
Life Science Journal 2013;10(1) http://www.lifesciencesite.com

3252

Measuring and Assessing Staffing Level, Cost Analysis for Debugging Activities Using Queuing Theory

Sangeetha. M1, Arumugam. C2, Senthil Kumar K. M3

1 Coimbatore Institute Of Technology, Coimbatore, India
2sri Ranganather Instutute Of Technology, Coimbatore, India

Email：kmsenthildrkumar@gmail.com

Abstract: Reliability is the probability of a software working correctly over a specific period of time. Reliability
predictions and assessments are important in ensuring the quality. Many approaches has been given like rate based
approaches for the reliability of the software and to analyze the reasons for the failure of the software. Criteria for
the reliability of the software, number of debuggers or developers available are not taken into account. Newly
detected faults have to wait for some time since all the debuggers will be busy in detecting the faults which they
found previously. Time taken to remove the fault is taken into consideration and the main fact relies in it is that less
number of faults been removed when compared to the number of faults detected. This is mainly because fault
detection is continued as faults are also removed side by side. Taking the previous out comings into consideration,
our project proposes a rate-based simulation method by applying the queuing theory for the debugging behavior
during the development of the software. G/G/∞ and G/G/m models have been used in our proposed method. This
method is used for the real software failure. This approach helps to predict the debuggers’ performance and the cost
effectiveness.
[Sangeetha. M, Arumugam. C, Senthil Kumar K.M. Measuring and Assessing Staffing Level, Cost Analysis
for Debugging Activities Using Queuing Theory. Life Sci J 2013:10(1):3252-3258]. (ISSN: 1097-8135).
http://www.lifesciencesite.com. 410

Keywords: Fault correction, non-homogeneous Poisson process (NHPP), software reliability growth model
(SRGM), software testing

INTRODUCTION

Software should meet requirements
specifications. Best quality software satisfies the need
of the customer. Historically, the word “quality” has
been adapted and has evolved together with the
different technologies to which it has been applied.
Each software should not contain compliance. It
implies loss of quality or less trust on product.
Inspection process goal was to avoid corrections
through the identification of product deviations from
requirement specification [2].

Software metrics can be classified into
three categories: product metrics, process metrics,
and project metrics. Product metrics describe the
characteristics of the product such as size,
complexity, design features, performance, and quality
level Software industry focuses on the following
principles: 1. Software requirements are the quality
metric fundamental. Lack of compliance with
requirements is a quality failure. 2. Standards
establish development criteria. Absence of standards
means, in many cases, low quality [5]. 3. Indirect
measures (e.g. usability, maintainability, etc.) and
direct measures (e.g. lines of code).

Software can also have small unnoticeable
errors or drifts that can culminate into a disaster. On
February 25, 1991, during the Golf War, the
chopping error that missed 0.000000095 second in
precision in every 10th of a second, accumulating for

100 hours, made the Patriot missile fail to intercept a
scud missile. 28 lives were lost.

Fixing problems may not necessarily make
the software more reliable. On the contrary, new
serious problems may arise. In 1991, after changing
three lines of code in a signaling program which
contains millions lines of code, the local telephone
systems in California and along the Eastern seaboard
came to a stop.

In recent decades, rate-based simulation
approaches have been proposed to analyze stochastic
failure processes [2], [7], [11]. Simulation approaches
relax certain unreasonable assumptions which are
common in model-based approaches. This type of
approach can also extend the reliability process to
encompass the entire software life-cycle [11].
However, we found that most of the research on
simulation approaches has not considered the
limitations of debugging resources during the fault
correction process (FCP). In fact, for project
managers, such kinds of information will be valuable,
and helpful. Musa [3] reported that the number of
debugging personnel is one of the major constraints
on the rate of testing. Therefore, in this paper, we will
incorporate the queuing model into the rate-based
simulation framework to approximate reality more
closely.

Through the proposed simulation
framework, possible debugging behavior will be

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

3253

analyzed and discussed under consideration of the
debugging team size.

