approximately less than quarter the number of iterations in case of the differential 
representations in the same time the computational work per iteration in the differential form (sparse systems) is less 
than that of the integral form. We discussed the advantages of using the integral representation over the use of the 
differential representation especially when we have a good approximation of the relaxation parameters. All 
calculations are done with the help of computer algebra system (MATHEMATICA 8.0). 
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1. Introduction: 

Many problems in science and engineering 
can be formulated as mathematical models in a form 
of differential equations (involve local interactions) 
or integral equations (involve local and global inter-
actions). Most ordinary differential equations can be 
expressed as integral equations, but the reverse is not 
true in general, [1, 2]. Usually, the analytical solu-
tions of real models are excluded for different reasons 
concerning the structure of the model, the domain 
under consideration or the properties of the required 
solution. There are many interesting numerical treat-
ments of such models each has its benefits and limita-
tions, the final stage in the numerical treatment is the 
solution of an algebraic system. We concerned in this 
work with linear models which can be formulated 
equivalently in both differential and integral equa-
tions and consequently give rise to large linear alge-
braic systems and the problem is reduced to that of 
the efficient use of iterative techniques for solving 
large linear systems. Youssef, [3] introduced the 
KSOR method as a new variant of the SOR method in 
which the domain of the relaxation parameter is ex-
tended and the sensitivity around the optimum value 
of the relaxation parameter is decreased. Because, 
differential equations involve local interactions, they 
thus give rise to systems of large linear equations 
with sparse coefficient matrices, these sparse systems 
in many cases tend to be badly conditioned. Integral 
equations by contrast in many cases give rise to dense 
large well-conditioned coefficient matrices, [4]. The 
most advantages of using integral equations can be 

summarized in the following three points, the integral 
equation representation usually involve fewer dimen-
sions than the differential equation representation as 
illustrated in the fourth order case below, the integral 
equation (Fredholm) representation include the 
boundary conditions which the problem must satisfy 
in addition to the convenient theory of existence and 
uniqueness available [5]. 

We consider the relation between the numeri-
cal treatment of two well- known two point boundary 
value problems and the numerical treatment of the 
equivalent integral equations: 
The first: 

( ) ( , ( )) , (0 1)

(0) , (1)

y x f x y x x

y y 

   

 
         (1) 

And its equivalent second kind Fredholm integral 
equation is 

1

0

1

0

y(x) k(x, t)y(t)dt

k(x, t)f (t, y(t))dt ( )x



      

        (2) 

The second is [5]: 
(4)

y (x) y(x) , (0 x 1)

y(0) y (0) , y(1) y (1)

  

      
           (3) 

And its equivalent second kind Fredholm integral 
equation is: 



Life Science Journal 2013;10(2)          http://www.lifesciencesite.com 

 

305 
 

 1 1
y(x) k(x, s)k(s, t)ds y(t)dt

0 0

2
x 5 8 3

1 x x
2 6 6



   


  

 
   
     
           

(4) 

Where  ,  and   are real parameters. 

1.1 The finite Difference approximations [6]: 
The basic idea of the finite difference approxi-

mation is the replacement of derivatives or integrals by 
difference approximations; accordingly we obtain 
relations between functional values. The region [0, 
1]or in general [a, b] of the differential or integral 
equations is super imposed with a uniform mesh with 
mesh size 0h , and the grid points are defined by  

; 0 ,1, ;


   j
b a

x a j h j n h
n

 

1.1.1 The central difference approximations:  

Let jy  denote the functional value at the 

point jx , the common central difference approxima-

tions for the second and fourth order derivatives are: 

y 2y y
i 1 i i 1y (i)

2
h

 
                         (5) 

4

(4) y 4y 6y 4y yi 2 i 1 i i 1 i 2y (i)
h

         (6) 

1.1.2.The trapezoidal rule: 
It is well known that the value of a definite integral 
can be approximated by a combination of functional 
values of the integrand with different methods de-
pending on the required accuracy and the grid points 
used. The trapezoidal rule uses only the end points of 
the interval of integration and gives second order 
accuracy and it takes the form:  

 
3

( ) ''
( ) ( ) ( )

122


  

 b ab
f x dx f a f b fa

b a
 

 The composite form of the trapezoidal rule takes the 
form 

2

1
( ) ( ) 2 ( ) ( )

02 1

( )

12

  
    

  




nhb f x dx f x f x f x na jj

b a
h f

    (7) 

Where 
2 ''

( )
b a

h f
n




is the error term, and 

( , )a b   

1.2. Iterative methods: 
The general form of a linear algebraic system 

AX b  can be written in component form as: 

 


m

j
ijji mibxa

1

,,2,1;   

For the use of standard iterative methods, the equa-
tions are arranged such that 0iia .  