The remainder of this paper is organized as
follows. Section II reviews existing methods for
software reliability prediction. Then we will propose
two rate-based simulation procedures to analyze both
the FDP, and FCP in Section III. In the proposed
framework, debugging behavior is analyzed based on
the concept of queuing theory. In Section IV,
experiments based on two real data sets are discussed
in terms of performance, and cost-effectiveness.
Finally, Section V concludes the paper.
SOFTWARE RELIABILITY PREDICTION
APPROACHES

Farr & Lyu [2] also pointed out that the
NHPP model has formed the basis for the models
using the observed number of faults per unit time
group. However, we observed that most of these
models deal solely with FDP [17]. In reality, the
terms testing and debugging are related but distinct.
Testing is the process of exercising a program with
the intention of revealing inherent faults, while
debugging activity localizes the root cause of the
detected fault, and then corrects the fault [18].
Because fault removal may require time and effort,
the number of removed faults will lag behind the
total number of detected faults. Musa [3] argued that
the fault removal process is characterized on an
average basis by assuming that the fault correction
rate is proportional to the hazard rate. He called the
proportionality constant a fault reduction factor. In
addition, Wood [19] reported that instantaneous
repair is not realistic in practice. Therefore, model-
based methods should be modified to take into
account the FCP [17].

Apart from the NHPP models, many
researchers have applied neural networks to predict
FCP, and to estimate software reliability [6], [12],
[13]. Karunanithi & Malaiya [12] proposed neural
network architecture which first accepts the
execution time as the input, and then shows the
number of detected faults. This type of framework
models the software’s reliability using different
neural networks, such as a recurrent neural network.
Another kind of neural network framework models
software reliability based on a multiple-delayed
input/single-output neural-network architecture. For
example, Cai et al. [12] designated the most recent
50 inter-failure times as the multiple-delayed inputs
to forecast the occurrence of the next failure.
Similarly, Tian & Noore [3] proposed an
evolutionary neural-network modeling approach for
the prediction of cumulative failure time based on
this architecture. Su & Huang [6] also proposed an
ANN-based dynamic weighted combinational
approach to predict software reliability [11] reported

that instantaneous repair is not realistic in practice.
Therefore, model-based methods should be modified
to take into account the FCP [7].

Apart from the NHPP models, many
researchers have applied neural networks to predict
FCP, and to estimate software reliability [6], [11].
Karunanithi & Malaiya [2] proposed a neural
network architecture which first accepts the
execution time as the input, and then shows the
number of detected faults. This type of framework
models the software’s reliability using different
neural networks, such as a recurrent neural network.
Another kind of neural network framework models
software reliability based on a multiple-delayed
input/single-output neural-network architecture. For
example, Cai et al. [2] designated the most recent 50
inter-failure times as the multiple-delayed inputs to
forecast the occurrence of the next failure. Similarly,
Tian & Noore [3] proposed an evolutionary neural-
network modeling approach for the prediction of
cumulative failure time based on this architecture.
Su & Huang [6] also proposed an ANN-based
dynamic weighted combinational approach to
predict software reliability. Besides, Hu et al. [3]
further studied a major ANN architecture, the Elman
recurrent networks, to model both the FDP, and FCP
for software reliability analysis.
PROPOSED APPROACH

The simulation algorithm can be applied to
each individual activity during SDLC. Later,
Gokhale & Lyu [7] proposed a simulation technique
to analyze structure-based software reliability. They
believed that the time required by fault repair should
be considered explicitly. They also extended the
simulation to the reliability assessment on the
application level. Recently, Gokhale et further
considered the possibility of imperfect debugging in
the simulation approach. However, we found that
existing published simulation techniques seldom
consider the limitations of debugging resources, and
this oversight may not be reasonable. In practice, the
number of qualified debuggers will be controlled
during SDLC. In the next section, we will apply
queuing theory to mo del software fault correction
activities through simulation procedures.

Figure 1. Software testing and debugging activities
The software system is subject to failures at random
times caused by the manifestation of the remaining
faults in the system.

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com
3254

2) All faults are independent, and equally detectable.
The probability that a failure will be experienced
during (t, t+∆t) is Λ(t) ∆t approximately, and the
probability that two or more failures will occur
during (t, t+∆t) is negligible.
3) The correction of faults takes non-negligible time,
i.e., explicit repair. The probability that a fault is
corrected in time interval (ts, ts+∆t) is µ * ∆t.
Further, fault removals do not affect the ongoing
activities of fault detection.
4) No new faults are introduced during the correction
process.
5) Available, and qualified debuggers are always
sufficient.