Usually, we write  A D L U    [3, 6], where 

D  is the diagonal part of A , L , U  are the lower 
and the upper parts of A . 
1.2.1 Jacobi method: 
The Jacobi method is one of the simplest iterative 
methods it is a direct application of the fixed point 
theorem. The eigenvalues of the iteration matrix of 
the Jacobi method play a central part in the selection 
of the appropriate relaxation parameters.  

[ 1] 1 [ ]

1
, 1, 2, ,

n

i

m
na xij jaii j

j i

x i m







    

[ 1] [ ]1 1
( )

n n
X D L U X D b

  
         (8) 

Where the iteration matrix of Jacobi method is 
1

( )


 
j

T D L U l 

1.2.2 Successive over relaxation method (SOR): 
Gauss Seidel method is known as a modification of 
Jacobi method in the sense of using the most recent 
calculated values. The successive over relaxation SOR 
method generalizes the Gauss Seidel method in the 

sense of using a relaxation parameter (0, 2)  . It is 

well known that  1  gives the Gauss Seidel 
method, moreover suitable choices of   increases 
the convergence. 

 1 [ 1] [ ]

1

[ 1] [ ]

, 1, 2, ,

 
  
 


 

 

i mn n
b a x a xi i j j i j jj j i

n n
x xi i aii

i m



(9) 

Or, in matrix notations 
[ 1] 1 [ ]

1

( ) {(1 ) }

( )

 



   

 

n nX D L D U X

D L b

  


    (10) 

With iteration matrix 
1

( ) {(1 ) }T D L D USOR   


    ; (0,2)  

1.2.3 KSOR method: 
The KSOR method introduced in [3], in which it is 
assumed that it is possible to use the current compo-
nent in addition to the most recent calculated compo-
nents used in the SOR 

 
*

1[ 1] [ ] [ 1] [ ] [ 1]

1 1

, 1, 2, ,

  
     
  

 

i mn n n n n
x x b a x a x a xi i i i j j i j j i i j

j j iaii

i m



 
[ 1] 1 [ ]

1

((1 ) ) ( )

((1 ) )

 



     

   

n nX D L D U X

D L b

  

 
  (11) 

With iteration matrix 
1

T ((1 )D L) (D U); [ 2,0]
KSOR

    
        
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The rate of convergence of the iterative method de-
pends on the spectral radius of the iteration matrix. It is 
well known that the smaller spectral radius of the 
iteration matrix the faster rate of convergence of the 
corresponding iterative method.   
2. BVP and Fredholm integral equations 
     It is well known that boundary value problems 
(of the second and fourth orders) can be formulated 
as Fredholm integral equations with some tricks of 
integrations. The integral equation representation 
involves fewer dimensions than the differential equa-
tion representation. Moreover, the integral equation 
(Fredholm) representation includes the boundary 
conditions which the problem must satisfy [7]. 
Problem (1): 
We consider a linear second order boundary value 
problem of the form 

( ) ( ) ( ); (0 1)

, (0) , (1)

y x y x f x x

y y



 

    

 
       (12) 

Integrating twice with respect to x and using the 
replacement lemma, we obtain the following second 
kind non-homogeneous Fredholm integral equation  

1 1
0 0( ) ( , ) ( ) ( , ) ( )

( )

y x k x t y t dt k x t f t dt

x



  

  

  
 (13) 

Problem (2): 
We consider the fourth order differential equa-

tion: 
(4)

y (x) y(x); 0 x 1;

y(0) y (0) , y(1) y (1)

   

      
         (14) 

This equation is equivalent to  
(x) y(x), y (x) (x); (0 x 1)

(0) , (1) ; y(0) , y(1)

       

         
 (15) 

Employing the same philosophy as in the second 
order case, integrating with respect to x and using the 
replacement lemma, we obtain the following second 
kind Fredholm non-homogenous integral equation  

1 1
0 0

2
3

y(x) { k(x,s)k(s, t)ds}y(t)dt

x 5 8 ( )
(1 ) ( )x x

2 6 6

  

     
   

      (16) 