The debugging system is modeled by a queue
system (G/G/∞). Each time a failure occurs, there is
no lag to allot a debugger to the detected fault.

Based on these assumptions, Procedure #1
was developed, and is depicted in Fig. 2. Procedure
#1 accepts two parameters as inputs: the total number
of execution time units, defined as stop_time; and the
consumed time of each run, denoted by dt. The length
of each time unit should be consistent with the failure
data collection form. Further, each time unit is
divided into a large number of runs, and the length of
each run should be short enough that multiple events
in a run are rare [2], [7]. That is, the variations of
failure rate in (t, t+dt) should be insignificant. In
addition to the two inputs, certain variables are also
used in the simulation to represent the major
components of the debugging system, and to gather
useful statistics. The variable current_time represents
a clock, which also indicates the cumulative
execution time to the present. The array correction,
each element of which contains a fault_info, is used
to keep track of the status of each fault. Further,
working_server denotes the current number of busy
debuggers, while max_server logs the number of
utilized debuggers at peak time. Finally,
cumulative_arrival and cumulative_departure are
integers used to count the numbers of cumulative
detected faults and cumulative removed faults,
respectively.

There are several ways to derive the
simulation. Our framework adopts a random-number
generator, which is common. Following
mathematical probability distributions, the generator
is programmed to generate arrivals, departures,
and so on. During simulation, actions taken in each
run consist of two steps: detecting, and
correcting.Detecting: Following similar work in [4],
and [7], we can simulate the FDP. At the outset of
each run, the function occur() will be invoked to
determine whether the testers detect a fault in this
run.

This means that the testers may detect a

fault if is greater than Λ(t). Once the occur function
returns 1, is increased, the value of is updated, and the
state of the detected fault will be recorded. Lines 10–
14 in Procedure #1 show the activities taking place as
a result of each failure occurrence.

Correcting: Departing from the detection
step, we commence diagnosing the status of each
detected fault by checking all elements of the array
correction. If an open-remaining fault (a detected but
uncorrected fault) is found, the function leave(ts)
determines whether this fault will be corrected in this
run. Similar to the occur function, the success of
fault removal relies upon the comparison between dt,
and the random number. If dt, then the dedicated
debugger successfully corrects this fault in this run.
The necessary actions taken due to this successful
repair are given in Lines 19–22. Otherwise, this fault
cannot be corrected at this time, and will be
reexamined in the next run. From Assumption 3), we
know that the necessary correction time is non-
negligible. Hence, the return of leave(0) is given as 0,
ensuring that the fault detected in the current run will
not be removed immediately.
B. Procedure 2

In Procedure #2, each run consists of three
steps: debugger allocation, fault detection, and fault
correction.

Allocation: This step allocates the qualified
debuggers to the faults pending in the queue. First,
we check the existence of unoccupied debuggers by
comparing with. If all debuggers are not busy, a
pending fault will be deleted from the waiting queue,
and will occupy one debugger. The activities for
debugger assignment are shown in Lines 11–15,
which will be repeated until available debuggers are
exhausted, or the waiting queue becomes empty.

Detecting: Once a fault is detected, we first
increase, and then determine whether available
debuggers exist. If (meaning that some debuggers
are still available), the actions are the same as those
taken during the detection step of Procedure #1.
Otherwise, the detected fault will be inserted into the
queue to await service. Related activities are given in
Lines 19-29 of Fig. 3.

Correcting: Entering this step, the status of
each fault will first be checked. If there are faults
being repaired, the function leave will be executed to
determine whether the repairs will be successful.
Following each successful repair, the actions
described in Lines 35–38 will be taken, i.e., an
occupied debugger will be released. Conversely,
faults which are not corrected in the current run will
be reexamined in the next run.

The above three steps will be reiterated
prior to the. In addition to the information obtained
through Procedure #1, we further have the average

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com
3255

time spent in the waiting queue, the average length
of the waiting queue, and other statistics. Although
productive research has used neural network
approaches to predict the increment of the failure
process, most training algorithms for neural network
approaches suffer from the overfitting problem. That
is, the fitting bias of the training set is very slight
regarding known data, but the bias is unpredictably
large when new data are presented to the network
[3]. Determination of the proper number of neurons
is another common problem in the field of neural
network research . Moreover, Tausworthe & Lyu
[2],argued that most SRGM only focus on the failure
observation during the test phase, or the operational
phase. They reported that the assumptions of most
SRGM lead to the over-simplification of the failure
process. Thus, general simulation techniques have
been developed to relax certain unreasonable
assumptions [2].