The integral equation are called homogenous if 
the part  

2
x 5 8 ( ) 3

(1 ) ( )x x 0
2 6 6

     
      

Where the kernel  ( , )k x t is defined as  

 (1 );
( , )

(1 );

 


 

t x t x
K x t

x t x t
 

Theorem1: there exits  and 
that make the al-

gebraic system corresponding to integral equation 

(13), converges faster than that obtained from the 
equivalent system obtained from the differential 
equation (12) provided we use methods of approxi-
mations of the same accuracy. 
Proof: 

Consider the equation ( ) ( ) ( );y x y x f x    

in this equation using finite difference scheme (5) and 

putting x i hi  , h  is the step size, 0,1,i n   

2 2
( 2) ( )1 1y h y y h f xi i i i          (17) 

Notice that for  1i  and i n  the equation will 

involve  0y and 1ny  which are known quantities. 

Thus from (17) we get a linear system of the form 

AY b  
where A is the coefficient matrix: 

2 1 0 0 0 0 02
21 1 0 0 0 02

20 1 1 0 0 02

20 0 0 1 1 12
20 0 0 0 0 1 2

h

h

hA

h

h





















 
 
 
 
 
 
 
 







       





(18) 

 
Y is the vector of unknown variables and b is the 

right hand side 

The matrix A  is tridiagonal, it is strongly di-
agonally dominant for values of   which makes the 

term ( )y x  has opposite sign to that of ( )y x as in 

example (1) below. 
The above mentioned iterative methods con-

verge; the rate of convergence depends on the relaxa-
tion parameter chosen.  

But according to the equation 
1

0

1

0

( ) ( , ) ( )

( , ) ( ) ( )

y x k x t y t dt

k x t f t dt x



  

 

   
             (19) 

Naming 
1

( ) ( ) ( , ) ( )0F x x k x t f t dt        

So we have  

1
( ) ( , ) ( ) ( )0y x k x t y t dt F x             (20) 

Using the trapezoid rule (7) to approximate the 
integral in (13), we obtain a functional relation [8] 

which is satisfied at each point jx of the interval of 

integration. Accordingly we find the linear system of 

algebraic equations,   1 1A Y B  where the matrix of 

the coefficients 1A has the form 

2 2 2 2
1 (1 ) (1 2 ) (1 3 ) (1 ( 1) )

2 2 2 2
(1 2 ) 1 2 (1 2 ) 2 (1 3 ) 2 (1 ( 1) )

2 2 2 2
(1 3 ) 2 (1 3 ) 1 3 (1 3 ) 3 (1 ( 1) )

1

2 2 2
(1 ( 1) ) 2 (1 ( 1) ) 3 (1 ( 1) )

        

        

        


        







    

    

h h h h h h h n h

h h h h h h h n h

h h h h h h h n h
A

h n h h n h h n h

   

   

   

  
2

1 ( 1) (1 ( 1) )   

 
 
 
 
 
 
 
  n h n h

 
(21) 
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It is clear that for small values of h and  we can 
prove with the help of Gerschgorin theorem that the 

matrix  1A is strictly diagonally dominant, positive 

definite and symmetric. 
The quantities   

2 2 2
(1 ),2 (1 2 ), , ( 1) (1 ( 1) )    h h h h n h n h  

 are very small comparing with unity. 
Theorem2: the algebraic system corresponding to 

equation (14) is divergent for every  and 
*
 while 

that corresponding to equivalent system (15) and (16) 
are converges.    
Proof: 

 
Figure 1: The behavior of the spectral radius of the 
iteration matrix   TSOR as a function in for a general 
fourth order differential equation (14) and (30). 
 
    From the previous figure we see that there is no 

value of   and * gives a value of the spectral ra-
dius of the iteration matrix of Jacobi less than one, 

consequently there is no value of   and 

 make 

the resultant linear system of the differential equation 
convergent. 
But according to the system of differential equations  

(x) y(x), y (x) (x); (0 x 1)

(0) , (1) ; y(0) , y(1)

       

         
 

Using finite difference method for this system with the 
notation introduced in section (1.1) we get  

2
2 h y 0;

i 1 i i 1 i

2
y 2y y h 0i 1 i i 1 i

       
 

     

              (22) 

(0) , (1) ; y(0) , y(1)            

So equation (22) gives a linear system of algebraic 
equations of dimension 2n 2 , of the form 

2 A Y b                                 (23)  

Where 2A , is the coefficients matrix Y is the 

corresponding vector of unknown variables and b is 
the right hand side matrix. 

The matrix A2  is sparse and banded; compu-

ting the spectral radius of the iteration matrix of Jacobi 

method of the system (23) we find it is less than unity 
which means that the system is convergent. 
But according to the equation (16)  

1 1
0 0

2
3

y(x) { k(x, s)k(s, t)ds}y(t)dt

x 5 8 ( )
(1 ) ( )x x

2 6 6

   

     
   

       

On using the composed trapezoidal rule (7), the above 
equation can be written as a linear system of algebraic 
equations. 

For explanation take  10, 1 n   since (0)y and 

(1)y are given then we get a system of dimension 9 of 

the form  

3A Y b                                      (24) 

Where 

0.99925 0.001296 0.001134 0.000972 0.00081 0.000648 0.000486 0.000324 0.000162

0.00013867 0.998667 0.00209067 0.001792 0.0014933 0.00119467 0.000896 0.00059733 0.00029867

0.000252 0.000504 0.99825 0.

A
3

       

       

  



002352 0.00196 0.001568 0.001176 0.000784 0.000392

0.000352 0.000704 0.001056 0.998 0.00216 0.001728 0.00196 0.000864 0.000432

0.00041667 0.00083333 0.00125 0.0016667 0.997917 0.0016667 0.00125 0.000833

    

       

       33 0.00041667

0.00432 0.000864 0.00196 0.001728 0.00216 0.998 0.001056 0.000704 0.000352

0.000392 0.000784 0.001176 0.001568 0.00196 0.002352 0.99825 0.000504 0.000252

0.00029867 0.00059733 0.000896 0.0



       

       

    0119467 0.0014933 0.001792 0.00209067 0.998667 0.00013867

0.000162 0.000324 0.000486 0.000648 0.00081 0.000972 0.001134 0.001296 0.99925

   

       

 
 
 
 
 
 
 

The matrix 
3

A is always strictly diagonally dominant, 

computing the spectral radius of the iteration matrix of 

Jacobi method for 3A we find that it is less than unity, 

which mean that the system (24) is convergent. 
Theorem 3: the SOR and the KSOR are completely 
consistent in the sense of Young [8] for both algebraic 
systems obtained from differential and integral equa-
tions.  
 

2. Numerical Examples: 
Example 1: 

Consider the second order B.V.P. [9] 
2 2

( ) ( ) 2 sin( );0 1; (0) (1) 0y x y x x x y y         (25) 

Whose exact solution is: 

( ) sin( )y x x                              (26)  

On using the theoretical methodology described 
for the general second order boundary value problem 
(12), we obtain the following Fredholm integral 
equation 

x2y ( x ) 2 s i n ( x ) t (1 x ) y ( t ) d t0
12 x (1 t ) y ( t ) d tx

    

  

      (27)  

It is an easy task to see that the Fredholm inte-
gral equation (27) satisfies the boundary conditions in 
(25). Moreover the closed form solution (26) satisfies 
both the differential equation (25) and the integral 
equation (27)  

Using the finite difference described in equation 
(17) we obtain a linear system of algebraic equations, 
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corresponding to differential equation (25) with coef-
ficient matrix ( 0.1h  ). 

2.098696 1 0 0 0 0 0 0 0

1 2.098696 1 0 0 0 0 0 0

0 1 2.098696 1 0 0 0 0 0

0 0 1 2.098696 1 0 0 0 0

0 0 0 1 2.098696 1 0 0 0

0 0 0 0 1 2.098696 1 0 0

0 0 0 0 0 1 2.098696 1 0

0 0 0 0 0 0 1 2.098696 1

0 0 0 0 0 0 0 1 2.098696

(28)



 

 

 

  

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 

A

 Using the trapezoidal rule (7) we obtain a functional 
relation, which is valid at each point of the grid points 

; 1(1)9; 0.1
j

x jh j h     

We obtain a linear system of algebraic equations, 
corresponding to the integral equation (27) with coef-
ficient matrix ( 0.1h  ). 