For ease of discussion, we let ≥ 0} be the
stochastic failure process that represents the number
of failures observed in an execution interval (0,). If
the failure behavior is modeled by a failure rate, N(t)
can be modeled by a class of NHCTMC [7]. That is,
the behavior of the stochastic process N(t) purely
depends on the rate function for each state of the
software system. If the state is represented by the
number of occurrences of the event, it is known as a
pure birth NHCTMC.

void Simulation_Procedure (double
stop_time, double dt)

{
 double current_time = 0;
 int working_server = 0, max_server = 0;
 struct fault_info correction[Max_Size];
 int cumulative_arrival = 0,
cumulative_departure = 0;
 while (current_time < stop_time) {
 DETECTING:
 if(occur()){
 working_server++;
 if (working_server > max_server)
 max_server = working_server;

correction[cumulative_arrival].arrival_time =
current_time;
 correction[cumulative_arrival++].state =
CORRECTING;
 }
 CORRECTING:
 for(int i = 0; i < cumulative_arrival; i++) {
 if (correction[i].state ==
CORRECTING && leave(current_time -
correction[i].arrival_time)) {
 working_server--;

correction[i].departure_time = current_time'
 correction[i].state =
CORRECTED;

cumulative_departure++;
 }
 }
 current_time += dt;
}

 Figure. 2. Procedure #1

SOFTWARE RELEASE STRATEGIES
AND COST ESTIMATIONS

In the high-technology market, the life
cycle of software products may be so short that the
manager is actually willing to deliver the software
product with uncorrected faults by the scheduled
deadline. Nevertheless, delivering a bad product
may lead to customer dissatisfaction, and then cause
damage to a software company’s reputation [3].
Therefore, if some open-remaining faults still exist
with the scheduled dead- line approaching, we
assume that there are two debugging strategies to
manage the project: Release Strategy A, which
strictly enforces the hard-deadline, and delivers the
software product with open-remaining faults; and
Release Strategy B, which extends the deadline, and
continues the fault correction until fixing all open-
remaining faults. Based on these two strategies, we
will study the expected cost and penalty of open-
remaining faults as the project manager staffs the
debugging team with different amounts of
personnel. To simplify our analysis, we will only
focus on those factors related to the staffing level of
the debugging team. The factors common in both
strategies will be ignored, such as the cost of
discovering faults, and the penalties of faults which
are not discovered before release.

Correcting: Entering this step, the status of
each fault will first be checked. If there are faults
being repaired, the function leave will be executed
to determine whether the repairs will be successful.
Following each successful repair, the actions
described in Lines 35–38 will be taken, i.e., an
occupied debugger will be released. Conversely,
faults which are not corrected in the current run will
be reexamined in the next run.

Release Strategy A: In addition to
customer dissatisfaction, the penalties of remaining
faults should also include the cost of fixing faults
after release. The cost of fixing a fault after release
is usually an order of magnitude greater than fixing
the fault prior to release [4]. The cost function can
be given as: Intuitively, there may be a negative
relationship between the penalties of remaining
faults, and the number of debuggers. But the amount

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com
3256

of debuggers’ salaries is proportional to the number
of debuggers. To determine a suitable staffing level,
and to re- duce the total cost, software project
managers should strike a balance regarding the total
debugger’s salaries before release, and the penalties
of open-remaining bugs after release.

void Simulation_Procedure (double
stop_time, double dt, int staffing_level)
{
 double current_time = 0;
 int working_server = 0;
 struct fault_info correction[Max_Size],
waiting_queue{max_Size];
 int num_correction = 0,cumulative_arrival = 0,
cumulative_departure =0;
 int queue_head = 0, queue_tail = 0;
 while (current_time < stop_time) {
 ALLOCATION:
 while (working_server < staffing_level &&
queue_head!=queue_tail) {
 waiting_queue[queue_head].state =
OUT_OF_QUEUE;

waiting_queue[queue_head++].departure_time =
current_time;
 correction[num_correction].state =
CORRECTING;
 }
 DETECTING:
 if(occur()){
 cumulative_arrival++;
 if (working_server >=
staffing_level){