1.0888264 0.0789568 0.0690872 0.0592176 0.049348 0.0394784 0.0296088 0.0197392 0.0098696

0.0789568 1.157914 0.138174 0.118435 0.098696 0.0789568 0.0592176 0.0394784 0.0197392

0.0690872 0.138174 1.207262 0.177653 0.148804

B

4 0.118435 0.0888264 0.0592176 0.0296088

0.0592176 0.118435 0.177653 1.23687 0.197392 0.157914 0.118435 0.0789568 0.0394784

0.049348 0.098696 0.148044 0.197392 1.24674 0.197392 0.148044 0.098696 0.049348

0.0394784 0.0789568 0.118435 0.157914 0.197392 1.23687 0.177653 0.118435 0.0592176

0.0296088 0.0592176 0.0888264 0.118435 0.1488044 0.177653 1.207262 0.138174 0.0690872

0.0197392 0.0394784 0.0592176 0.0789568 0.098696 0.118435 0.138174 1.157914 0.0789568

0.0098696 0.0197392 0.0296088 0.0394784 0.049348 0.0592176 0.0690872 0.0789568 1.0888264

 
 
 
 
 
 
 
 
  
 

(29) 

In the following, we summarize the results of using 
the SOR and the KSOR in the strongly diagonally 
dominant systems arising from the differential form 
and the system arising from the integral form. Also 
we illustrate the behavior of the spectral radius of the 
iteration matrices of the above systems varses the 
relaxation parameters as in figures [2,3,4,5]. We note 
that, we shifted the origin slightly to make the graphs 
readable.  
 
Table 1: The solution of the algebraic system ob-
tained from both the differential equation (25) and the 
corresponding Fredholm integral equation (27), 
with h 0.1 , the number of iterations for nearly opti-
mal values of the relaxation parameters was given. 

 
 
 

x  
 

 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

 
 

Y ext  
 
 
0.309017 
0.587785 
0.809017 
0.951057 
1 
0.951057 
0.809017 
0.587785 
0.309017 

Differential equation Integral equation 

SOR 

1.402
(25 iter.)  

KSOR 
* 3.65 
(25 iter.) 

SOR 

0.96 
(8 iter.) 

KSOR 

19* 
(8 iter.) 

0.31031 
0.59022 
0.812357 
0.954978 
1.00412 
0.954974 
0.812348 
0.590205 
0.310289 

0.31031 
0.59022 
0.812357 
0.954978 
1.00412 
0.954974 
0.812348 
0.590205 
0.310289 

0.307745 
0.585366 
0.805688 
0.947142 
0.995884 
0.947142 
0.805688 
0.585366 
0.307745 

0.307745 
0.585366 
0.805688 
0.947142 
0.995884 
0.947142 
0.805688 
0.585366 
0.307745 

 

Figure 2:The behavior of the spectral radius of the 
iteration matrix TSOR as a function in ω for equation 
(25),h=0.1. 
 

 
Figure 3:The behavior of the spectral radius of the 

iteration matrix TKSOR as a function in *  for 
equation (25),h=0.1. 

 
Figure 4:The behavior of the spectral radius of the 
iteration matrix TSOR as a function in ω for equation 
(27),h=0.1.

 
Figure 5: The behavior of the spectral radius of the 

iteration matrix TKSOR as a function in *  for equa-
tion (27), h=0.1. 
Example (2) [5]: 
The normal modes of free flexural vibration of a thin, 
uniform rod of unit length are governed approximately 
by the differential equation 

(4)
y (x) y(x); 0 x 1;

y(0) y (0) 1, y(1) y (1) e

   

    
              (30) 

Whose exact solution when 1  is  
x

y(x) e                                    (31) 
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Where y(x) represents the transverse displacement of 

the centroid of the cross-section of the rod, at position 
x , from its equilibrium position, and   is propor-

tional to 
2
 ,where   the frequency of vibration, is 

not known in advance [5].  
On using the theoretical methodology described for 
the general fourth order boundary value problem (14) 
and its equivalent system of second order differential 
equations (15) 

(x) y(x), y (x) (x); (0 x 1)

(0) 1, (1) e; y(0) 1, y(1) e

       

       
  (32)   

We obtain the following Fredholm nonhomogeneous 
integral equation of the second kind  

2 3 4
x
0

3 4
1
x

x 5x x
y(x) t( )y(t)dt

2 6 3

x x x
(1 t)( )y(t)dt f (x)

6 2 3

  

    

      (33) 

  Where 

2
(5e 8) x (e 1) 3

f (x) 1 x x
6 2 6

 
     

It is an easy task to see that the Fredholm integral 
equation (33) satisfies the boundary conditions in (30). 
Moreover the closed form solution (31) satisfies both 
the differential equation (30) and the Fredholm integral 
equation (33). 
In this example we solve in three steps: 
Firstly: we solve the fourth order boundary value 
problem (30) Using the finite difference described in 

equation (6), taking 0.1; (0) 1; (1)  h y y e  

y 4y 5.9999y 4y y 0i 2 i 1 i i 1 i 2         (34) 

Taking 1(1)9i we obtain a linear system of alge-

braic equations, 

AY b  
With coefficient matrix A in the form   

2.9999 3 1 0 0 0 0 0 0

4 5.9999 4 0 0 0 0 0 0

1 4 5.9999 4 0 0 0 0 0

0 1 4 5.9999 4 1 0 0 0

0 0 1 4 5.9999 4 1 0 0

0 0 0 1 4 5.9999 4 1 0

0 0 0 0 1 4 5.9999 4 1

0 0 0 0 0 1 4 5.9999 4

0 0 0 0 0 0 1 3 2.9999



 

 

 

  

 

 

 



 
 
 
 
 
 
 
 

A

 
Table (2) illustrates the solution of this system by the 
SOR and the KSOR methods. 

Also we used different vales for h  , taking 

0.05h  in equation (32) we obtain on a linear 
system of algebraic equations its solution by the SOR 
and KSOR methods will be shown in table (3). 
 Secondly: we solve the equivalent system of second 
order differential equation (32) to the basic problem 

(30), using finite difference method (5) in equation 
(32) with 0.2h  we obtain  

2 0.04 0; (0) 1, (1)1 1

2 0.04 0; (0) 1, (1) ;
1 1

y y y y y ei i i i

y e
i i i i



    

      

       
 

(35) 

Taking 1(1)9i  we obtain a linear system of alge-

braic equations,  

1 1A Y b  

With coefficient matrix 1A   

2 0.04 1 0 0 0 0 0

0.04 2 0 1 0 0 0 0

1 0 2 0.04 1 0 0 0

0 1 0.04 2 0 1 0 0

1 0 0 1 0 2 0.04 1 0

0 0 0 1 0.04 2 0 1

0 0 0 0 1 0 2 0.04

0 0 0 0 0 1 0.04 2


















 
 
 
 
 
 
 
 
 

A  

Table (4) illustrates the solution of this system by the 
SOR and the KSOR methods. 
 
Also we take 0.1h  in equation (35) we get on a 
linear system of algebraic equations with coefficient 
matrix of dimension (18×18), the solution of this 
system by the SOR and the KSOR methods will be 
shown in table (5). 
Thirdly: Using the trapezoidal rule (7) for the equa-
tion 

2 3 4
x
0

3 4
1
x

x 5x x
y(x) t( )y(t)dt

2 6 3

x x x
(1 t)( )y(t)dt f (x)

6 2 3

  

    

 

we obtain a functional relation, which is valid at each 
point of the grid points  

; 1(1)9; 0.1x jh j hj     

We obtain a linear system of algebraic equations, 
corresponding to the Fredholm integral equation (33) 

with coefficient matrix  ; 0.12 A h  in the form 

0.99925 0.001296 0.001134 0.000972 0.00081 0.000648 0.000486 0.000324 0.000162

0.00013867 0.99867 0.0020907 0.001792 0.00149330.0011947 0.000896 0.00059730.00029867

0.000252 0.000504 0.99825 0.002352 0.00196 0.00156

A
2









8 0.001176 0.000784 0.000392

0.000352 0.000704 0.001056 0.998 0.00216 0.001728 0.001296 0.000864 0.000432

0.000416670.0008333 0.00125 0.0016667 0.9979170.0016667 0.00125 0.00083330.00041667

0.000432 0.000864 0.001296 0.0





01728 0.00216 0.998 0.001056 0.000704 0.000352

0.000392 0.000784 0.001176 0.001568 0.00196 0.002352 0.99825 0.000504 0.000252

0.000298670.0005973 0.000896 0.0011947 0.0014933 0.001792 0.0020907 0.99867 0.00013867

0.00016







2 0.000324 0.000486 0.000648 0.00081 0.000972 0.001134 0.001296 0.99925

 
 
 
 
 
 
 

 

Table (2) illustrates the solution of this system by 
the SOR and the KSOR methods. 

We also use different values for the step size h , 
we take 0.05h  and the solution of the reduced 



Life Science Journal 2013;10(2)          http://www.lifesciencesite.com 

 

310 
 

system by the SOR and the KSOR methods will be 
shown in table (3). 
 