waiting_queue[queue_tail].state = ENQUEUE;

waiting_queue[queue_tail++].arrival_time =
current_time;
 }
 else {
 working_server++;
 if (working_server >
max_server)
 max_server =
working_server;

correction[num_correction].arrival_time =
current_time;

correction[num_correction++].state =
CORRECTING;
 }
 }
 CORRECTING:
 for (int i=0; i<num_correction; i++) {

 if (correction[i].state == CORRECTING
&& leave(current_time -
correction[i].arrival_time)) {
 working_server--;
 correction[i].departure_time =
current_time;
 correction[i].state =
CORRECTED;
 cumulative_departure++;
 }
 }
 current_time += dt;
}

Figure. 3. Procedure #2

Cost1 = debuggers salaries of + cost of
fixing faults after release + penalty customer (6)

Release Strategy B:
 If the debugging activities are continued

until all detected faults are removed, the cost will
exclude the penalties caused by the open-remaining
faults after release, but the scheduled project deadline,
and software release could be extended accordingly.
Thus, in addition to extra debuggers’ salaries during
the extended period, the penalty of the declining
market position is inevitable. The expected cost for
this strategy can be calculated by

Cost2 =original debuggers salaries +penalty
of lost market position+Extra debugger’s salaries
during extended period. (7)

Similarly, to minimize the expected cost, it
is necessary to analyze the trade-off between two
costs: the debugger’s salaries, and the penalties due
to late release.
RESULTS

The data set was from system T1 of the
Remote Air Development Center project.The failure
data were carefully collected under strict
supervision. System T1 was applied to real time
command and control, including 21,700 delivered
object instructions. Over the course of 21 weeks, 9
programmers detected and removed 136 faults.
1. The average of fault removals per week.
2. The faults detected during the period of 21 weeks.
3. The average measure of all faults. Note that the
waiting time means the time of the fault pending in
waiting queue, and the response time indicates the
total time spent in the queuing system. Besides,
because some detected faults may not be removed
yet at the end of 21 weeks, the simulation of
correction processes, and the statistics are continued
until all pending faults are addressed.

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com
3257

Figure. 4. Datas of Remote Air Development Center
Limitation of
Available
Debuggers

Throughput (by the end of
21 weeks)

Time to
remove faults
(weeks)2,3

Avg.
waiting
time
(weeks)3

Avg.
response
time
(weeks)3

Avg. queue
lgth3

Debugger
utilization
(%) Open-remaining

faults
Avg.
removals

Unlimited 2 6.52 22 0.00 0.66 0.00 -
12 2 6.52 22 2.45 * 10-3 0.67 1.55*10-2 36.79
11 2 6.52 22 6.69 * 10-3 0.67 4.22*10-2 40.13
10 2 6.52 22 1.37 * 10-2 0.68 8.64*10-2 44.14
9 2 6.52 22 3.21 * 10-2 0.70 0.20 49.05
8 2 6.52 22 0.10 0.77 0.65 55.18
7 5 6.38 22 0.37 1.03 2.32 62.75
6 19 5.71 24 1.03 1.69 5.97 66.15
5 36 4.90 26 2.15 2.81 11.47 68.61
4 53 4.10 30 4.02 4.69 18.64 71.15
3 71 3.24 38 7.44 8.11 27.23 73.75
2 95 2.10 52 14.23 15.28 39.08 77.26
1 113 1.24 97 36.79 37.45 52.72 84.67

Figure 5. Performance comparisons between
different staffing levels as the value of varies from 1
to 8

According to the above analyses, the
limitation on the debugging team size is not the
bottleneck to enhance performance when the number
of personnel is more than 7. Increasing the number of
debuggers can only increase the number of
simultaneous working debuggers, but it does not
reduce the consumed time taken for a debugger to fix
a fault. Therefore, when the staffing level can bear the
load, more debuggers cannot improve the throughput.
If the manager wants to ameliorate the performance, it
is necessary to improve the debuggers’ skills, i.e. to
increase the value. Fig.4 shows some performance
comparisons between different staffing levels as the
value of varies from 1 to 8. Due to space limitations,
we only demonstrate the number of open-remaining
faults, and the time to remove all faults in each
condition. As is clear from Fig. 7, both statistics
decrease with the growth of , and the staffing. The
utilization of 6 debuggers is very low at the
beginning. However, because the number of detected

faults grows rapidly from the 8th week to the 18th
week, 6 personnel seem unable to bear the load. Re-
staffing may be reasonable in both conditions. Using
the pro- posed framework, project managers can
easily estimate the influence caused by re-staffing
the debugging system, and further decide whether to
make an adjustment.