Table 2: The solution of the algebraic system obtained 
from both the differential equation (30) and the cor-
responding Fredholm integral equation (33), 
with 0.1h , the number of iterations for nearly op-
timal values of the relaxation parameters are given 

 
 
 

x  
 

 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

 
 

Y ext  
 
 
1.10517 
1.22140 
1.34986 
1.49182 
1.64872 
1.82212 
2.01375 
2.22554 
2.45960 

Differential equation Integral equation 

SOR 
 

KSOR 
 

SOR 

1.0006 
(3 iter.) 

KSOR 
* 87   

(3 iter.) 

d
iv

er
ge

n
t 

 

d
iv

er
ge

n
t 

 

1.10848 
1.22445 
1.35022 
1.48904 
1.64426 
1.81861 
2.01365 
2.22944 
2.46480 

1.10848 
1.22445 
1.35022 
1.48904 
1.64426 
1.81861 
2.01365 
2.22944 
2.46480 

 

 
Figure 6: The behavior of the spectral radius of the 
iteration matrix TKSOR as a function in ω for equation 
(30),h=0.1. 
Table 3:lists the results to the solution of algebraic 
system reduced from both differential equation 
(30)and its integral form with comparison between 
them in the sense of number of iterations and the 
value of the relaxation parameter when 0.05h . 

 
 
 

x  
 

 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

 
 

Y ext  
 
1.05127 
1.10517 
1.16183 
1.22140 
1.28403 
1.34986 
1.41907 
1.49182 
1.56831 
1.64872 
1.73325 
1.82212 
1.91554 
2.01375 
2.117 
2.22554 
2.33965 
2.45960 
2.58571 

Differential equation Integral equation 

SOR 
 

KSOR 
 

SOR 

1.001 
(3 iter.) 

KSOR 
* 34   

(3 iter.) 

d
iv

er
ge

n
t 

 

d
iv

er
ge

n
t 

 

1.05341 
1.10851 
1.16545 
1.22448 
1.28455 
1.35027 
1.41783 
1.48908 
1.56443 
1.64427 
1.72940 
1.81860 
1.91348 
2.01361 
2.11723 
2.22938 
2.35626 
2.46477 
2.58931 

1.05341 
1.10851 
1.16545 
1.22448 
1.28455 
1.35027 
1.41783 
1.48908 
1.56443 
1.64427 
1.72940 
1.81860 
1.91348 
2.01361 
2.11723 
2.22938 
2.35626 
2.46477 
2.58931 

Note: we do not include the solution in the differen-
tial form because it is divergent. 

 
Figure 7: The behavior of the spectral radius of the 
iteration matrix TSOR as a function in ω for equation 
(33),h=0.1. 
 
Table 4:lists the results to the solution of algebraic 
system reduced from the system of second order dif-
ferential equations(32), the number of iterations and 
the value of the relaxation parameter when  0.2h  
are given. 

 
 
 

x  
 

 
0.2 
0.4 
0.6 
0.8 

 
 

Y ext  
 
 
1.22140 
1.49182 
1.82212 
2.22554 

SOR 

1.28  (28 iter.) 
KSOR  

* 4.55   (28 iter.) 

1.22177 
1.49241 
1.82275 
2.22599 

1.22177 
1.49241 
1.82275 
2.22599 

 
Figure 8: The behavior of the spectral radius of the 
iteration matrix TSOR as a function in ω for equation 
(32), h=0.2. 
 

 
Figure 9: The behavior of the spectral radius of the 

iteration matrix TKSOR as a function in 
*
 for equa-

tion (32),h=0.2. 
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Figure 10: The behavior of the spectral radius of the 
iteration matrix TSOR as a function in ω for equation 
(3.3), h=0.1. 
 
Table 5:lists the results to the solution of algebraic 
system reduced from the system of second order dif-
ferential equations(37), the number of iterations and 
the value of the relaxation parameter when 0.1h  
are given. 

 
 
 
x  

 
 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

 
 

Y ext  
 
 
1.10517 
1.22140 
1.34986 
1.49182 
1.64872 
1.82212 
2.01375 
2.22554 
2.45960 

SOR 

1.55  (28 iter.) 
KSOR  

* 2.8   (28 iter.) 

1.10522 
1.22149 
1.34998 
1.49197 
1.64888 
1.82228 
2.0139 
2.22565 
2.45967 

1.10522 
1.22149 
1.34998 
1.49197 
1.64888 
1.82228 
2.0139 
2.22565 
2.45967 

 

 
Figure 11: The behavior of the spectral radius of the 

iteration matrix TKSOR as a function in 
*
  for equa-

tion (32), h=0.1. 
 
4. Numerical Results: 

We performed two groups of numerical experi-
ments: 
In the first group we considered the performance of 
the SOR and the KSOR methods for a second order 
two point boundary value problem with its Fredholm 
form: 

The algebraic system arising from the discreti-
zation of the second order differential equation (25) is 
solved by SOR and KSOR techniques and we find 
that the suitable choice of the relaxation parameters is 

1.402  and with this value we need 25 iterations 

to obtain the required solution and 
*

3.65   and 

with this value we need 25 iterations when 

0.1h (Table (1) and Figures(2,3) )i.e. both the 
SOR and the KSOR gives the same solution after the 
same number of iterations while when we solve the 
algebraic system arise from the integral representation 
(27) of the differential equation by the SOR and the 
KSOR we find that the suitable choice of the relaxa-
tion parameters is 0.96  when h 0.1  and 

with this value we need only 8 iterations to obtain the 

required solution and 
*

19   we need 8 iterations 
to obtain the same solution obtained with the SOR 
(Figures 4,5) i.e. both the SOR and the KSOR gives 
the same solution after the same number of iterations. 
In the second group we considered the performance 
of the SOR and the KSOR methods for a fourth order 
two point boundary value problem [5] with its 
Fredholm form: 

The algebraic system arising from the discreti-
zation of the second order differential equation (30) is 
solved by SOR and KSOR techniques and we find 
that there are no suitable values for the relaxation 
parameters make the arising system convergent (Fig-
ures 1, 6) i.e. the system is divergent (Tables 2,3)  
While when we solve the algebraic system arising 
from the discretization of the fourth order differential 
equation as system of two second order differential 
equations(32) by SOR and KSOR techniques and we 
find that when 0.2h  the suitable choice of the re-

laxation parameters is 1.28   with this value we 
need 28 iterations to obtain the required solution 

and
*

4.55   with this value we need 28 iterations 

(Table 4 and Figures 8,9), and when 0.1h  (Fig-

ures10,11) 1.55  and with this value we need 28 
iterations to obtain the required solution 

and
*

2.8   with this value we need 28 iterations 
(Table 5) i.e. both the SOR and the KSOR gives the 
same solution after the same number of iterations, 
moreover while when we solve the algebraic system 
arise from the integral representation (33) of the dif-
ferential equation by the SOR and the KSOR we find 
that the suitable choice of the relaxation parameters is 

1.0006  and with this value we need only 3 itera-

tions to obtain the required solution and 
*

87    
we need 3 iterations to obtain the same solution ob-
tained with the SOR when h 0.1 (Table 2 and Fig-

ures 7) , also when h 0.05 , 1.001  and with this 
value we need only 3 iterations to obtain the required 

solution and 
*

87   we need only 3 iterations to 
obtain the same solution obtained with the SOR (Ta-
ble3) i.e. both the SOR and the KSOR gives the same 
solution after the same number of iterations.  
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5. Conclusions: 
We have considered the numerical treatment of 

boundary value problems of the second and fourth 
orders with integral representation forms. We found 
that although the algebraic system arising from the 
differential equation is banded and the optimal value 
of the relaxation parameters can be accurately ap-
proximated the number of iterations used by the SOR 
with optimal value of the relaxation parameter is the 
same as that used in the KSOR but the sensitivity of 
the relaxation parameter in the KSOR is small in 
comparison with that of the SOR. Also, the number 
of iteration required to obtain the same accuracy is 
very small in case of the system obtained from the 
integral form in both the SOR and the KSOR as 
shown in table (1) compared with the number of iter-
ations required to obtain the same solution from the 
algebraic system arising from the differential equa-
tions. Moreover, in the fourth order case we found 
that the algebraic system obtained directly from the 
differential equation is divergent while that obtained 
from the integral equation is convergent. Further, we 
found that the system of algebraic equations obtained 
from the equivalent system of differential equations is 
convergent but the number of algebraic equations is 
doubled but still the algebraic system arising from the 
integral form is more suitable as shown in tables [2, 
3, 4, 5].  
. 
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