CONCLUSION

In this paper, we modeled debugging
behavior using queuing models. Two simulation
procedures were developed to simulate the
stochastic FDP, and FCP under different
conditions. The proposed framework can help to
understand/infer the current/future situations of the
on-going project, or to reconstruct the possible
behavior of the completed project. The applications
of the pro- posed procedures are illustrated through
two real data sets. The case studies show that the
proposed simulation procedures can analyze the
influence on the performance, and the cost related
to software debugging when the number of
allocated debuggers changes. This useful, important
information can guide project managers in the
estimation and adjustment of the staffing needs for
debugging systems. Further, the proposed
procedures are also useful when the project is
planned using the techniques of expert judgment, or
estimation by analogy.

ACKNOWLEDGEMENTS
 I would like to thank Prof. K.M. SenthilKumar
for providing support and material related to
educational research. Also, I am grateful to my
Principal and colleagues for their support in teaching
practical sessions of the software engineering

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

http:www.lsj-marsland.com editor@lsj-marsland.com
3258

module in addition to their valuable feedback as
tutors. Last, but not least, I am grateful to Coimbatore
Institute of technology for the early experience in
teaching this subject, and especially to Dr.
C.Arumugam for the fruitful discussions about this
type of research.

REFERENCES
[1] Dwyer, D. & D'Onofrio, P., (2011).

Improvements in estimating software reliability
from growth test data. Reliability and
Maintainability Symposium (RAMS), 2011
Proceedings - Annual, 1 – 5.

[2] Goel, A. L. & Yang, K. J. (1997). Software
reliability And readiness assessment based on
the non-homogenous Poisson process,
Advances in Computers, 45, 197-267.

[3] Gokhale, S.S., Lyu, M.R. & Trivedi, K.S.
(2006). Incorporating fault debugging activities
into software reliability models: a simulation
approach. Reliability, IEEE Transactions on,
55(2), 281 – 292.

[4] Hung, C. Y., Lyu, M. R. & Kuo, S. Y. (2003).
A unified scheme of some non-homogeneous
poisson process models for software reliability
estimation, IEEE Trans. On Software
Engineering 29(3), 261-269.

[5] Hung, C. Y. & Lin, C. T.(2006).Software
reliability analysis by considering fault
dependency and debugging time lag, IEEE
Trans. on Reliability, 55(3), 436-450.

[6] Hung, C. Y., Lin, C. T., Kuo, S. Y., Lyu, M.
R. & Sue, C. C. (2004). Software reliability
growth models incorporating fault dependency
with various debugging time lags,Proceedings
of the 28th Annual International Computer
Software and Application Conference, Hong
Kong, China, 186-191.

[7] Hung, C. Y., Lin, C. T., Lo, J. H. & Sue, C. C.
(2004). Effect of fault dependency and
debugging time lag on software error models,
Proceedings of the 2004 IEEE Region 10
Conference, Thailand, 243-246.

[8] Kapur, P.K., Pham, H., Anand, S. & Yadav,
K. (2011). A Unified Approach for
Developing Software Reliability Growth
Models in the Presence of Imperfect
Debugging and Error Generation Reliability,
IEEE Transactions on , 60 (1), 331 – 340.

[9] Lyu, M. R. (1993) .Handbook of Software
Reliability Engineering: McGraw-Hill. 428-
443. Ohba, M. (1984).

[10] H. Okamura, H. Furumura, and T. Dohi, “On
the effect of fault re- moval in software
testing-Bayesian reliability estimation
approach,” in Proceedings of the 17th
International Symposium on Software
Reliability Engineering, Raleigh, North
Carolina, USA, November 2006, pp.247–255.

[11] N. Karunanithi and Y. K. Malaiya, “Prediction
of software reliability using connectionist
models,” IEEE Trans. Software Engineering,
vol. 18, no. 7, pp. 563–574, July 1992.

3/3/2013

